Toshiyuki Nishimura

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3441720/publications.pdf

Version: 2024-02-01

194 papers 5,088 citations

66343 42 h-index 63 g-index

209 all docs 209 docs citations

times ranked

209

3221 citing authors

#	Article	IF	CITATIONS
1	Al ₂ O ₃ â€"YAG:Ce composite phosphor ceramic: a thermally robust and efficient color converter for solid state laser lighting. Journal of Materials Chemistry C, 2016, 4, 8648-8654.	5.5	206
2	High-temperature strength of silicon carbide ceramics sintered with rare-earth oxide and aluminum nitride. Acta Materialia, 2007, 55, 727-736.	7.9	155
3	Nanoporous Carbon Tubes from Fullerene Crystals as the Ï€â€Electron Carbon Source. Angewandte Chemie - International Edition, 2015, 54, 951-955.	13.8	116
4	\hat{l}^2 -Sialon:Eu phosphor-in-glass: a robust green color converter for high power blue laser lighting. Journal of Materials Chemistry C, 2015, 3, 10761-10766.	5.5	115
5	CaAlSiN ₃ :Eu ²⁺ translucent ceramic: a promising robust and efficient red color converter for solid state laser displays and lighting. Journal of Materials Chemistry C, 2016, 4, 8197-8205.	5. 5	115
6	Mechanical and physical behavior of spark plasma sintered ZrC–ZrB2–SiC composites. Journal of the European Ceramic Society, 2008, 28, 1279-1285.	5.7	114
7	High-temperature bending strength, internal friction and stiffness of ZrB2–20vol% SiC ceramics. Journal of the European Ceramic Society, 2012, 32, 2519-2527.	5.7	112
8	Thermal conductivity in multi-wall carbon nanotube/silica-based nanocomposites. Scripta Materialia, 2007, 56, 265-268.	5.2	104
9	Spark Plasma Sintering of Zirconium Diborides. Journal of the American Ceramic Society, 2008, 91, 2848-2855.	3.8	102
10	Aqueous colloidal processing of single-wall carbon nanotubes and their composites with ceramics. Nanotechnology, 2006, 17, 1770-1777.	2.6	96
11	Enhancing superplasticity of engineering ceramics by introducing BN nanotubes. Nanotechnology, 2007, 18, 485706.	2.6	96
12	Pressureless sintering and physical properties of ZrB2-based composites with ZrSi2 additive. Scripta Materialia, 2008, 58, 579-582.	5.2	94
13	Fine-Grained Silicon Nitride Ceramics Prepared from beta-Powder. Journal of the American Ceramic Society, 1995, 78, 211-214.	3.8	90
14	New Strategies for Preparing NanoSized Silicon Nitride Ceramics. Journal of the American Ceramic Society, 2005, 88, 934-937.	3.8	85
15	Improvement of high-temperature strength of hot-pressed sintering silicon nitride with Lu2O3 addition. Scripta Materialia, 2001, 45, 867-874.	5. 2	81
16	Mechanical behavior of two-step hot-pressed ZrB2-based composites with ZrSi2. Journal of the European Ceramic Society, 2009, 29, 787-794.	5.7	81
17	Mesoporous graphitic carbon microtubes derived from fullerene C ₇₀ tubes as a high performance electrode material for advanced supercapacitors. Journal of Materials Chemistry A, 2016, 4, 13899-13906.	10.3	81
18	Mechanical properties of hot-pressed ZrB2–MoSi2–SiC composites. Journal of the European Ceramic Society, 2008, 28, 1891-1898.	5.7	80

#	Article	IF	Citations
19	Fabrication of Textured Nb ₄ AlC ₃ Ceramic by Slip Casting in a Strong Magnetic Field and Spark Plasma Sintering. Journal of the American Ceramic Society, 2011, 94, 410-415.	3.8	80
20	Shell-like nanolayered Nb4AlC3 ceramic with high strength and toughness. Scripta Materialia, 2011, 64, 765-768.	5.2	77
21	Heat-resistant silicon carbide with aluminum nitride and scandium oxide. Acta Materialia, 2005, 53, 4701-4708.	7.9	72
22	Synthesis and Characterization of Nano-Hetero-Structured Dy Doped CeO2 Solid Electrolytes Using a Combination of Spark Plasma Sintering and Conventional Sintering. Journal of the American Ceramic Society, 2005, 88, 1981-1984.	3.8	71
23	Highâ€Temperature Strength of Liquidâ€Phaseâ€Sintered SiC with AlN and Re ₂ O ₃ (RE)	Ţj.ĘTQq1	1 ₆₈ .78431
24	High temperature thermoelectric properties of a homologous series of n-type boron icosahedra compounds: A possible counterpart to p-type boron carbide. Journal of Applied Physics, 2007, 101, 093714.	2.5	67
25	Phase relationships in the system Si3N4–SiO2–Yb2O3. Journal of Materials Research, 1995, 10, 240-242.	2.6	66
26	High temperature strength of silicon nitride ceramics with ytterbium silicon oxynitride. Journal of Materials Research, 1997, 12, 203-209.	2.6	66
27	Fabrication of \hat{l}^2 -sialon nanoceramics by high-energy mechanical milling and spark plasma sintering. Nanotechnology, 2005, 16, 1569-1573.	2.6	63
28	Heatâ€Resistant Silicon Carbide with Aluminum Nitride and Erbium Oxide. Journal of the American Ceramic Society, 2001, 84, 2060-2064.	3.8	58
29	Synthesis and Sintering of Cerium(III) Sulfide Powders. Journal of the American Ceramic Society, 1998, 81, 145-151.	3.8	54
30	Hot-pressed silicon nitride ceramics with Lu2O3 additives: elastic moduli and fracture toughness. Journal of the European Ceramic Society, 2003, 23, 537-545.	5.7	52
31	High thermal conductivity of spark plasma sintered silicon carbide ceramics with yttria and scandia. Journal of the American Ceramic Society, 2017, 100, 1290-1294.	3.8	52
32	Physical and mechanical properties of highly textured polycrystalline Nb ₄ AlC ₃ ceramic. Science and Technology of Advanced Materials, 2011, 12, 044603.	6.1	50
33	Strong <scp><scp>ZrB</scp></scp> Ceramics at 1600°C. Journal of the American Ceramic Society, 2012, 95, 874-878.	3.8	50
34	Thermal and Electric Properties in Hot-Pressed ZrB2?MoSi2?SiC Composites. Journal of the American Ceramic Society, 2007, 90, 2255-2258.	3.8	49
35	Elastic properties of spark plasma sintered (SPSed) ZrB2â€"ZrCâ€"SiC composites. Ceramics International, 2008, 34, 1811-1817.	4.8	49
36	Electrical and thermal properties of SiC–AlN ceramics without sintering additives. Journal of the European Ceramic Society, 2015, 35, 2715-2721.	5.7	48

#	Article	IF	Citations
37	High-strength TiB 2 –TaC ceramic composites prepared using reactive spark plasma consolidation. Ceramics International, 2016, 42, 1298-1306.	4.8	48
38	High-hardness B4C textured by a strong magnetic field technique. Scripta Materialia, 2011, 64, 256-259.	5.2	47
39	Oxidation behavior of liquid-phase sintered SiC with AlN and Er2O3 additives between 1200°C and 1400°C. Journal of the European Ceramic Society, 2003, 23, 2023-2029.	5.7	46
40	Surfactant-Triggered Nanoarchitectonics of Fullerene C ₆₀ Crystals at a Liquid–Liquid Interface. Langmuir, 2016, 32, 12511-12519.	3.5	46
41	Grain Boundary Film Thicknesses in Superplastically Deformed Silicon Nitride. Journal of the American Ceramic Society, 1997, 80, 1213-1221.	3.8	43
42	Fabrication of silicon nitride nanoceramicsâ€"Powder preparation and sintering: A review. Science and Technology of Advanced Materials, 2007, 8, 635-643.	6.1	43
43	Microstructure and properties of ZrB2–SiC composites prepared by spark plasma sintering using TaSi2 as sintering additive. Journal of the European Ceramic Society, 2010, 30, 2625-2631.	5.7	43
44	Microstructure and high-temperature strength of textured and non-textured ZrB ₂ ceramics. Science and Technology of Advanced Materials, 2014, 15, 014202.	6.1	43
45	Preparation of zirconium diboride ceramics by reactive spark plasma sintering of zirconium hydride–boron powders. Scripta Materialia, 2011, 65, 1018-1021.	5.2	41
46	Texture Development in Si3N4 Ceramics by Magnetic Field Alignment during Slip Casting. Journal of the Ceramic Society of Japan, 2006, 114, 979-987.	1.3	40
47	Synthesis of Ca-α-SiAlON phosphors by a mechanochemical activation route. Acta Materialia, 2011, 59, 1570-1576.	7.9	40
48	Low temperature thermal expansion, high temperature electrical conductivity, and mechanical properties of Nb4AlC3 ceramic synthesized by spark plasma sintering. Journal of Alloys and Compounds, 2009, 487, 675-681.	5.5	39
49	Machinable ZrB2–SiC–BN composites fabricated by reactive spark plasma sintering. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 582, 41-46.	5.6	39
50	High-temperature strength of a thermally conductive silicon carbide ceramic sintered with yttria and scandia. Journal of the European Ceramic Society, 2016, 36, 3755-3760.	5.7	38
51	Strength Retention in Hotâ€Pressed Si ₃ N ₄ Ceramics with Lu ₂ O ₃ Additives after Oxidation Exposure in Air at 1500°C. Journal of the American Ceramic Society, 2002, 85, 1607-1609.	3.8	37
52	Densification, microstructure evolution and mechanical properties of WC doped HfB2–SiC ceramics. Journal of the European Ceramic Society, 2015, 35, 2707-2714.	5.7	37
53	Intergranular glassy phase free SiC ceramics retains strength at 1500 °C. Scripta Materialia, 2004, 50, 1203-1207.	5. 2	35
54	Superplastic Behavior of Fineâ€Grained βâ€Silicon Nitride Material under Compression. Journal of the American Ceramic Society, 2000, 83, 841-847.	3.8	34

#	Article	IF	CITATIONS
55	Effect of Zn doping on improving crystal quality and thermoelectric properties of borosilicides. Dalton Transactions, 2010, 39, 1027-1030.	3.3	34
56	Microstructure and high-temperature strength of silicon carbide with 2000 ppm yttria. Journal of the European Ceramic Society, 2017, 37, 4449-4455.	5.7	34
57	Phase Relationships in the Si ₃ N ₄ â€"SiO ₂ â€"Lu ₂ O ₃ System. Journal of the American Ceramic Society, 2002, 85, 2861-2863.	3.8	33
58	Room and high temperature toughening in directionally solidified B4C–TiB2 eutectic composites by Si doping. Journal of Alloys and Compounds, 2013, 570, 94-99.	5 . 5	32
59	Dielectric and Piezoelectric Properties of Barium-substituted Sr1.9Ca0.1NaNb5O15Ceramics. Japanese Journal of Applied Physics, 2003, 42, 7404-7409.	1.5	32
60	Microstructure and properties of ZrB2-SiC and HfB2-SiC composites fabricated by spark plasma sintering (SPS) using TaSi2 as sintering aid. Journal of the Ceramic Society of Japan, 2010, 118, 997-1001.	1.1	31
61	High temperature strength of silicon carbide sintered with $1\mathrm{wt.\%}$ aluminum nitride and lutetium oxide. Journal of the European Ceramic Society, 2013, 33, 345-350.	5.7	30
62	Hexagonal Plateâ€like Ternary Carbide Particulates Synthesized by a Carbothermal Reduction Process: Processing Parameters and Synthesis Mechanism. Journal of the American Ceramic Society, 2009, 92, 1030-1035.	3.8	29
63	Nonequiaxial Grain Growth and Polytype Transformation of Sintered αâ€Silicon Carbide and βâ€Silicon Carbide. Journal of the American Ceramic Society, 2003, 86, 2222-2224.	3.8	26
64	The origin of the n-type behavior in rare earth borocarbide Y _{1â°'x} 8 _{28.5} C ₄ . Dalton Transactions, 2014, 43, 15048-15054.	3.3	26
65	The Study on Carbon Nanofiber (CNF)â€Dispersed B ₄ C Composites. International Journal of Applied Ceramic Technology, 2009, 6, 607-616.	2.1	25
66	Electrical and thermal properties of silicon carbide–boron nitride composites prepared without sintering additives. Journal of the European Ceramic Society, 2015, 35, 4423-4429.	5.7	25
67	Hot-Pressed Silicon Nitride with Lu2O3Additives: Oxidation and Its Effect on Strength. Journal of the American Ceramic Society, 2003, 86, 1900-1905.	3.8	24
68	Thermoelectric properties and spark plasma sintering of doped YB ₂₂ C ₂ N. Journal of Materials Research, 2010, 25, 665-669.	2.6	24
69	Synthesis, microstructure and mechanical properties of (Zr,Ti)B2-(Zr,Ti)N composites prepared by spark plasma sintering. Journal of Alloys and Compounds, 2010, 494, 266-270.	5. 5	23
70	Low-Temperature Hot Pressing of ZrB2-Based Ceramics with ZrSi2 Additives. International Journal of Applied Ceramic Technology, 2011, 8, 1425-1435.	2.1	23
71	Microstructural characterization and high-temperature strength of hot-pressed silicon nitride ceramics with Lu2O3additives. Philosophical Magazine Letters, 2003, 83, 357-365.	1.2	22
72	Chemical composition and microstructure of Al3BC3 prepared by different densification methods. Journal of the European Ceramic Society, 2010, 30, 1015-1020.	5.7	22

#	Article	IF	CITATIONS
73	Highâ€ŧemperature strength and plastic deformation behavior of niobium diboride consolidated by spark plasma sintering. Journal of the American Ceramic Society, 2017, 100, 5295-5305.	3.8	22
74	Fabrication of a Nano-Si3N4/Nano-C Composite by High-Energy Ball Milling and Spark Plasma Sintering. Journal of the American Ceramic Society, 2007, 90, 1058-1062.	3.8	21
75	A ternary compound additive for vacuum densification of \hat{l}^2 -silicon carbide at low temperature. Journal of the European Ceramic Society, 2009, 29, 3419-3423.	5.7	21
76	Spark plasma sintering of silicon nitride using nanocomposite particles. Advanced Powder Technology, 2017, 28, 37-42.	4.1	21
77	Synthesis of silicon carbide powders from fumed silica powder and phenolic resin. Journal of Materials Research, 2006, 21, 1167-1174.	2.6	19
78	Thermoelectric properties of Th3P4-type rare-earth sulfides Ln2S3 (Ln=Gd, Tb) prepared by reaction of their oxides with CS2 gas. Journal of Alloys and Compounds, 2008, 451, 627-631.	5 . 5	19
79	A method for testing the interface toughness of ceramic environmental barrier coatings (EBCs) on ceramic matrix composites (CMCs). Journal of the European Ceramic Society, 2018, 38, 655-663.	5.7	19
80	Enhanced high-temperature strength of HfB2–SiC composite up to 1600°C. Journal of the European Ceramic Society, 2018, 38, 1152-1157.	5.7	18
81	Phase transformation on spark plasma sintered dense polycarbosilane-derived SiC without additive. Scripta Materialia, 2018, 143, 188-190.	5.2	18
82	Phase transformation and microstructures of Ln2S3 (Ln = La, Sm) with different impurities content of oxygen and carbon. Journal of Alloys and Compounds, 2006, 408-412, 551-555.	5.5	17
83	Effect of non-stoichiometry on thermoelectric properties of -Tb2S3â^'x. Journal of Alloys and Compounds, 2006, 418, 209-212.	5.5	16
84	Preparation of Lutetium Nitride by Direct Nitridation. Journal of Materials Research, 2004, 19, 959-963.	2.6	15
85	Hot-pressed Si3N4 ceramics with Lu2O3 additives: Grain-boundary phase and strength. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2005, 408, 9-18.	5.6	15
86	Effect of Al4SiC4 additive on the densification of \hat{l}^2 -silicon carbide under vacuum. Journal of the European Ceramic Society, 2012, 32, 619-625.	5.7	15
87	Fabrication of dense B4C/CNF composites having extraordinary high strength and toughness at elevated temperatures. Materials Science & Description A: Structural Materials: Properties, Microstructure and Processing, 2015, 628, 41-49.	5.6	15
88	Fracture and property relationships in the double diboride ceramic composites by spark plasma sintering of TiB ₂ and NbB ₂ . Journal of the American Ceramic Society, 2019, 102, 4259-4271.	3.8	15
89	Sintering of Silicon Carbide Powder Containing Metal Boride. Journal of the Ceramic Society of Japan, 2003, 111, 878-882.	1.3	14
90	Fracture toughness of hot-pressed Lu2Si2O7–Si3N4 and Lu4Si2O7N2–Si3N4 ceramics and correlation to microstructure and grain-boundary phases. Ceramics International, 2004, 30, 635-641.	4.8	14

#	Article	IF	CITATIONS
91	Phase transformation from tetragonal-phase to cubic-phase due to addition of titanium in lanthanum sesquisulfide. Journal of Alloys and Compounds, 2004, 374, 116-119.	5.5	14
92	Synthesis of mono-phase, hexagonal plate-like Al ₄ SiC ₄ powder via a carbothermal reduction process. Journal of the Ceramic Society of Japan, 2008, 116, 717-721.	1.1	14
93	Ultraâ€Lowâ€Temperature Sintering of Nanostructured βâ€SiC. Journal of the American Ceramic Society, 2011, 94, 324-327.	3.8	14
94	Perfect Highâ€Temperature Plasticity Realized in Multiwalled Carbon Nanotubeâ€Concentrated αâ€ <scp><scp>Al</scp></scp> ₂ <scp>O</scp> 3 Hybrid. Journal of the American Ceramic Society, 2013, 96, 1904-1908.	3.8	14
95	Conductive SiC ceramics fabricated by spark plasma sintering. Ceramics International, 2016, 42, 17892-17896.	4.8	14
96	Precipitation Processing to Synthesize Fine Polycarbosilane Particles for Precursors of Silicon Carbide Powders. Journal of the Ceramic Society of Japan, 2006, 114, 507-510.	1.3	13
97	Combustion synthesis of singleâ€phase Al ₄ SiC ₄ powder with assistance of induction heating. Journal of the American Ceramic Society, 2020, 103, 744-749.	3.8	13
98	Improving Heat Resistance of Silicon Nitride Ceramics with Rare-Earth Silicon Oxynitride. Journal of the Ceramic Society of Japan, 2006, 114, 880-887.	1.3	12
99	Synthesis and Sinterability of Hydroxyapatite from Fishery by-products. Journal of the Korean Ceramic Society, 2018, 55, 570-575.	2.3	12
100	Enhanced Grain Growth in Porous Materials from .ALPHA and .BETASiC Powder Mixtures. Journal of the Ceramic Society of Japan, 2005, 113, 51-54.	1.3	11
101	Superplastic deformation of nano-size S3N4 ceramics with different amounts of sintering additives. Scripta Materialia, 2006, 55, 215-217.	5.2	11
102	Investigations of growth kinetics of pulsed laser deposition of tin oxide films by isotope tracer technique. Journal of Applied Physics, 2010, 108, 104901.	2.5	11
103	Microstructure and Thermoelectric Properties of Dense YB22C2N Samples Fabricated Through Spark Plasma Sintering. Journal of Electronic Materials, 2011, 40, 682-686.	2.2	11
104	Tough hybrid ceramic-based material with high strength. Scripta Materialia, 2012, 67, 744-747.	5.2	11
105	Spark Plasma Sintering. Advances in Applied Ceramics, 2014, 113, 65-66.	1.1	11
106	Microstructure and thermoelectric properties of Y \times Al y B14 samples fabricated through the spark plasma sintering. Materials for Renewable and Sustainable Energy, 2014, 3, 1.	3.6	11
107	Fabrication of dense ZrB2/B4C composites using pulsed electric current pressure sintering and evaluation of their high-temperature bending strength. Ceramics International, 2020, 46, 18478-18486.	4.8	11
108	Forming of Ceramic Powders by Cyclic-CIP. Journal of the Ceramic Society of Japan, 1990, 98, 735-738.	1.3	10

#	Article	IF	Citations
109	Dependence of fracture stress on applied stress rate in a Yb2O3–SiO2-doped hot-pressed silicon nitride ceramic. Journal of Materials Research, 2001, 16, 3254-3261.	2.6	10
110	Thermal decomposition, densification and mechanical properties of AlN–SiC(–TiB2) systems with and without B, B4C and C additives. Journal of the European Ceramic Society, 2008, 28, 1715-1722.	5.7	10
111	Effect of aluminum nitride-scandia content on the microstructural and mechanical properties of sintered silicon carbide ceramics. Metals and Materials International, 2009, 15, 937-941.	3.4	10
112	Fabrication and Mechanical Properties of Textured Ti ₃ SiC ₂ Systems Using Commercial Powder. Materials Transactions, 2018, 59, 829-834.	1.2	10
113	Mechanical properties of silicon carbideâ€"in situ zirconium carbonitride composites. International Journal of Applied Ceramic Technology, 2019, 16, 1304-1313.	2.1	10
114	Uniform and fine Mg-Î ³ -AlON powders prepared from MgAl2O4: A promising precursor material for highly-transparent Mg-Î ³ -AlON ceramics. Journal of the European Ceramic Society, 2019, 39, 928-933.	5.7	10
115	Influence of Phase Transformation on Densification Behavior and Grain Growth of Fine Silicon Nitride Powder. Journal of the Ceramic Society of Japan, 1996, 104, 23-27.	1.3	9
116	Fabrication of Heat-Resistant Silicon Carbide Ceramics by Controlling Intergranular Phase. Key Engineering Materials, 2005, 287, 299-310.	0.4	9
117	High lithium conductivity in Li _{1-2<i>x</i>y} Ca <i>_x</i> Si ₂ N ₃ . Journal of Materials Research, 2011, 26, 1133-1142.	2.6	9
118	Development of Cyclic-CIP and its Application to Powder Forming. Journal of the Ceramic Association Japan, 1987, 95, 1226-1231.	0.2	8
119	Mechanical Properties of Fine-Grained Silicon Nitride Ceramics. Journal of the Ceramic Society of Japan, 1998, 106, 203-207.	1.3	8
120	Microstructure Control in Silicon Nitride Ceramics-A Review. Journal of the Ceramic Society of Japan, 2006, 114, 867-872.	1.3	8
121	Effect of Sintering Additives on Superplastic Deformation of Nano-Sized beta-Silicon Nitride Ceramics. Journal of the American Ceramic Society, 2006, 89, 1745-1747.	3.8	8
122	Synthesis and Photoluminescence of Eu2+-Doped ?-Silicon Nitride Nanowires Coated with Thin BN Film. Journal of the American Ceramic Society, 2007, 90, 070922001308004-???.	3.8	8
123	Mechanical properties of fully dense yttrium aluminum garnet (YAG) ceramics. Journal of the Ceramic Society of Japan, 2008, 116, 649-652.	1.1	8
124	Effect of sintering atmosphere on the grain growth and hardness of SiC/polysilazane ceramic composites. Advances in Applied Ceramics, 2016, 115, 272-275.	1.1	8
125	Deformationâ€resistant Ta _{0.2} Hf _{0.8} C solidâ€solution ceramic with superior flexural strength at 2000°C. Journal of the American Ceramic Society, 2022, 105, 512-524.	3.8	8
126	The Temperature and the Grains of Ti-6Al-4V Alloy on the Uniaxial and Biaxial Deformations for Superplasticity. Materials Science Forum, 1994, 170-172, 207-212.	0.3	7

#	Article	IF	CITATIONS
127	Improvement of High Temperature Strength and Creep of α-Sialon by Grain Boundary Crystallization. Key Engineering Materials, 2000, 171-174, 741-746.	0.4	7
128	High-Temperature Strength of Liquid-Phase-Sintered SiC Ceramics with Oxynitride Glass. Key Engineering Materials, 2003, 247, 267-270.	0.4	7
129	Synthesis and Sintering of Cerium(II) Monosulfide. Journal of the American Ceramic Society, 2004, 87, 23-28.	3.8	7
130	Tensile Creep Behavior in Lutetia-doped Silicon Nitride Ceramics. Journal of Materials Research, 2005, 20, 2213-2217.	2.6	7
131	Synthesis of SiC nano-powders from liquid carbon and various silica sources. Journal of the Ceramic Society of Japan, 2010, 118, 345-348.	1.1	7
132	Thermal stability of the CoWO4 layer formed on ferritic stainless steel. Corrosion Science, 2020, 176, 109037.	6.6	7
133	Effect of sintering temperature and sintering additives on ionic conductivity of LiSi2N3. Journal of the Ceramic Society of Japan, 2010, 118, 837-841.	1.1	6
134	Nano ZrO ₂ –TiN composites with high strength and conductivity. Journal of the Ceramic Society of Japan, 2015, 123, 86-89.	1.1	6
135	Forming of Silicon Carbide Powder by Cyclic CIP. Journal of the Ceramic Society of Japan, 1991, 99, 187-190.	1.3	5
136	Gas-Pressure Sintering of Silicon Nitride with Yb4Si2O7N2 Phase Journal of the Ceramic Society of Japan, 2001, 109, 453-456.	1.3	5
137	Oxidation behaviour and strength degradation of a Yb2O3â^'SiO2â^'doped hot-pressed silicon nitride between 1200 and 1500°C. Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties, 2002, 82, 3027-3043.	0.6	5
138	High-temperature slow crack growth of an Yb2O3–SiO2-doped hot-pressed silicon nitride ceramic. Materials Letters, 2003, 57, 3257-3264.	2.6	5
139	Fabrication of Silicon Nitride Nano-Ceramics by High-Energy Mechanical Milling and Spark Plasma Sintering. Key Engineering Materials, 2005, 287, 166-170.	0.4	5
140	Fine-grained AlN ceramics from nanopowder by spark plasma sintering. Journal of the Ceramic Society of Japan, 2010, 118, 1050-1052.	1.1	5
141	Synthesis of bulk silicon oxynitride glass through nitridation of SiO ₂ aerogels and determination of <i>T_g</i> . Journal of the American Ceramic Society, 2021, 104, 4420-4432.	3.8	5
142	Low-Temperature Sintering of \hat{l}_{\pm} - and \hat{l}^2 -SiC Powders with AlB ₂ Additive. Key Engineering Materials, 2006, 317-318, 23-26.	0.4	4
143	Fabrication of α-Sialon Nano-Ceramics. Key Engineering Materials, 2006, 317-318, 629-632.	0.4	4
144	Pulverization of oxide powders utilizing thermal treatment in ammonia-based atmosphere. Journal of the European Ceramic Society, 2016, 36, 4083-4088.	5.7	4

#	Article	IF	CITATIONS
145	Effect of Al ₂ O ₃ on High Temperature Mechanical Properties of Silicon Nitride with Yb ₄ S0 ₇ N ₂ . lournal of the Ceramic Society of Japan, 1997, 105, 801-804.	1.3	3
146	Improvement of Mechanical Properties after Superplastic Deformation of Silicon Nitride. Materials Science Forum, 1999, 304-306, 477-482.	0.3	3
147	Mechanical Properties of Alumina/YAG-Fiber Composite Journal of the Ceramic Society of Japan, 2001, 109, 607-611.	1.3	3
148	Thermoelectric properties of lanthanum sesquisulfide with Ti additive. Applied Physics Letters, 2005, 87, 042106.	3.3	3
149	Microstructure and Mechanical Properties of Heat-Resistant Silicon Carbide Ceramics. Key Engineering Materials, 2007, 336-338, 1409-1413.	0.4	3
150	Simultaneous Synthesis and Consolidation of W-Added ZrB ₂ by Pulsed Electric Current Pressure Sintering and their Mechanical Properties. Materials Science Forum, 2007, 561-565, 527-530.	0.3	3
151	Synthesis of Non-Oxide Ceramic Fine-Powders from Organic Precursors. Key Engineering Materials, 2008, 403, 269-272.	0.4	3
152	Interfacial structure of oxidized inner pores in precursor-derived Si–C–N ceramics. Journal of Non-Crystalline Solids, 2009, 355, 2390-2395.	3.1	3
153	Fabrication of Superplastic Silicon Nitride Ceramics Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 1995, 42, 1457-1462.	0.2	2
154	Grain Growth Behavior of Fine-Grained Silicon Nitride Ceramics. Materials Science Forum, 1996, 204-206, 515-520.	0.3	2
155	Synthesis of La ₂ S ₃ Thin Films by Sulfurization of LaCl ₃ and CS(NH ₂) ₂ . Materials Transactions, 2006, 47, 1436-1439.	1.2	2
156	Plastic Deformation of Silicon Nitride Nano-Ceramics. Key Engineering Materials, 2007, 352, 189-192.	0.4	2
157	Mechanical Properties of Short Carbon Fiber-Reinforced SiC-Matrix Composites and Correlation to Fibers. Key Engineering Materials, 0, 512-515, 798-803.	0.4	2
158	Fabrication and Mechanical Properties of Textured Ti ₃ SiC ₂ MAX Phase Systems. Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 2016, 63, 970-975.	0.2	2
159	High-Temperature Properties of Silicon Nitride with Lu-Si-O-N Grain Boundary Phases. Key Engineering Materials, 2006, 317-318, 425-428.	0.4	1
160	Bulk Consolidation of Non-Oxide Ceramic Powders Derived from Polymer Precursors. Key Engineering Materials, 2006, 317-318, 15-18.	0.4	1
161	Homologous rare earth boron cluster compounds: a possible n-type counterpart to boron carbide. , 2006, , .		1
162	Superplastic Deformation of Nano-Sized α-Sialon Ceramics. Key Engineering Materials, 2007, 336-338, 1001-1004.	0.4	1

#	Article	IF	CITATIONS
163	Fabrication and Characterization of Carbon Nanofiber (CNF)-Dispersed SiAION Ceramics via Spark Plasma Sintering (SPS). Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 2007, 54, 606-611.	0.2	1
164	Influence of Additives on Mechanical Properties in Liquid-Phase Sintered Silicon Carbide Ceramics. Key Engineering Materials, 2008, 403, 185-188.	0.4	1
165	Synthesis of Nano-Sized SiC Powders by Carbothermal Reduction. Key Engineering Materials, 2008, 403, 211-214.	0.4	1
166	Electric Current Assisted Sintering of Nitride Nanoceramics. Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 2013, 60, 424-427.	0.2	1
167	Consideration of the formation mechanism of an Al2O3-HfO2 eutectic film on a SiC substrate. Journal of the Korean Physical Society, 2016, 68, 73-76.	0.7	1
168	A modified simple interface fracture test for ceramic environmental barrier coating on ceramic matrix composite. Journal of the Ceramic Society of Japan, 2021, 129, 40-45.	1.1	1
169	Synthesis of Single-Phase, Hexagonal Plate-Like Al ₄ SiC ₄ Powder. Key Engineering Materials, 0, , 159-162.	0.4	1
170	Chemothermal pulverization: Crushing titanate crystals to obtain nanosized powders via highâ€ŧemperature treatment. Journal of the American Ceramic Society, 2022, 105, 1913-1927.	3.8	1
171	Forming of Ceramic Powders by Cyclic-CIP. Journal of the Ceramic Society of Japan, 1993, 101, 985-990.	1.3	0
172	Phase Relationships in the Si3N4â€"SiO2â€"Lu2O3 System ChemInform, 2003, 34, no.	0.0	0
173	High-Temperature Deformation of Si-C-N Monoliths Containing Residual Amorphous Phase Derived from Polyvinylsilazane. Journal of the Ceramic Society of Japan, 2006, 114, 575-579.	1.3	0
174	Low Temperature Sintering of AlN-SiC-TiB ₂ System for the Fabrication of Continuous Fiber Reinforced Ceramic Composites (CFCC). Solid State Phenomena, 2007, 124-126, 1075-1078.	0.3	0
175	Doping effect in N-type rare earth boron carbonitrides. , 2007, , .		O
176	Simultaneous Synthesis and Consolidation of W-added ZrB2 by Spark Plasma Sintering (SPS) and their Mechanical Properties. Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 2007, 54, 601-605.	0.2	0
177	Synthesis of Single-Phase, Hexagonal Plate-Like Al ₄ SiC ₄ Powder. Key Engineering Materials, 2008, 403, 159-162.	0.4	0
178	Simultaneously Synthesis and Sintering of Carbon Nanofiber Dispersed B4C Nanocomposites by Pulsed Electric-current Pressure Sintering and their Mechanical Properties. Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 2008, 55, 582-587.	0.2	0
179	Fabrication of Silicon Nitride-Based Nano/Nano-Composite. Key Engineering Materials, 0, 484, 65-69.	0.4	0
180	Preparation and electrical properties of Li–Si–Al–O–N ceramics. Journal of Asian Ceramic Societies, 2013, 1, 191-196.	2.3	0

#	Article	IF	CITATIONS
181	Recent global trends in structural materials research. Science and Technology of Advanced Materials, 2013, 14, 010301.	6.1	0
182	High-Energy Milling of Silicon Nitride Powder. Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 2013, 60, 420-427.	0.2	0
183	Fabrication of Nitride Ceramics by Electric Current Assisted Sintering. Key Engineering Materials, 0, 616, 19-22.	0.4	0
184	Grain Boundary Control to Obtain Heat-Resistant Silicon Nitride. NIMS Monographs, 2015, , 35-44.	0.3	0
185	Fabrication and Mechanical Properties of Textured Ti ₃ SiC ₂ Systems Using Commercial Powders. Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 2017, 64, 552-557.	0.2	0
186	Microstructural Control and Functional Improvement of Sintered Non-oxide Ceramics. Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 2017, 64, 47.	0.2	0
187	Simultaneous Synthesis and Densification of Carbon Nano-Materials Dispersed Boron Carbide Composites Using Pulsed Electric-Current Pressure Sintering (PECPS). Materials Science Forum, 0, 985, 202-210.	0.3	0
188	Corrigendum to "Synthesis of bulk silicon oxynitride glass through nitridation of SiO ₂ aerogels and determination of <i>Tg</i> ― Journal of the American Ceramic Society, 2022, 105, 757-757.	3.8	0
189	503 High Temperature Deformation of Silicon Nitride Ceramics. The Proceedings of the Materials and Processing Conference, 2007, 2007.15, 317-318.	0.0	0
190	102 Fabrication of Non-oxide Nanoceramics by Spark Plasma Sintering. The Proceedings of the Materials and Processing Conference, 2010, 2010.18, _102-1102-2	0.0	0
191	220 Pulsed Electric Current Sintering of Nitride Ceramics. The Proceedings of the Materials and Processing Conference, 2012, 2012.20, _220-1220-2	0.0	0
192	S042024 Mechanical properties of Aluminum Nitride type Nano Ceramics. The Proceedings of Mechanical Engineering Congress Japan, 2012, 2012, _S042024-1S042024-2.	0.0	0
193	Preparation of Nanosize Silicon-Nitride-Based Ceramics and Their Superplasticity. NIMS Monographs, 2015, , 5-33.	0.3	0
194	Simultaneous Synthesis and Sintering of Dense B4C/CNF Composites using a Pulsed Electric-Current Pressure Sintering and Evaluation of Their Thermal Properties., 0,, 279-291.		O