
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3441867/publications.pdf Version: 2024-02-01

IFAN LIANC

#	Article	IF	CITATIONS
1	Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2012, 8, 445-544.	9.1	3,122
2	Negative feedback control of neuronal activity by microglia. Nature, 2020, 586, 417-423.	27.8	520
3	Mechanical Strain Opens Connexin 43 Hemichannels in Osteocytes: A Novel Mechanism for the Release of Prostaglandin. Molecular Biology of the Cell, 2005, 16, 3100-3106.	2.1	430
4	ATP and glutamate released via astroglial connexin 43 hemichannels mediate neuronal death through activation of pannexin 1 hemichannels. Journal of Neurochemistry, 2011, 118, 826-840.	3.9	324
5	Reactive oxygen species and oxidative stress in osteoclastogenesis, skeletal aging and bone diseases. Journal of Bone and Mineral Metabolism, 2015, 33, 359-370.	2.7	316
6	Heteromeric connexons in lens gap junction channels Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 1287-1291.	7.1	275
7	Amyloid β-Induced Death in Neurons Involves Glial and Neuronal Hemichannels. Journal of Neuroscience, 2011, 31, 4962-4977.	3.6	256
8	Mechanical stress-activated integrin α5β1 induces opening of connexin 43 hemichannels. Proceedings of the United States of America, 2012, 109, 3359-3364.	7.1	206
9	Biological role of connexin intercellular channels and hemichannels. Archives of Biochemistry and Biophysics, 2012, 524, 2-15.	3.0	191
10	Expression of Functional Gap Junctions and Regulation by Fluid Flow in Osteocyte-Like MLO-Y4 Cells. Journal of Bone and Mineral Research, 2001, 16, 249-259.	2.8	189
11	Effects of Mechanical Strain on the Function of Gap Junctions in Osteocytes Are Mediated through the Prostaglandin EP2 Receptor. Journal of Biological Chemistry, 2003, 278, 43146-43156.	3.4	182
12	Mechanical induction of PGE2 in osteocytes blocks glucocorticoid-induced apoptosis through both the β-catenin and PKA pathways. Journal of Bone and Mineral Research, 2010, 25, 2657-2668.	2.8	179
13	Dendritic processes of osteocytes are mechanotransducers that induce the opening of hemichannels. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 13648-13653.	7.1	174
14	Glucocorticoid-induced autophagy in osteocytes. Journal of Bone and Mineral Research, 2010, 25, 2479-2488.	2.8	172
15	Formation of heteromeric gap junction channels by connexins 40 and 43 in vascular smooth muscle cells. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 6495-6500.	7.1	170
16	PGE2 Is Essential for Gap Junction-Mediated Intercellular Communication between Osteocyte-Like MLO-Y4 Cells in Response to Mechanical Strain. Endocrinology, 2001, 142, 3464-3473.	2.8	164
17	Glucose increases intracellular free Ca ²⁺ in tanycytes via ATP released through connexin 43 hemichannels. Glia, 2012, 60, 53-68.	4.9	154
18	Gap junction- and hemichannel-independent actions of connexins. Biochimica Et Biophysica Acta - Biomembranes, 2005, 1711, 208-214.	2.6	153

#	Article	IF	CITATIONS
19	Adaptation of Connexin 43-Hemichannel Prostaglandin Release to Mechanical Loading. Journal of Biological Chemistry, 2008, 283, 26374-26382.	3.4	150
20	Gap junction and hemichannelâ€independent actions of connexins on cell and tissue functions – An update. FEBS Letters, 2014, 588, 1186-1192.	2.8	143
21	Glucocorticoid dose determines osteocyte cell fate. FASEB Journal, 2011, 25, 3366-3376.	0.5	133
22	Prostaglandin Promotion of Osteocyte Gap Junction Function through Transcriptional Regulation of Connexin 43 by Glycogen Synthase Kinase 3/β-Catenin Signaling. Molecular and Cellular Biology, 2010, 30, 206-219.	2.3	126
23	Roles of gap junctions and hemichannels in bone cell functions and in signal transmission of mechanical stress. Frontiers in Bioscience - Landmark, 2007, 12, 1450.	3.0	117
24	Gap junctions and hemichannels in signal transmission, function and development of bone. Biochimica Et Biophysica Acta - Biomembranes, 2012, 1818, 1909-1918.	2.6	115
25	Differential impact of adenosine nucleotides released by osteocytes on breast cancer growth and bone metastasis. Oncogene, 2015, 34, 1831-1842.	5.9	99
26	Lymphatic Endothelial Cells Are Essential Components of the Subcapsular Sinus Macrophage Niche. Immunity, 2019, 50, 1453-1466.e4.	14.3	97
27	Molecular cloning and functional characterization of chick lens fiber connexin 45.6 Molecular Biology of the Cell, 1994, 5, 363-373.	2.1	96
28	In Vivo Differentiation of Mouse Embryonic Stem Cells into Hepatocytes. Cell Transplantation, 2002, 11, 359-368.	2.5	96
29	Muscleâ€bone crosstalk and potential therapies for sarcoâ€osteoporosis. Journal of Cellular Biochemistry, 2019, 120, 14262-14273.	2.6	93
30	Connexin 43 Channels Are Essential for Normal Bone Structure and Osteocyte Viability. Journal of Bone and Mineral Research, 2015, 30, 436-448.	2.8	85
31	Gap junction and hemichannel functions in osteocytes. Bone, 2013, 54, 205-212.	2.9	83
32	Chronic maternal infusion of fullâ€length adiponectin in pregnant mice downâ€regulates placental amino acid transporter activity and expression and decreases fetal growth. Journal of Physiology, 2012, 590, 1495-1509.	2.9	80
33	Osteocytic connexin hemichannels suppress breast cancer growth and bone metastasis. Oncogene, 2016, 35, 5597-5607.	5.9	78
34	Identification and characterization of an amino acid transporter expressed differentially in liver. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 3230-3235.	7.1	77
35	Connexin 43 Channels Protect Osteocytes Against Oxidative Stress–Induced Cell Death. Journal of Bone and Mineral Research, 2013, 28, 1611-1621.	2.8	77
36	In situ mapping identifies distinct vascular niches for myelopoiesis. Nature, 2021, 590, 457-462.	27.8	74

#	Article	IF	CITATIONS
37	Involvement of denaturation-like changes in Pseudomonas exotoxin a hydrophobicity and membrane penetration determined by characterization of pH and thermal transitions. Roles of two distinct conformationally altered states Journal of Biological Chemistry, 1990, 265, 8636-8641.	3.4	74
38	Direct Regulation of Osteocytic Connexin 43 Hemichannels through AKT Kinase Activated by Mechanical Stimulation. Journal of Biological Chemistry, 2014, 289, 10582-10591.	3.4	72
39	Regulation of renal amino acid transporters during metabolic acidosis. American Journal of Physiology - Renal Physiology, 2007, 292, F555-F566.	2.7	67
40	Aquaporin 0 enhances gap junction coupling via its cell adhesion function and interaction with connexin 50. Journal of Cell Science, 2011, 124, 198-206.	2.0	66
41	Connexonâ€mediated cell adhesion drives microtissue selfâ€assembly. FASEB Journal, 2011, 25, 255-264.	0.5	63
42	Glucocorticoids and osteocyte autophagy. Bone, 2013, 54, 279-284.	2.9	63
43	Casein Kinase II Phosphorylates Lens Connexin 45.6 and Is Involved in Its Degradation. Journal of Biological Chemistry, 2000, 275, 6850-6856.	3.4	62
44	Changes in Connexin Expression and Distribution During Chick Lens Development. Developmental Biology, 1995, 168, 649-661.	2.0	57
45	Hemichannels Formed by Connexin 43 Play an Important Role in the Release of Prostaglandin E ₂ by Osteocytes in Response to Mechanical Strain. Cell Communication and Adhesion, 2003, 10, 259-264.	1.0	57
46	Involvement of denaturation-like changes in Pseudomonas exotoxin a hydrophobicity and membrane penetration determined by characterization of pH and thermal transitions. Roles of two distinct conformationally altered states. Journal of Biological Chemistry, 1990, 265, 8636-41.	3.4	57
47	The Development-associated Cleavage of Lens Connexin 45.6 by Caspase-3-like Protease Is Regulated by Casein Kinase II-mediated Phosphorylation. Journal of Biological Chemistry, 2001, 276, 34567-34572.	3.4	56
48	Hemichannels Formed by Connexin 43 Play an Important Role in the Release of Prostaglandin E2 by Osteocytes in Response to Mechanical Strain. Cell Communication and Adhesion, 2003, 10, 259-264.	1.0	56
49	Interaction of major intrinsic protein (aquaporin-0) with fiber connexins in lens development. Journal of Cell Science, 2004, 117, 871-880.	2.0	54
50	Developmental Regulation of the Direct Interaction between the Intracellular Loop of Connexin 45.6 and the C Terminus of Major Intrinsic Protein (Aquaporin-0). Journal of Biological Chemistry, 2005, 280, 22081-22090.	3.4	54
51	Connexin43 Hemichannels Contribute to Cadmium-Induced Oxidative Stress and Cell Injury. Antioxidants and Redox Signaling, 2011, 14, 2427-2439.	5.4	53
52	Gap Junctions or Hemichannel-Dependent and Independent Roles of Connexins in Cataractogenesis and Lens Development. Current Molecular Medicine, 2010, 10, 851-863.	1.3	52
53	Connexin and pannexin channels in cancer. BMC Cell Biology, 2016, 17, 12.	3.0	51
54	Antibodies targeting extracellular domain of connexins for studies of hemichannels. Neuropharmacology, 2013, 75, 525-532.	4.1	49

#	Article	IF	CITATIONS
55	Folding changes in membrane-inserted diphtheria toxin that may play important roles in its translocation. Biochemistry, 1991, 30, 3857-3864.	2.5	47
56	Characterization of an N-system Amino Acid Transporter Expressed in Retina and Its Involvement in Glutamine Transport. Journal of Biological Chemistry, 2001, 276, 24137-24144.	3.4	47
57	Aquaporin-0 Targets Interlocking Domains to Control the Integrity and Transparency of the Eye Lens. , 2014, 55, 1202.		46
58	Mitogen-activated Protein Kinase (MAPK) Activated by Prostaglandin E2 Phosphorylates Connexin 43 and Closes Osteocytic Hemichannels in Response to Continuous Flow Shear Stress. Journal of Biological Chemistry, 2015, 290, 28321-28328.	3.4	45
59	Stimulation of Lens Cell Differentiation by Gap Junction Protein Connexin 45.6. , 2003, 44, 2103.		44
60	Correlation of cell strain in single osteocytes with intracellular calcium, but not intracellular nitric oxide, in response to fluid flow. Journal of Biomechanics, 2010, 43, 1560-1564.	2.1	43
61	Connexin 43 Hemichannels Regulate the Expression of Wound Healing-Associated Genes in Human Gingival Fibroblasts. Scientific Reports, 2017, 7, 14157.	3.3	43
62	Connexin hemichannel mediates glutathione transport and protects lens fiber cells against oxidative stress. Journal of Cell Science, 2018, 131, .	2.0	43
63	Posttranslational phosphorylation of lens fiber connexin46: a slow occurrence. Investigative Ophthalmology and Visual Science, 1993, 34, 3558-65.	3.3	42
64	Connexin mutation that causes dominant congenital cataracts inhibits gap junctions, but not hemichannels, in a dominant negative manner. Journal of Cell Science, 2009, 122, 378-388.	2.0	41
65	Mechanical Stimulation of Cap Junctions in Bone Osteocytes is Mediated by Prostaglandin E ₂ . Cell Communication and Adhesion, 2001, 8, 283-288.	1.0	40
66	Phosphorylation of Connexin 50 by Protein Kinase A Enhances Gap Junction and Hemichannel Function. Journal of Biological Chemistry, 2011, 286, 16914-16928.	3.4	40
67	ATP Is Required and Advances Cytokine-Induced Gap Junction Formation in Microglia In Vitro. Mediators of Inflammation, 2013, 2013, 1-16.	3.0	40
68	Connexins and Pannexins: Important Players in Tumorigenesis, Metastasis and Potential Therapeutics. International Journal of Molecular Sciences, 2018, 19, 1645.	4.1	40
69	Identification and characterization of an amino acid transporter expressed differentially in liver. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 3230-3235.	7.1	40
70	Mechanical Loading Stimulates Expression of Connexin 43 in Alveolar Bone Cells in the Tooth Movement Model. Cell Communication and Adhesion, 2006, 13, 115-125.	1.0	39
71	Role of Wnt signaling in fracture healing. BMB Reports, 2014, 47, 666-672.	2.4	39
72	Differential Regulation of Amino Acid Transporter SNAT3 by Insulin in Hepatocytes. Journal of Biological Chemistry, 2005, 280, 26055-26062.	3.4	37

#	Article	IF	CITATIONS
73	Cataract-Causing Mutation of Human Connexin 46 Impairs Gap Junction, but Increases Hemichannel Function and Cell Death. PLoS ONE, 2013, 8, e74732.	2.5	37
74	Ageâ€Related Deterioration of Bone Toughness Is Related to Diminishing Amount of Matrix Glycosaminoglycans (GAGs). JBMR Plus, 2018, 2, 164-173.	2.7	37
75	Osteocytes and Bone Metastasis. Frontiers in Endocrinology, 2020, 11, 567844.	3.5	37
76	Phosphorylation of lens-fiber connexins in lens organ cultures. FEBS Journal, 1998, 255, 37-44.	0.2	36
77	14-3-3Î, Facilitates plasma membrane delivery and function of mechanosensitive connexin 43 hemichannels. Journal of Cell Science, 2014, 127, 137-46.	2.0	35
78	Coupling Effect of Water and Proteoglycans on the In Situ Toughness of Bone. Journal of Bone and Mineral Research, 2016, 31, 1026-1029.	2.8	35
79	Biglycan and chondroitin sulfate play pivotal roles in bone toughness via retaining bound water in bone mineral matrix. Matrix Biology, 2020, 94, 95-109.	3.6	35
80	Disruption in Connexin-Based Communication Is Associated with Intracellular Ca2+ Signal Alterations in Astrocytes from Niemann-Pick Type C Mice. PLoS ONE, 2013, 8, e71361.	2.5	33
81	Connexin43 hemichannels mediate small molecule exchange between chondrocytes and matrix in biomechanically-stimulated temporomandibular joint cartilage. Osteoarthritis and Cartilage, 2014, 22, 822-830.	1.3	32
82	Connexin channel and its role in diabetic retinopathy. Progress in Retinal and Eye Research, 2017, 61, 35-59.	15.5	32
83	The Role of Connexin Channels in the Response of Mechanical Loading and Unloading of Bone. International Journal of Molecular Sciences, 2020, 21, 1146.	4.1	31
84	LYVE1+ macrophages of murine peritoneal mesothelium promote omentum-independent ovarian tumor growth. Journal of Experimental Medicine, 2021, 218, .	8.5	31
85	Mechanotransduction via the coordinated actions of integrins, PI3K signaling and Connexin hemichannels. Bone Research, 2021, 9, 8.	11.4	30
86	Connexin 43 hemichannel opening associated with Prostaglandin E ₂ release is adaptively regulated by mechanical stimulation. Communicative and Integrative Biology, 2009, 2, 239-240.	1.4	29
87	Connexin 43 hemichannels protect bone loss during estrogen deficiency. Bone Research, 2019, 7, 11.	11.4	29
88	Basophils promote barrier dysfunction and resolution in the atopic skin. Journal of Allergy and Clinical Immunology, 2021, 148, 799-812.e10.	2.9	29
89	Connexin Gap Junctions and Hemichannels Link Oxidative Stress to Skeletal Physiology and Pathology. Current Osteoporosis Reports, 2021, 19, 66-74.	3.6	28
90	Promotion of lens epithelial-fiber differentiation by the C-terminus of connexin 45.6 – a role independent of gap junction communication. Journal of Cell Science, 2007, 120, 3602-3612.	2.0	27

#	Article	IF	CITATIONS
91	ATP, a double-edged sword in cancer. Oncoscience, 2015, 2, 673-674.	2.2	27
92	Connexin Controls Cell-Cycle Exit and Cell Differentiation by Directly Promoting Cytosolic Localization and Degradation of E3 Ligase Skp2. Developmental Cell, 2015, 35, 483-496.	7.0	27
93	The SH3-binding domain of Cx43 participates in loop/tail interactions critical for Cx43-hemichannel activity. Cellular and Molecular Life Sciences, 2018, 75, 2059-2073.	5.4	27
94	A Novel Human Amino Acid Transporter, hNAT3: cDNA Cloning, Chromosomal Mapping, Genomic Structure, Expression, and Functional Characterization. Genomics, 2001, 74, 262-272.	2.9	26
95	CSFâ€l in Osteocytes Inhibits Nox4â€mediated Oxidative Stress and Promotes Normal Bone Homeostasis. JBMR Plus, 2020, 4, e10080.	2.7	26
96	Gap junctions are selectively associated with interlocking ball-and-sockets but not protrusions in the lens. Molecular Vision, 2010, 16, 2328-41.	1.1	25
97	Elevated Intracellular Ca2+ Signals by Oxidative Stress Activate Connexin 43 Hemichannels in Osteocytes. Bone Research, 2013, 1, 355-361.	11.4	24
98	Colony stimulating factor-1 producing endothelial cells and mesenchymal stromal cells maintain monocytes within a perivascular bone marrow niche. Immunity, 2022, 55, 862-878.e8.	14.3	24
99	Connexin 50 Functions as an Adhesive Molecule and Promotes Lens Cell Differentiation. Scientific Reports, 2017, 7, 5298.	3.3	23
100	Regulation of Lens Connexin 45.6 by Apoptotic Protease, Caspase-3. Cell Communication and Adhesion, 2001, 8, 373-376.	1.0	22
101	Impact of flow shear stress on morphology of osteoblast-like IDG-SW3 cells. Journal of Bone and Mineral Metabolism, 2018, 36, 529-536.	2.7	21
102	Differential expression of connexins during histogenesis of the chick retina. Developmental Neurobiology, 2008, 68, 1287-1302.	3.0	20
103	Lens Fiber Connexin Turnover and Caspase-3-Mediated Cleavage Are Regulated Alternately by Phosphorylation. Cell Communication and Adhesion, 2008, 15, 1-11.	1.0	19
104	Connexin 50 and AQPO are Essential in Maintaining Organization and Integrity of Lens Fibers. , 2019, 60, 4021.		19
105	Mechanosensitive collaboration between integrins and connexins allows nutrient and antioxidant transport into the lens. Journal of Cell Biology, 2020, 219, .	5.2	19
106	Connexin 43 regulates the expression of wound healing-related genes in human gingival and skin fibroblasts. Experimental Cell Research, 2018, 367, 150-161.	2.6	18
107	Regulation of cellular function by connexin hemichannels. International Journal of Biochemistry and Molecular Biology, 2011, 2, 119-128.	0.1	18
108	Inhibition of astrocyte hemichannel improves recovery from spinal cord injury. JCI Insight, 2021, 6, .	5.0	17

#	Article	IF	CITATIONS
109	Connexin hemichannels regulate redox potential via metabolite exchange and protect lens against cellular oxidative damage. Redox Biology, 2021, 46, 102102.	9.0	17
110	Self-translocation of diphtheria toxin across model membranes. Journal of Biological Chemistry, 1991, 266, 24003-10.	3.4	17
111	Biological responses of osteocytic connexin 43 hemichannels to simulated microgravity. Journal of Orthopaedic Research, 2017, 35, 1195-1202.	2.3	16
112	Cataract-associated connexin 46 mutation alters its interaction with calmodulin and function of hemichannels. Journal of Biological Chemistry, 2018, 293, 2573-2585.	3.4	16
113	Gap junction remodeling associated with cholesterol redistribution during fiber cell maturation in the adult chicken lens. Molecular Vision, 2009, 15, 1492-508.	1.1	16
114	Connexin hemichannels with prostaglandin release in anabolic function of bone to mechanical loading. ELife, 2022, 11, .	6.0	16
115	Mouse system-N amino acid transporter, mNAT3, expressed in hepatocytes and regulated by insulin-activated and phosphoinositide 3-kinase-dependent signalling. Biochemical Journal, 2003, 371, 721-731.	3.7	15
116	Glucocorticoidâ€Induced Autophagy Protects Osteocytes Against Oxidative Stress Through Activation of MAPK/ERK Signaling. JBMR Plus, 2019, 3, e10077.	2.7	15
117	Connexin 43 Channels in Osteocytes Regulate Bone Responses to Mechanical Unloading. Frontiers in Physiology, 2020, 11, 299.	2.8	15
118	Retroviral expression of connexins in embryonic chick lens. Investigative Ophthalmology and Visual Science, 1998, 39, 537-43.	3.3	15
119	Dark horse in osteocyte biology. Communicative and Integrative Biology, 2011, 4, 48-50.	1.4	14
120	Regulation of Connexin Gap Junctions and Hemichannels by Calcium and Calcium Binding Protein Calmodulin. International Journal of Molecular Sciences, 2020, 21, 8194.	4.1	14
121	Developmental Truncations of Connexin 50 by Caspases Adaptively Regulate Gap Junctions/Hemichannels and Protect Lens Cells against Ultraviolet Radiation. Journal of Biological Chemistry, 2012, 287, 15786-15797.	3.4	13
122	Regional changes of AQPO-dependent square array junction and gap junction associated with cortical cataract formation in the Emory mutant mouse. Experimental Eye Research, 2014, 127, 132-142.	2.6	13
123	Reduction of Proteinuria through Podocyte Alkalinization. Journal of Biological Chemistry, 2014, 289, 17454-17467.	3.4	12
124	Dark horse in osteocyte biology: Glycocalyx around the dendrites is critical for osteocyte mechanosensing. Communicative and Integrative Biology, 2011, 4, 48-50.	1.4	12
125	Osteocytes regulate bone anabolic response to mechanical loading in male mice via activation of integrin ${\rm \hat{l}}\pm 5.$ Bone Research, 2022, 10, .	11.4	12
126	Membrane Topological Structure of Neutral System N/A Amino Acid Transporter 4 (SNAT4) Protein. Journal of Biological Chemistry, 2011, 286, 38086-38094.	3.4	11

#	Article	IF	CITATIONS
127	Osteocytic connexin 43 channels affect fracture healing. Journal of Cellular Physiology, 2019, 234, 19824-19832.	4.1	11
128	Role of Gap Junction, Hemichannels, and Connexin 43 in Mineralizing in Response to Intermittent and Continuous Application of Parathyroid Hormone. Cell Communication and Adhesion, 2008, 15, 43-54.	1.0	10
129	Macrophage recruitment in immune-privileged lens during capsule repair, necrotic fiber removal, and fibrosis. IScience, 2021, 24, 102533.	4.1	10
130	Connexin Gap Junctions and Hemichannels in Modulating Lens Redox Homeostasis and Oxidative Stress in Cataractogenesis. Antioxidants, 2021, 10, 1374.	5.1	10
131	Connexins and cAMP Cross-Talk in Cancer Progression and Metastasis. Cancers, 2021, 13, 58.	3.7	10
132	Connexin 43 Hemichannels Regulate Osteoblast to Osteocyte Differentiation. Frontiers in Cell and Developmental Biology, 2022, 10, .	3.7	10
133	Caspase-2 modulates osteoclastogenesis through down-regulating oxidative stress. Bone, 2015, 76, 40-48.	2.9	9
134	Osteocytic Connexin43 Channels Regulate Bone–Muscle Crosstalk. Cells, 2021, 10, 237.	4.1	8
135	ATP Inhibits Breast Cancer Migration and Bone Metastasis through Down-Regulation of CXCR4 and Purinergic Receptor P2Y11. Cancers, 2021, 13, 4293.	3.7	8
136	Small leucine-rich proteoglycans in physiological and biomechanical function of bone. Matrix Biology Plus, 2021, 11, 100063.	3.5	8
137	Removal of glycosaminoglycans affects the in situ mechanical behavior of extrafibrillar matrix in bone. Journal of the Mechanical Behavior of Biomedical Materials, 2021, 123, 104766.	3.1	8
138	Engineering Functional Vascularized Beige Adipose Tissue from Microvascular Fragments of Models of Healthy and Type II Diabetes Conditions. Journal of Tissue Engineering, 2022, 13, 204173142211093.	5.5	7
139	Development of a potent embryonic chick lens model for studying congenital cataracts in vivo. Communications Biology, 2021, 4, 325.	4.4	6
140	Use of Retroviruses to Express Connexins. , 2001, 154, 159-174.		6
141	"INTEGRINating―the connexin hemichannel function in bone osteocytes through the action of integrin α5. Communicative and Integrative Biology, 2012, 5, 516-518.	1.4	5
142	Beyond the Channels: Adhesion Functions of Aquaporin 0 and Connexin 50 in Lens Development. Frontiers in Cell and Developmental Biology, 2022, 10, 866980.	3.7	5
143	Osteocytic Connexin Hemichannels Modulate Oxidative Bone Microenvironment and Breast Cancer Growth. Cancers, 2021, 13, 6343.	3.7	5
144	Amino Acid Residue Val362 Plays a Critical Role in Maintaining the Structure of C Terminus of Connexin 50 and in Lens Epithelial-fiber Differentiation. Journal of Biological Chemistry, 2010, 285, 18415-18422.	3.4	4

#	Article	IF	CITATIONS
145	Connexin arrests the cell cycle through cytosolic retention of an E3 ligase. Molecular and Cellular Oncology, 2016, 3, e1132119.	0.7	4
146	Connexins in Lung Cancer and Brain Metastasis. Frontiers in Oncology, 2020, 10, 599383.	2.8	4
147	Identification of a Disulfide Bridge Important for Transport Function of SNAT4 Neutral Amino Acid Transporter. PLoS ONE, 2013, 8, e56792.	2.5	4
148	Spatial Mapping of Myelopoiesis Reveals the Bone Marrow Niche for Monocyte Dendritic Cell Progenitors. Blood, 2019, 134, 528-528.	1.4	2
149	N-Clycosylation influences transport, but not cellular trafficking, of a neuronal amino acid transporter SNAT1. Biochemical Journal, 2016, 473, 4227-4242.	3.7	1
150	Residue cysteine 232 is important for substrate transport of neutral amino acid transporter, SNAT4. International Journal of Biochemistry and Molecular Biology, 2012, 3, 374-83.	0.1	1
151	Cross-Activation of Hemichannels/Gap Junctions and Immunoglobulin-Like Domains in Innate–Adaptive Immune Responses. Frontiers in Immunology, 0, 13, .	4.8	1
152	Characterization of Microstructural Changes on Biglycan Induced Mice Bone by Low-Field Nuclear Magnetic Resonance. , 2021, 4, 58.		0
153	Primary Osteocyte Supernatants Metabolomic Profiling of Two Transgenic Mice With Connexin43 Dominant Negative Mutants. Frontiers in Endocrinology, 2021, 12, 649994.	3.5	0
154	Molecular and Functional Characterization of Lens Fibers Connexins. Progress in Cell Research, 1995, 4, 377-381.	0.3	0
155	Data on Connexin 43 hemichannels regulation of cellular redox in lens. Data in Brief, 2021, 39, 107572.	1.0	0
156	Studying macrophage activation in immune-privileged lens through CSF-1 protein intravitreal injection in mouse model. STAR Protocols, 2022, 3, 101060.	1.2	0
157	In Situ Fate Mapping of Native and Stress Myelopoiesis Reveals a Unique Niche for Mono- and Dendritic Cell -Poiesis. Blood, 2020, 136, 38-39.	1.4	0