Kate M Evans

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3441464/publications.pdf

Version: 2024-02-01

43 papers 1,719 citations

20 h-index 289244 40 g-index

44 all docs 44 docs citations

44 times ranked 1816 citing authors

#	Article	IF	CITATIONS
1	15 years of GDR: New data and functionality in the Genome Database for Rosaceae. Nucleic Acids Research, 2019, 47, D1137-D1145.	14.5	285
2	The Genome Database for Rosaceae (GDR): year 10 update. Nucleic Acids Research, 2014, 42, D1237-D1244.	14.5	195
3	Expression of the pea metallothionein-like gene PsMT A in Escherichia coli and Arabidopsis thaliana and analysis of trace metal ion accumulation: Implications for PsMT A function. Plant Molecular Biology, 1992, 20, 1019-1028.	3.9	190
4	Analysis of the genetic diversity and structure across a wide range of germplasm reveals prominent gene flow in apple at the European level. BMC Plant Biology, $2016, 16, 130$.	3.6	111
5	Development of a dense SNP-based linkage map of an apple rootstock progeny using the Malus Infinium whole genome genotyping array. BMC Genomics, 2012, 13, 203.	2.8	77
6	QTLs detected for individual sugars and soluble solids content in apple. Molecular Breeding, 2015, 35, 1.	2.1	75
7	Current applications, challenges, and perspectives of marker-assisted seedling selection in Rosaceae tree fruit breeding. Tree Genetics and Genomes, 2015, 11, 1.	1.6	73
8	Genotyping of pedigreed apple breeding material with a genome-covering set of SSRs: trueness-to-type of cultivars and their parentages. Molecular Breeding, 2011, 28, 535-547.	2.1	72
9	Estimation of genetic parameters and prediction of breeding values for apple fruit-quality traits using pedigreed plant material in Europe. Tree Genetics and Genomes, 2009, 5, 659-672.	1.6	71
10	Fire Blight Resistance in Wild Accessions of <i>Malus sieversii </i> . Plant Disease, 2017, 101, 1738-1745.	1.4	42
11	Development of a highly efficient Axiomâ,,¢ 70 K SNP array for Pyrus and evaluation for high-density mapping and germplasm characterization. BMC Genomics, 2019, 20, 331.	2.8	40
12	Novel metrics to classify fire blight resistance of 94 apple cultivars. Plant Pathology, 2019, 68, 985-996.	2.4	37
13	PRIMER NOTE: Isolation and characterization of microsatellite markers in Japanese pear (Pyrus) Tj ETQq1 1 0.784	314 rgBT 1.7	/Oyerlock 10
14	Utility testing of an apple skin color MdMYB1 marker in two progenies. Molecular Breeding, 2011, 27, 525-532.	2.1	32
15	Development of "universal―gene-specific markers from Malus spp. cDNA sequences, their mapping and use in synteny studies within Rosaceae. Tree Genetics and Genomes, 2009, 5, 133-145.	1.6	30
16	High-Throughput Phenotyping of Fire Blight Disease Symptoms Using Sensing Techniques in Apple. Frontiers in Plant Science, 2019, 10, 576.	3.6	29
17	Transcriptional Regulation of Auxin Metabolism and Ethylene Biosynthesis Activation During Apple (MalusÂ×Âdomestica) Fruit Maturation. Journal of Plant Growth Regulation, 2016, 35, 655-666.	5.1	28
18	Identification of Novel Strain-Specific and Environment-Dependent Minor QTLs Linked to Fire Blight Resistance in Apples. Plant Molecular Biology Reporter, 2018, 36, 247-256.	1.8	27

#	Article	IF	CITATIONS
19	â€~WA 38' Apple. Hortscience: A Publication of the American Society for Hortcultural Science, 2012, 47, 1177-1179.	1.0	27
20	Plant breeding capacity in U.S. public institutions. Crop Science, 2020, 60, 2373-2385.	1.8	23
21	Prospects for achieving durable disease resistance with elite fruit quality in apple breeding. Tree Genetics and Genomes, 2020, 16 , 1 .	1.6	22
22	Correlation of Sensory Analysis with Physical Textural Data from a Computerized Penetrometer in the Washington State University Apple Breeding Program. HortTechnology, 2010, 20, 1026-1029.	0.9	22
23	Fire blight QTL analysis in a multi-family apple population identifies a reduced-susceptibility allele in â€~Honeycrisp'. Horticulture Research, 2021, 8, 28.	6.3	20
24	A new gene for resistance to <i>Dysaphis pyri</i> in pear and identification of flanking microsatellite markers. Genome, 2008, 51, 1026-1031.	2.0	19
25	Addition of a breeding database in the Genome Database for Rosaceae. Database: the Journal of Biological Databases and Curation, 2013, 2013, bat078.	3.0	19
26	Location, year, and tree age impact NIR-based postharvest prediction of dry matter concentration for 58 apple accessions. Postharvest Biology and Technology, 2020, 166, 111125.	6.0	19
27	Genetic architecture of apple fruit quality traits following storage and implications for genetic improvement. Tree Genetics and Genomes, 2016, 12, 1.	1.6	15
28	ROOTSTOCK BREEDING AND ORCHARD TESTING AT HORTICULTURE RESEARCH INTERNATIONAL - EAST MALLING. Acta Horticulturae, 1997, , 83-88.	0.2	11
29	CisSERS: Customizable In Silico Sequence Evaluation for Restriction Sites. PLoS ONE, 2016, 11, e0152404.	2.5	11
30	Modeling of genetic gain for single traits from marker-assisted seedling selection in clonally propagated crops. Horticulture Research, 2016, 3, 16015.	6.3	8
31	Trends in Fruit Quality Improvement From 15 Years of Selection in the Apple Breeding Program of Washington State University. Frontiers in Plant Science, 2021, 12, 714325.	3.6	8
32	Quantitative variation and heritability estimates of fire blight resistance in a pedigree-connected apple germplasm set. Journal of Plant Pathology, 2021, 103, 65-75.	1.2	7
33	High Genetic Diversity in Predominantly Clonal Populations of the Powdery Mildew Fungus <i>Podosphaera leucotricha </i> from U.S. Apple Orchards. Applied and Environmental Microbiology, 2021, 87, e0046921.	3.1	7
34	Genetics and Breeding of Apple Scions. Compendium of Plant Genomes, 2021, , 73-103.	0.5	6
35	Transcript Profiles of Auxin Efflux Carrier and IAA-Amido Synthetase Genes Suggest the Role of Auxin on Apple (<i>Malus</i> ×) Tj ETQq1 1 0.784314 rgBT /Overlock 10 Tf Sciences. 2015. 06. 620-632.	50 102 Td	(<i&a< td=""></i&a<>
36	Cost and accuracy of advanced breeding trial designs in apple. Horticulture Research, 2016, 3, 16008.	6.3	5

#	Article	IF	CITATIONS
37	Contributions of Reduced Susceptibility Alleles in Breeding Apple Cultivars with Durable Resistance to Fire Blight. Plants, 2021, 10, 409.	3.5	5
38	Characterisation of the virescent locus controlling a recessive phenotype in apple rootstocks (Malus) Tj ETQq0 C	0 pgBT /C	verlock 10 Tf
39	A DNA test for routinely predicting mildew resistance in descendants of crabapple †White Angel'. Molecular Breeding, 2019, 39, 1.	2.1	4
40	Empirical evaluation of multi-trait DNA testing in an apple seedling population. Tree Genetics and Genomes, 2021, 17, 1.	1.6	3
41	Durable resistance to scab and mildew in apple - a European project. Outlooks on Pest Management, 2000, 11, 84-87.	0.2	2
42	A DNA test for high incidence of soft scald and soggy breakdown postharvest disorders in Malus domestica Borkh. Molecular Breeding, 2021, 41, 1.	2.1	0
43	IDENTIFICATION AND DEVELOPMENT OF MARKERS LINKED TO APHID RESISTANCE IN APPLE. Acta Horticulturae, 1998, , 519-522.	0.2	0