
Daniel Zimpfer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3441819/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Platelet activation and aggregation in different centrifugal-flow left ventricular assist devices. Platelets, 2022, 33, 249-256.	2.3	6
2	Ticagrelor or Aspirin After Coronary Artery Bypass in Patients With Chronic Kidney Disease. Annals of Thoracic Surgery, 2022, 113, 554-562.	1.3	5
3	The HeartMate 6 and CardioMEMS for Fixed Pulmonary Hypertension. ASAIO Journal, 2022, 68, e80-e83.	1.6	3
4	A Cavopulmonary Assist Device for Long-Term Therapy of Fontan Patients. Seminars in Thoracic and Cardiovascular Surgery, 2022, 34, 238-248.	0.6	10
5	Incidence, clinical relevance and therapeutic options for outflow graft stenosis in patients with left ventricular assist devices. European Journal of Cardio-thoracic Surgery, 2022, 61, 716-724.	1.4	6
6	Left ventricular assist device implants in patients on extracorporeal membrane oxygenation: do we need cardiopulmonary bypass?. Interactive Cardiovascular and Thoracic Surgery, 2022, 34, 676-682.	1.1	3
7	Effects of the atrium on intraventricular flow patterns during mechanical circulatory support. International Journal of Artificial Organs, 2022, 45, 421-430.	1.4	2
8	Access site complications of postcardiotomy extracorporeal life support. Journal of Thoracic and Cardiovascular Surgery, 2022, 164, 1546-1558.e8.	0.8	9
9	Use of extracorporeal circulation (ECLS/ECMO) for cardiac and circulatory failure –A clinical practice Guideline Level 3. ESC Heart Failure, 2022, 9, 506-518.	3.1	17
10	External stenting of saphenous vein grafts for coronary artery bypass: a single-center analysis of clinical outcomes. Journal of Cardiovascular Surgery, 2022, , .	0.6	0
11	Inflow cannula position as risk factor for stroke in patients with HeartMate 3 left ventricular assist devices. Artificial Organs, 2022, 46, 1149-1157.	1.9	10
12	The European Registry for Patients with Mechanical Circulatory Support of the European Association for Cardio-Thoracic Surgery: third report. European Journal of Cardio-thoracic Surgery, 2022, 62, .	1.4	18
13	Hemolytic Footprint of Rotodynamic Blood Pumps. IEEE Transactions on Biomedical Engineering, 2022, 69, 2423-2432.	4.2	6
14	Fate of patients weaned from post-cardiotomy extracorporeal life support. European Journal of Cardio-thoracic Surgery, 2022, 61, 1178-1185.	1.4	9
15	Transcatheter Versus Surgical Valve Repair in Patients with Severe Mitral Regurgitation. Journal of Personalized Medicine, 2022, 12, 90.	2.5	2
16	The bittersweet consequences of diabetes on mortality following left ventricular assist device implantation. European Journal of Cardio-thoracic Surgery, 2022, , .	1.4	0
17	A Prospective Observational Study on Multiplate®-, ROTEM®- and Thrombin Generation Examinations Before and Early After Implantation of a Left Ventricular Assist Device (LVAD). Frontiers in Medicine, 2022, 9, 760816.	2.6	4
18	HVAD to HeartMate 3 left ventricular assist device exchange: Best practices recommendations. Journal of Thoracic and Cardiovascular Surgery, 2022, , .	0.8	10

#	Article	IF	CITATIONS
19	When Nothing Goes Right: Risk Factors and Biomarkers of Right Heart Failure after Left Ventricular Assist Device Implantation. Life, 2022, 12, 459.	2.4	6
20	HVAD to HeartMate 3 Left Ventricular Assist Device Exchange: Best Practices Recommendations. Annals of Thoracic Surgery, 2022, , .	1.3	5
21	HVAD to HeartMate 3 left ventricular assist device exchange: Best practices recommendations. European Journal of Cardio-thoracic Surgery, 2022, 62, .	1.4	3
22	Comparison of device-based therapy options for heart failure with preserved ejection fraction: a simulation study. Scientific Reports, 2022, 12, 5761.	3.3	6
23	Awake Implementation of Extracorporeal Life Support in Refractory Cardiogenic Shock. Medicina (Lithuania), 2022, 58, 43.	2.0	1
24	Impact of concomitant cardiac valvular surgery during implantation of continuousâ€flow left ventricular assist devices: A European registry for patients with mechanical circulatory support (EUROMACS) analysis. Artificial Organs, 2022, 46, 813-826.	1.9	6
25	Validation of Intrinsic Left Ventricular Assist Device Data Tracking Algorithm for Early Recognition of Centrifugal Flow Pump Thrombosis. Life, 2022, 12, 563.	2.4	4
26	Prophylactic Peritoneal Catheter Placement in Congenital Cardiac Surgery. World Journal for Pediatric & Congenital Heart Surgery, 2022, 13, 376-378.	0.8	1
27	Growth Differentiation Factor-15 Correlates Inversely with Protease-Activated Receptor-1-Mediated Platelet Reactivity in Patients with Left Ventricular Assist Devices. Pharmaceuticals, 2022, 15, 484.	3.8	4
28	A Sensorless Modular Multiobjective Control Algorithm for Left Ventricular Assist Devices: A Clinical Pilot Study. Frontiers in Cardiovascular Medicine, 2022, 9, 888269.	2.4	6
29	First-in-man use of the EXCOR Venous Cannula for combined cavopulmonary and systemic ventricular support in Fontan circulation failure. Journal of Heart and Lung Transplantation, 2022, 41, 1533-1536.	0.6	4
30	Aortic Valve Repair in Pediatric Patients: 30ÂYears Single Center Experience. Annals of Thoracic Surgery, 2022, , .	1.3	4
31	The European Registry for Patients with Mechanical Circulatory Support (EUROMACS): third Paediatric (Paedi-EUROMACS) report. European Journal of Cardio-thoracic Surgery, 2022, 62, .	1.4	6
32	Biology of myocardial recovery in advanced heart failure with long-term mechanical support. Journal of Heart and Lung Transplantation, 2022, 41, 1309-1323.	0.6	11
33	Expert Consensus Paper: Lateral Thoracotomy for Centrifugal Ventricular Assist Device Implant. Annals of Thoracic Surgery, 2021, 112, 1687-1697.	1.3	16
34	Left ventricular assist device driveline infections in three contemporary devices. Artificial Organs, 2021, 45, 464-472.	1.9	20
35	Successful surgical treatment of a 1160 g neonate with cardiac teratoma and severe foetal hydrops: a case report. European Heart Journal - Case Reports, 2021, 5, ytaa527.	0.6	0
36	Impact of Less Invasive Left Ventricular Assist Device Implantation on Heart Transplant Outcomes. Seminars in Thoracic and Cardiovascular Surgery, 2021, , .	0.6	4

#	Article	lF	CITATIONS
37	Impact of a surgical approach for implantation of durable left ventricular assist devices in patients on extracorporeal life support. Journal of Cardiac Surgery, 2021, 36, 1344-1351.	0.7	9
38	Five-year outcomes of patients supported with HeartMate 3: a single-centre experience. European Journal of Cardio-thoracic Surgery, 2021, 59, 1155-1163.	1.4	15
39	The left ventricular assist device as a patient monitoring system. Annals of Cardiothoracic Surgery, 2021, 10, 221-232.	1.7	7
40	Implanting the HeartMate 6 (total artificial heart). , 2021, 2021, .		0
41	Concomitant cardiac surgery procedures during left ventricular assist device implantation: single-centre experience. Annals of Cardiothoracic Surgery, 2021, 10, 248-254.	1.7	12
42	Propensity score-based analysis of long-term follow-up in patients supported with durable centrifugal left ventricular assist devices: the EUROMACS analysis. European Journal of Cardio-thoracic Surgery, 2021, 60, 579-587.	1.4	29
43	First 5-year multicentric clinical trial experience with the HeartMate 3 left ventricular assist system. Journal of Heart and Lung Transplantation, 2021, 40, 247-250.	0.6	10
44	Reversal of pulmonary hypertension in paediatric patients with restrictive cardiomyopathy. Interactive Cardiovascular and Thoracic Surgery, 2021, 33, 834-836.	1.1	2
45	Impact of extra-corporeal life support (ECLS) cannulation strategy on outcome after durable mechanical circulation support system implantation on behalf of durable MCS after ECLS Study Group. Annals of Cardiothoracic Surgery, 2021, 10, 353-363.	1.7	2
46	Pump position and thrombosis in ventricular assist devices: Correlation of radiographs and CT data. International Journal of Artificial Organs, 2021, 44, 956-964.	1.4	8
47	Mechanical circulatory support in pediatric patients with biventricular and univentricular hearts. JTCVS Open, 2021, 6, 202-208.	0.5	1
48	No more excuses… Extracorporeal life support in obese patients. European Journal of Cardio-thoracic Surgery, 2021, 60, 839.	1.4	0
49	Long-term outcomes after the paediatric Ross and Ross-Konno procedures. Interactive Cardiovascular and Thoracic Surgery, 2021, 33, 455-461.	1.1	5
50	Validation of Numerically Predicted Shear Stress-dependent Dissipative Losses Within a Rotary Blood Pump. ASAIO Journal, 2021, 67, 1148-1158.	1.6	3
51	Performing central venous catheters in neonates and small infants undergoing cardiac surgery using a wireless transducer for ultrasound guidance: a prospective, observational pilot study. BMC Pediatrics, 2021, 21, 341.	1.7	3
52	Diagnostic quality of 3Tesla postmortem magnetic resonance imaging in fetuses with and without congenital heart disease. American Journal of Obstetrics and Gynecology, 2021, 225, 189.e1-189.e30.	1.3	5
53	Development of suction detection algorithms for a left ventricular assist device from patient data. Biomedical Signal Processing and Control, 2021, 69, 102910.	5.7	5
54	ISHLT consensus statement for the selection and management of pediatric and congenital heart disease patients on ventricular assist devices Endorsed by the American Heart Association. Journal of Heart and Lung Transplantation, 2021, 40, 709-732.	0.6	38

#	Article	IF	CITATIONS
55	Aortic valve replacement in pediatric patients: 30 years single center experience. Journal of Cardiothoracic Surgery, 2021, 16, 259.	1.1	4
56	Psoas Muscle Area Predicts Mortality after Left Ventricular Assist Device Implantation. Life, 2021, 11, 922.	2.4	3
57	Extracorporeal Circulation (ECLS/ECMO) for Cardio-circulatory Failure—Summary of the S3 Guideline. Thoracic and Cardiovascular Surgeon, 2021, 69, 483-489.	1.0	6
58	Less Invasive Left Ventricular Assist Device Implantation Is Safe and Reduces Intraoperative Blood Product Use: A Propensity Score Analysis VAD Implantation Techniques and Blood Product Use. ASAIO Journal, 2021, 67, 47-52.	1.6	13
59	International Normalized Ratio Test Frequency in Left Ventricular Assist Device Patients Affects Anticoagulation Quality and Adverse Events. ASAIO Journal, 2021, 67, 157-162.	1.6	10
60	Diagnosis and Treatment Strategies of Outflow Graft Obstruction in the Fully Magnetically Levitated Continuous-Flow centrifugal Left Ventricular Assist Device: A Multicenter Case Series. ASAIO Journal, 2021, 67, e52-e54.	1.6	15
61	S3 Guideline of Extracorporeal Circulation (ECLS/ECMO) for Cardiocirculatory Failure. Thoracic and Cardiovascular Surgeon, 2021, 69, S121-S212.	1.0	13
62	A Novel Endothelial Damage Inhibitor Reduces Oxidative Stress and Improves Cellular Integrity in Radial Artery Grafts for Coronary Artery Bypass. Frontiers in Cardiovascular Medicine, 2021, 8, 736503.	2.4	8
63	Cormatrix® for vessel reconstruction in paediatric cardiac surgery—a word of caution. Interactive Cardiovascular and Thoracic Surgery, 2021, , .	1.1	4
64	Driveline Features as Risk Factor for Infection in Left Ventricular Assist Devices: Meta-Analysis and Experimental Tests. Frontiers in Cardiovascular Medicine, 2021, 8, 784208.	2.4	8
65	Determinants of Bioprosthetic AorticÂValve Degeneration. JACC: Cardiovascular Imaging, 2020, 13, 345-353.	5.3	27
66	Autologous aortic arch reconstruction in isolated and combined cardiac lesions. European Surgery - Acta Chirurgica Austriaca, 2020, 52, 165-170.	0.7	2
67	Blood trauma potential of the HeartWare Ventricular Assist Device in pediatric patients. Journal of Thoracic and Cardiovascular Surgery, 2020, 159, 1519-1527.e1.	0.8	24
68	LVAD speed increase during exercise, which patients would benefit the most? A simulation study. Artificial Organs, 2020, 44, 239-247.	1.9	12
69	Early Detection of Pump Thrombosis in Patients With Left Ventricular Assist Device. ASAIO Journal, 2020, 66, 348-354.	1.6	17
70	Left Ventricular Assist Device Inflow Cannula Insertion Depth Influences Thrombosis Risk. ASAIO Journal, 2020, 66, 766-773.	1.6	26
71	Comparison of Neurologic Event Rates Among HeartMate II, HeartMate 3, and HVAD. ASAIO Journal, 2020, 66, 620-624.	1.6	20
72	Double atrioventricular valve replacement using Melodyâ"¢ transcatheter valves in an infant with unbalanced atrioventricular septal defect: a case report. European Heart Journal - Case Reports, 2020, 4, 1-6.	0.6	0

#	Article	IF	CITATIONS
73	Accuracy of Doppler blood pressure measurement in HeartMate 3 ventricular assist device patients. ESC Heart Failure, 2020, 7, 4241-4246.	3.1	7
74	Direct postoperative protein S100B and NIRS monitoring in infants after pediatric cardiac surgery enrich early mortality assessment at the PICU. Heart and Lung: Journal of Acute and Critical Care, 2020, 49, 731-736.	1.6	2
75	International experience using a durable, centrifugal-flow ventricular assist device for biventricular support. Journal of Heart and Lung Transplantation, 2020, 39, 1372-1379.	0.6	14
76	Outcomes of coronary artery bypass grafting in patients with human immunodeficiency virus infection. Journal of Cardiac Surgery, 2020, 35, 2543-2549.	0.7	5
77	A Cyanotic Newborn with a Pink Right Upper Extremity. Case Reports in Pediatrics, 2020, 2020, 1-4.	0.4	0
78	Two-year outcome after implantation of a full magnetically levitated left ventricular assist device: results from the ELEVATE Registry. European Heart Journal, 2020, 41, 3801-3809.	2.2	49
79	Thrombolysis as first-line therapy for Medtronic/HeartWare HVAD left ventricular assist device thrombosis. European Journal of Cardio-thoracic Surgery, 2020, 58, 1182-1191.	1.4	9
80	Coronary artery bypass grafting and perioperative stroke: imaging of atherosclerotic plaques in the ascending aorta with ungated high-pitch CT-angiography. Scientific Reports, 2020, 10, 13909.	3.3	10
81	Transition From Temporary to Durable Circulatory Support Systems. Journal of the American College of Cardiology, 2020, 76, 2956-2964.	2.8	38
82	Copeptin – prognostic relevance as a perioperative marker in pediatric cardiac surgery. Annals of Thoracic Surgery, 2020, , .	1.3	1
83	The European Registry for Patients with Mechanical CirculatoryÂSupport (EUROMACS): second EUROMACS Paediatric (Paedi-EUROMACS) report. European Journal of Cardio-thoracic Surgery, 2020, 57, 1038-1050.	1.4	28
84	Predictors of Physical Capacity 6 Months After Implantation of a Full Magnetically Levitated Left Ventricular Assist Device: An Analysis From the ELEVATE Registry. Journal of Cardiac Failure, 2020, 26, 580-587.	1.7	8
85	Blood stream infection and outcomes in recipients of a left ventricular assist device. European Journal of Cardio-thoracic Surgery, 2020, 58, 907-914.	1.4	11
86	Long-Term Survival of Patients With Advanced Heart Failure Receiving an Left Ventricular Assist Device Intended as a Bridge to Transplantation. Circulation: Heart Failure, 2020, 13, e006252.	3.9	30
87	Hemodynamic exercise responses with a continuous-flow left ventricular assist device: Comparison of patients' response and cardiorespiratory simulations. PLoS ONE, 2020, 15, e0229688.	2.5	10
88	Transcatheter edgeâ€ŧoâ€edge tricuspid repair for recurrence of valvular regurgitation after left ventricular assist device and tricuspid ring implantation. ESC Heart Failure, 2020, 7, 915-919.	3.1	8
89	Pediatric donor management to optimize donor heart utilization. Pediatric Transplantation, 2020, 24, e13679.	1.0	3
90	ISHLT consensus statement on donor organ acceptability and management in pediatric heart transplantation. Journal of Heart and Lung Transplantation, 2020, 39, 331-341.	0.6	56

#	Article	IF	CITATIONS
91	Commentary: Transcending acceptable, moving toward optimal: Standardizing surgical configurations of ventricular assist device therapy. Journal of Thoracic and Cardiovascular Surgery, 2020, 162, 1566-1567.	0.8	0
92	Recommendations for extracorporeal membrane oxygenation (ECMO) in COVID-19 patients. Wiener Klinische Wochenschrift, 2020, 132, 671-676.	1.9	9
93	Continuous LVAD monitoring reveals high suction rates in clinically stable outpatients. Artificial Organs, 2020, 44, E251-E262.	1.9	28
94	Extraâ€anatomic aortic bypass with aorticâ€; mitralâ€; and tricuspid surgery in a 53â€year old: A singleâ€stage approach for complex coarctation associated with triple valve pathology. Journal of Cardiac Surgery, 2020, 35, 937-939.	0.7	1
95	The influence of left ventricular assist device inflow cannula position on thrombosis risk. Artificial Organs, 2020, 44, 939-946.	1.9	33
96	Paediatric aortic valve replacement using decellularized allografts. European Journal of Cardio-thoracic Surgery, 2020, 58, 817-824.	1.4	20
97	Early sST2 Liberation after Implantation of a Left Ventricular Assist Device in Patients with Advanced Heart Failure. Journal of Immunology Research, 2020, 2020, 1-9.	2.2	36
98	Longâ€term evaluation of a fully magnetically levitated circulatory support device for advanced heart failure—twoâ€year results from the HeartMate 3 CE Mark Study. European Journal of Heart Failure, 2019, 21, 90-97.	7.1	78
99	Impact of Bleeding Revision on Outcomes After Left Ventricular Assist Device Implantation. Annals of Thoracic Surgery, 2019, 108, 517-523.	1.3	10
100	Influence of a fully magnetically levitated left ventricular assist device on functional interrogation of implantable cardioverter defibrillators. Clinical Cardiology, 2019, 42, 914-918.	1.8	9
101	Routine preoperative aortic computed tomography angiography is associated with reduced risk of stroke in coronary artery bypass grafting: a propensity-matched analysis. European Journal of Cardio-thoracic Surgery, 2019, 57, 684-690.	1.4	7
102	2019 EACTS Expert Consensus on long-term mechanical circulatory support. European Journal of Cardio-thoracic Surgery, 2019, 56, 230-270.	1.4	255
103	Functional capillary impairment in patients with ventricular assist devices. Scientific Reports, 2019, 9, 5909.	3.3	21
104	Noninvasive assessment of blood pressure in rotary blood pump recipients using a novel ultrasonic Doppler method. International Journal of Artificial Organs, 2019, 42, 226-232.	1.4	2
105	Extracorporeal membrane oxygenation for right ventricular support in left ventricular assist device recipients. Annals of Cardiothoracic Surgery, 2019, 8, 170-172.	1.7	0
106	LVAD Pump Flow Does Not Adequately Increase With Exercise. Artificial Organs, 2019, 43, 222-228.	1.9	31
107	Postmarket Experience With HeartMate 3 Left Ventricular Assist Device: 30-Day Outcomes From the ELEVATE Registry. Annals of Thoracic Surgery, 2019, 107, 33-39.	1.3	19
108	Sternotomy Sparing Thoratec Heartmate 3 Implantation via Bilateral Minithoracotomy. Innovations: Technology and Techniques in Cardiothoracic and Vascular Surgery, 2018, 13, 74-76.	0.9	8

#	Article	IF	CITATIONS
109	Duration of extracorporeal membrane oxygenation support and survival in cardiovascular surgery patients. Journal of Thoracic and Cardiovascular Surgery, 2018, 155, 2471-2476.	0.8	39
110	Minimally invasive approaches for implantation of left ventricular assist devices. Indian Journal of Thoracic and Cardiovascular Surgery, 2018, 34, 177-182.	0.6	4
111	Worldwide Experience of a Durable Centrifugal Flow Pump in Pediatric Patients. Seminars in Thoracic and Cardiovascular Surgery, 2018, 30, 327-335.	0.6	51
112	Interventional Treatment of LVAD Outflow Graft Stenosis by Introduction of Bare Metal Stents. ASAIO Journal, 2018, 64, e3-e7.	1.6	15
113	Extracorporeal membrane oxygenation support for right ventricular failure after left ventricular assist device implantationâ€. European Journal of Cardio-thoracic Surgery, 2018, 53, 590-595.	1.4	22
114	Sternotomy Sparing Thoratec Heartmate 3 Implantation via Bilateral Minithoracotomy. Innovations: Technology and Techniques in Cardiothoracic and Vascular Surgery, 2018, 13, 74-76.	0.9	2
115	Surgical Technique for Redo-Sternotomy Sparing Heartware HVAD Exchanges. Operative Techniques in Thoracic and Cardiovascular Surgery, 2018, 23, 76-89.	0.3	1
116	Use of the Novel Surgical Enhancement Tools for Less Invasive Abbott HeartMate 3 Implantation. Annals of Thoracic Surgery, 2018, 106, e209-e210.	1.3	4
117	Six-month outcomes after treatment of advanced heart failure with a full magnetically levitated continuous flow left ventricular assist device: report from the ELEVATE registry. European Heart Journal, 2018, 39, 3454-3460.	2.2	62
118	International Analysis of LVAD Point-of-Care Versus Plasma INR: A Multicenter Study. ASAIO Journal, 2018, 64, e161-e165.	1.6	7
119	A Standardized Telephone Intervention Algorithm Improves the Survival of Ventricular Assist Device Outpatients. Artificial Organs, 2018, 42, 961-969.	1.9	16
120	Driving After Left Ventricular Assist Device Implantation. Artificial Organs, 2018, 42, 695-699.	1.9	12
121	An international multicenter experience of biventricular support with HeartMate 3 ventricular assist systems. Journal of Heart and Lung Transplantation, 2018, 37, 1399-1402.	0.6	60
122	Long-term heart transplant outcomes after lowering fixed pulmonary hypertension using left ventricular assist devicesâ€. European Journal of Cardio-thoracic Surgery, 2018, 54, 1116-1121.	1.4	15
123	Heartmate 3 fully magnetically levitated left ventricular assist device for the treatment of advanced heart failure –1Âyear results from the Ce mark trial. Journal of Cardiothoracic Surgery, 2017, 12, 23.	1.1	92
124	Increased Thromboembolic Events With Dabigatran Compared With Vitamin K Antagonism in Left Ventricular Assist Device Patients. Circulation: Heart Failure, 2017, 10, .	3.9	64
125	Myocardial Recovery in Peripartum Cardiomyopathy After Hyperprolactinemia Treatment on BIVAD. ASAIO Journal, 2017, 63, 109-111.	1.6	5
126	Response by Andreas et al to Letter Regarding Article, "Increased Thromboembolic Events With Dabigatran Compared With Vitamin K Antagonism in Left Ventricular Assist Device Patients: A Randomized Controlled Pilot Trial― Circulation: Heart Failure, 2017, 10, .	3.9	1

#	Article	IF	CITATIONS
127	Exercise Performance During the First Two Years After Left Ventricular Assist Device Implantation. ASAIO Journal, 2017, 63, 408-413.	1.6	20
128	Impact of Right Ventricular Performance in Patients Undergoing Extracorporeal Membrane Oxygenation Following Cardiac Surgery. Journal of the American Heart Association, 2017, 6, .	3.7	13
129	From Research Lab to Clinical Routine of MCS. ASAIO Journal, 2017, 63, e51-e51.	1.6	0
130	Percutaneous Transcatheter Implantable Gadgets for De Novo Aortic Valve Regurgitation After Left Ventricular Assist Device Implant: Pushing the Limits or a Feasible Bailout?. ASAIO Journal, 2017, 63, 115-116.	1.6	0
131	Outcomes in HeartMate II Patients With No Antiplatelet Therapy: 2-Year Results From the European TRACE Study. Annals of Thoracic Surgery, 2017, 103, 1262-1268.	1.3	63
132	To Pump or Not to Pump: The Role of CPB or ECMO. , 2017, , 265-269.		0
133	Which Approach? Traditional Versus MICS. , 2017, , 241-251.		1
134	Daily Life Activity in Patients with Left Ventricular Assist Devices. International Journal of Artificial Organs, 2016, 39, 22-27.	1.4	15
135	Debate. Current Opinion in Cardiology, 2016, 31, 337-342.	1.8	12
136	Evaluation of the HeartWare ventricular assist device Lavare cycle in a particle image velocimetry model and in clinical practice. European Journal of Cardio-thoracic Surgery, 2016, 50, 839-848.	1.4	51
137	Multicentre clinical trial experience with the HeartMate 3 left ventricular assist device: 30-day outcomes. European Journal of Cardio-thoracic Surgery, 2016, 50, 548-554.	1.4	39
138	Long-term support of patients receiving a left ventricular assist device for advanced heart failure: a follow-up analysis of the Registry to Evaluate the HeartWare Left Ventricular Assist System. European Journal of Cardio-thoracic Surgery, 2016, 50, 834-838.	1.4	46
139	High-Intensity Transient Signals in the Outflow Graft and Thrombosis of a HeartWare Left Ventricular Assist Device. Annals of Thoracic Surgery, 2016, 101, e83-e85.	1.3	7
140	Epicardial shock-wave therapy improves ventricular function in a porcine model of ischaemic heart disease. Journal of Tissue Engineering and Regenerative Medicine, 2016, 10, 1057-1064.	2.7	38
141	Continuous Monitoring of Aortic Valve Opening in Rotary Blood Pump Patients. IEEE Transactions on Biomedical Engineering, 2016, 63, 1201-1207.	4.2	29
142	Different Heparin Contents in Prothrombin Complex Concentrates May Impair Blood Clotting in Outpatients With Ventricular Assist Devices Receiving Phenprocoumon. Journal of Cardiothoracic and Vascular Anesthesia, 2016, 30, 96-101.	1.3	10
143	Fully Magnetically Levitated LeftÂVentricular Assist System for TreatingÂAdvanced HF. Journal of the American College of Cardiology, 2015, 66, 2579-2589.	2.8	208
144	Outpatient Management of Intra-Corporeal Left Ventricular Assist Device System in Children: A Multi-Center Experience. American Journal of Transplantation, 2015, 15, 453-460.	4.7	66

#	Article	IF	CITATIONS
145	Identification and Management of Pump Thrombus in the HeartWare Left Ventricular Assist Device System. JACC: Heart Failure, 2015, 3, 849-856.	4.1	77
146	Safety and efficacy of cardiac rehabilitation for patients with continuous flow left ventricular assist devices. European Journal of Preventive Cardiology, 2015, 22, 1378-1384.	1.8	70
147	Viennese approach to minimize the invasiveness of ventricular assist device implantation. European Journal of Cardio-thoracic Surgery, 2014, 46, 991-996.	1.4	79
148	Preoperative patient optimization using extracorporeal life support improves outcomes of INTERMACS Level I patients receiving a permanent ventricular assist deviceâ€. European Journal of Cardio-thoracic Surgery, 2014, 46, 486-492.	1.4	56
149	Repair of Left Ventricular Assist Device Driveline Damage Directly at the Transcutaneous Exit Site. Artificial Organs, 2014, 38, 422-425.	1.9	16
150	Usability of Ventricular Assist Devices in Daily Experience: A Multicenter Study. Artificial Organs, 2014, 38, 751-760.	1.9	24
151	Assessment of Aortic Valve Opening During Rotary Blood Pump Support Using Pump Signals. Artificial Organs, 2014, 38, 290-297.	1.9	25
152	Low-molecular-weight heparin for anti-coagulation after left ventricular assist device implantation. Journal of Heart and Lung Transplantation, 2014, 33, 88-93.	0.6	40
153	Continuous Monitoring of Cardiac Rhythms in Left Ventricular Assist Device Patients. Artificial Organs, 2014, 38, 191-198.	1.9	30
154	Results of the post-market Registry to Evaluate the HeartWare Left Ventricular Assist System (ReVOLVE). Journal of Heart and Lung Transplantation, 2014, 33, 486-491.	0.6	104
155	Off-Pump HeartWare Ventricular Assist Device Implantation With Outflow Graft Anastomosis to the Left Subclavian Artery. Annals of Thoracic Surgery, 2014, 97, 2214-2216.	1.3	16
156	Ventricular Assist Devices – Evolution of Surgical Heart Failure Treatment. European Cardiology Review, 2014, 9, 54.	2.2	10
157	Reply. Annals of Thoracic Surgery, 2013, 96, 1528-1529.	1.3	0
158	Use of continuous flow ventricular assist devices in patients with heart failure and a normal ejection fraction: A computer-simulation study. Journal of Thoracic and Cardiovascular Surgery, 2013, 145, 1352-1358.	0.8	24
159	Emergency cardio-pulmonary bypass in cardiac arrest: Seventeen years of experience. Resuscitation, 2013, 84, 326-330.	3.0	36
160	Minimally Invasive Thoratec Heartmate II Implantation in the Setting of Severe Thoracic Aortic Calcification. Annals of Thoracic Surgery, 2013, 96, 1094-1096.	1.3	33
161	Internal Mammary Artery Harvesting Influences Antibiotic Penetration Into Presternal Tissue. Annals of Thoracic Surgery, 2013, 95, 1323-1330.	1.3	35
162	Investigation of Hemodynamics in the Assisted Isolated Porcine Heart. International Journal of Artificial Organs, 2013, 36, 878-886.	1.4	14

#	Article	IF	CITATIONS
163	Importance of Linguistic Details in Alarm Messages of Ventricular Assist Devices. International Journal of Artificial Organs, 2013, 36, 1-4.	1.4	8
164	Influenza A-Induced Cardiogenic Shock Requiring Temporary ECMO Support and Urgent Heart Transplantation. Thoracic and Cardiovascular Surgeon, 2012, 60, 293-294.	1.0	3
165	Stroke from noncompaction overlooked by echocardiography. International Journal of Cardiology, 2011, 148, 357-358.	1.7	12
166	Improvement of cardiac function in the failing rat heart after transfer of skeletal myoblasts engineered to overexpress placental growth factor. Journal of Thoracic and Cardiovascular Surgery, 2011, 141, 1238-1245.	0.8	13
167	Experimental Acute Type B Aortic Dissection: Different Sites of Primary Entry Tears Cause Different Ways of Propagation. Annals of Thoracic Surgery, 2011, 91, 724-727.	1.3	29
168	Long-term results of thoracic endovascular aortic repair in atherosclerotic aneurysms involving the descending aorta. Journal of Thoracic and Cardiovascular Surgery, 2010, 140, S179-S184.	0.8	57
169	Risk Factors of Mortality in Different Age Groups After Thoracic Endovascular Aortic Repair. Annals of Thoracic Surgery, 2010, 90, 534-538.	1.3	18
170	Continuous assessment of cardiac function during rotary blood pump support: A contractility index derived from pump flow. Journal of Heart and Lung Transplantation, 2010, 29, 37-44.	0.6	47
171	Reply to Sergej V. Jargin: Shock wave therapy of ischemic heart disease in the light of general pathology. International Journal of Cardiology, 2010, 145, 240-241.	1.7	0
172	Midterm Results of Thoracic Endovascular Aortic Repair in Patients With Aneurysms Involving the Descending Aorta Originating From Chronic Type B Dissections. Annals of Thoracic Surgery, 2010, 90, 90-94.	1.3	51
173	Bail-out Visceral Bypass Grafting for Acute Intestinal Ischemia after Endovascular Stent-Graft Placement in a Complicated Type B Dissection. Thoracic and Cardiovascular Surgeon, 2009, 57, 110-111.	1.0	3
174	Direct epicardial shock wave therapy improves ventricular function and induces angiogenesis in ischemic heart failure. Journal of Thoracic and Cardiovascular Surgery, 2009, 137, 963-970.	0.8	50
175	Usability and Safety of Ventricular Assist Devices: Human Factors and Design Aspects. Artificial Organs, 2009, 33, 691-695.	1.9	18
176	Age and Outcome After Continuous-Flow Left Ventricular Assist Device Implantation as Bridge to Transplantation. Journal of Heart and Lung Transplantation, 2009, 28, 367-372.	0.6	51
177	Renal Function and Outcome After Continuous Flow Left Ventricular Assist Device Implantation. Annals of Thoracic Surgery, 2009, 87, 1072-1078.	1.3	177
178	Endovascular and Conventional Treatment of Thoracic Aortic Aneurysms: A Comparison of Costs. Annals of Thoracic Surgery, 2009, 87, 1801-1805.e6.	1.3	10
179	Heart transplantation in Vienna: 25 years of experience. Wiener Klinische Wochenschrift, 2008, 120, 3-10.	1.9	0
180	Forty years of development, experimental evaluation and clinical application of mechanical circulatory support at the Medical University of Vienna. Wiener Klinische Wochenschrift, 2008, 120, 15-20.	1.9	1

#	Article	IF	CITATIONS
181	Low Molecular Weight Heparin as an Alternative to Unfractionated Heparin in the Immediate Postoperative Period After Left Ventricular Assist Device Implantation. Artificial Organs, 2008, 32, 819-822.	1.9	23
182	Renal Function After Implantation of Continuous Versus Pulsatile Flow Left Ventricular Assist Devices. Journal of Heart and Lung Transplantation, 2008, 27, 469-473.	0.6	80
183	Experimental Stent-Graft Treatment of Ascending Aortic Dissection. Annals of Thoracic Surgery, 2008, 85, 470-473.	1.3	11
184	Treatment of Symptomatic Coral Reef Aorta by Endovascular Stent-Graft Placement. Annals of Thoracic Surgery, 2008, 85, 1817-1819.	1.3	42
185	Mechanical Aortic Valve Prostheses in the Small Aortic Root: Top Hat Versus Standard CarboMedics Aortic Valve. Annals of Thoracic Surgery, 2008, 86, 64-70.	1.3	17
186	Novel Insights Into the Mechanisms and Treatment of Intramural Hematoma Affecting the Entire Thoracic Aorta. Annals of Thoracic Surgery, 2008, 86, 453-456.	1.3	78
187	Supra-aortic Transposition for Combined Vascular and Endovascular Repair of Aortic Arch Pathology. Annals of Thoracic Surgery, 2008, 86, 1524-1529.	1.3	104
188	Prophylactic Low-Energy Shock Wave Therapy Improves Wound Healing After Vein Harvesting for Coronary Artery Bypass Graft Surgery: A Prospective, Randomized Trial. Annals of Thoracic Surgery, 2008, 86, 1909-1913.	1.3	41
189	Mid-term results after endovascular stent-graft placement due to penetrating atherosclerotic ulcers of the thoracic aortaâ~†. European Journal of Cardio-thoracic Surgery, 2008, 33, 1019-1024.	1.4	29
190	Safety and Efficacy of Statin Therapy in Patients Switched From Cyclosporine A to Sirolimus After Cardiac Transplantation. Transplantation, 2008, 86, 1771-1776.	1.0	21
191	Post-transplant survival after lowering fixed pulmonary hypertension using left ventricular assist devices. European Journal of Cardio-thoracic Surgery, 2007, 31, 698-702.	1.4	83
192	Mid-term results of supraaortic transpositions for extended endovascular repair of aortic arch pathologies. European Journal of Cardio-thoracic Surgery, 2007, 31, 623-627.	1.4	78
193	Treatment of Type V Endoleaks by Endovascular Redo Stent-Graft Placement. Annals of Thoracic Surgery, 2007, 83, 664-666.	1.3	17
194	Results After Endovascular Stent Graft Placement in Atherosclerotic Aneurysms Involving the Descending Aorta. Annals of Thoracic Surgery, 2007, 83, 450-455.	1.3	79
195	Endovascular Stent-Graft Placement of Aneurysms Involving the Descending Aorta Originating From Chronic Type B Dissections. Annals of Thoracic Surgery, 2007, 83, 1635-1639.	1.3	48
196	Left ventricular assist devices decrease fixed pulmonary hypertension in cardiac transplant candidates. Journal of Thoracic and Cardiovascular Surgery, 2007, 133, 689-695.	0.8	170
197	Long-Term Neurocognitive Function After Mechanical Aortic Valve Replacement. Annals of Thoracic Surgery, 2006, 81, 29-33.	1.3	30
198	Late Vascular Complications After Extracorporeal Membrane Oxygenation Support. Annals of Thoracic Surgery, 2006, 81, 892-895.	1.3	89

#	Article	IF	CITATIONS
199	Treatment of Acute Type A Dissection by Percutaneous Endovascular Stent-Graft Placement. Annals of Thoracic Surgery, 2006, 82, 747-749.	1.3	77
200	ECMO in trauma patients—Should we consider alternative cannulation sites?. Injury Extra, 2006, 37, 297-298.	0.2	1
201	Neuronal Injury After Repeated Brief Cardiac Arrests During Internal Cardioverter Defibrillator Implantation Is Associated With Deterioration of Cognitive Function. Anesthesia and Analgesia, 2006, 103, 403-409.	2.2	20
202	Mid-term Results of Conservative, Conventional and Endovascular Treatment for Acute Traumatic Aortic Lesions. European Journal of Vascular and Endovascular Surgery, 2006, 31, 475-480.	1.5	43
203	Extraanatomic Visceral Bypass for Consecutive Endovascular Treatment of a Thoracoabdominal Aortic Aneurysm. EJVES Extra, 2006, 11, 29-31.	0.1	1
204	Neurocognitive Function in Patients with Ventricular Assist Devices: A Comparison of Pulsatile and Continuous Blood Flow Devices. ASAIO Journal, 2006, 52, 24-27.	1.6	70
205	Treatment of an Acute Type B Dissection with an Intramural Haematoma in the Ascending Aorta by Percutaneous Endovascular Stent-Graft Placement. Thoracic and Cardiovascular Surgeon, 2006, 54, 500-501.	1.0	8
206	Transposition of the supraaortic branches for extended endovascular arch repairâ~†. European Journal of Cardio-thoracic Surgery, 2006, 29, 709-713.	1.4	47
207	Successful Type II Endoleak Closure by Subclavian-to-Carotid Artery Transposition After Stent-Graft Placement of a Distal Aortic Arch Aneurysm. Thoracic and Cardiovascular Surgeon, 2005, 53, 322-324.	1.0	8
208	Successful Treatment of an Aortoesophageal Fistula After Emergency Endovascular Thoracic Aortic Stent-Graft Placement. Annals of Thoracic Surgery, 2005, 80, 1117-1120.	1.3	43
209	An alternative approach in treating an aortic arch aneurysm with an anatomic variant by supraaortic reconstruction and stent-graft placement. Journal of Vascular Surgery, 2005, 42, 357-360.	1.1	40
210	Perfusion Temperature During Cardiopulmonary Bypass Does not Affect Serum S-100β Release. Thoracic and Cardiovascular Surgeon, 2004, 52, 29-33.	1.0	5
211	Limb-salvage by Femoro-distal Bypass and Free Muscle Flap Transfer. European Journal of Vascular and Endovascular Surgery, 2004, 27, 635-639.	1.5	28
212	Sealing of the mediastinum with a local hemostyptic agent reduces chest tube duration after complete mediastinal lymph node dissection for stage I and II non–small cell lung carcinoma. Annals of Thoracic Surgery, 2004, 77, 1028-1032.	1.3	36
213	Lung wedge resection improves outcome in stage I primary spontaneous pneumothorax. Annals of Thoracic Surgery, 2004, 77, 1802-1805.	1.3	58
214	Neurocognitive deficit following coronary artery bypass grafting: a prospective study of surgical patients and nonsurgical controls. Annals of Thoracic Surgery, 2004, 78, 513-518.	1.3	29
215	Initial Results After Combined Repair of Aortic Arch Aneurysms by Sequential Transposition of the Supra-Aortic Branches and Consecutive Endovascular Stent-Graft Placement. Annals of Thoracic Surgery, 2004, 78, 1256-1260.	1.3	83
216	Stent-Graft Placement in Atherosclerotic Descending Thoracic Aortic Aneurysms: Midterm Results. Journal of Endovascular Therapy, 2004, 11, 26-32.	1.5	93

#	Article	IF	CITATIONS
217	Stent-Graft Placement in Atherosclerotic Descending Thoracic Aortic Aneurysms: Midterm Results. Journal of Endovascular Therapy, 2004, 11, 26-32.	1.5	38
218	Combined repair of an aortic arch aneurysm by sequential transposition of the supra-aortic branches and endovascular stent-graft placement. Journal of Thoracic and Cardiovascular Surgery, 2003, 126, 916-918.	0.8	57
219	Risk factors of mortality and permanent neurologic injury in patients undergoing ascending aortic and arch repair. Journal of Thoracic and Cardiovascular Surgery, 2003, 126, 1296-1301.	0.8	94
220	Coronary reoperations: recurrence of angina and clinical outcome with and without cardiopulmonary bypass. Annals of Thoracic Surgery, 2003, 75, 847-852.	1.3	30
221	Neurocognitive deficit following aortic valve replacement with biological/mechanical prosthesis. European Journal of Cardio-thoracic Surgery, 2003, 23, 544-551.	1.4	20
222	Reply to Jahangiri and Motallebzadeh. European Journal of Cardio-thoracic Surgery, 2003, 24, 666-666.	1.4	0
223	Neurocognitive deficit following mitral valve surgery. European Journal of Cardio-thoracic Surgery, 2003, 23, 265-271.	1.4	21
224	Predictors of Perioperative Mortality after Coronary Artery Bypass Grafting in the Elderly. Thoracic and Cardiovascular Surgeon, 2003, 51, 33-37.	1.0	3
225	Redo coronary artery bypass grafting with and without cardiopulmonary bypass in the elderly. Heart Surgery Forum, 2003, 6, 210-5.	0.5	2
226	Cognitive deficit after aortic valve replacement. Annals of Thoracic Surgery, 2002, 74, 407-412.	1.3	47
227	The vacuum-assisted closure system for the treatment of deep sternal wound infections after cardiac surgery. Annals of Thoracic Surgery, 2002, 74, 1596-1600.	1.3	155
228	The impact of diabetes mellitus at the time of heart transplantation on long-term survival. Diabetologia, 2002, 45, 1498-1508.	6.3	34
229	Cardiopulmonary bypass affects cognitive brain function after coronary artery bypass grafting. Annals of Thoracic Surgery, 2001, 72, 1926-1932.	1.3	53