
Claudio Procaccini

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3441119/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Key Role of Leptin in the Control of Regulatory T Cell Proliferation. Immunity, 2007, 26, 241-255.	14.3	579
2	An Oscillatory Switch in mTOR Kinase Activity Sets Regulatory T Cell Responsiveness. Immunity, 2010, 33, 929-941.	14.3	312
3	Glycolysis controls the induction of human regulatory T cells by modulating the expression of FOXP3 exon 2 splicing variants. Nature Immunology, 2015, 16, 1174-1184.	14.5	296
4	Leptin as an immunomodulator. Molecular Aspects of Medicine, 2012, 33, 35-45.	6.4	248
5	Animal models of Multiple Sclerosis. European Journal of Pharmacology, 2015, 759, 182-191.	3.5	237
6	Fatty acid metabolism complements glycolysis in the selective regulatory T cell expansion during tumor growth. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E6546-E6555.	7.1	234
7	The Proteomic Landscape of Human ExÂVivo Regulatory and Conventional T Cells Reveals Specific Metabolic Requirements. Immunity, 2016, 44, 406-421.	14.3	201
8	Regulatory T cell proliferative potential is impaired in human autoimmune disease. Nature Medicine, 2014, 20, 69-74.	30.7	189
9	Regulatory T cells in obesity: the leptin connection. Trends in Molecular Medicine, 2010, 16, 247-256.	6.7	171
10	Role of metabolism in neurodegenerative disorders. Metabolism: Clinical and Experimental, 2016, 65, 1376-1390.	3.4	158
11	Leptin-Induced mTOR Activation Defines a Specific Molecular and Transcriptional Signature Controlling CD4+ Effector T Cell Responses. Journal of Immunology, 2012, 189, 2941-2953.	0.8	121
12	Leptin neutralization interferes with pathogenic T cell autoreactivity in autoimmune encephalomyelitis. Journal of Clinical Investigation, 2006, 116, 447-455.	8.2	115
13	Neuro-Endocrine Networks Controlling Immune System in Health and Disease. Frontiers in Immunology, 2014, 5, 143.	4.8	93
14	Pentraxin 3 Induces Vascular Endothelial Dysfunction Through a P-selectin/Matrix Metalloproteinase-1 Pathway. Circulation, 2015, 131, 1495-1505.	1.6	89
15	Leptin as immune mediator: Interaction between neuroendocrine and immune system. Developmental and Comparative Immunology, 2017, 66, 120-129.	2.3	86
16	Leptin in autoimmune diseases. Metabolism: Clinical and Experimental, 2015, 64, 92-104.	3.4	85
17	Role of Adipokines Signaling in the Modulation of T Cells Function. Frontiers in Immunology, 2013, 4, 332.	4.8	82
18	Leptin Modulates the Survival of Autoreactive CD4+ T Cells through the Nutrient/Energy-Sensing Mammalian Target of Rapamycin Signaling Pathway. Journal of Immunology, 2010, 185, 7474-7479.	0.8	80

CLAUDIO PROCACCINI

#	Article	IF	CITATIONS
19	Cellular and molecular crosstalk between leptin receptor and estrogen receptor-α in breast cancer: molecular basis for a novel therapeutic setting. Endocrine-Related Cancer, 2010, 17, 373-382.	3.1	78
20	The intricate interface between immune and metabolic regulation: a role for leptin in the pathogenesis of multiple sclerosis?. Journal of Leukocyte Biology, 2008, 84, 893-899.	3.3	66
21	Obesity and susceptibility to autoimmune diseases. Expert Review of Clinical Immunology, 2011, 7, 287-294.	3.0	61
22	Intracellular metabolic pathways control immune tolerance. Trends in Immunology, 2012, 33, 1-7.	6.8	60
23	Resveratrol Couples Apoptosis with Autophagy in UVB-Irradiated HaCaT Cells. PLoS ONE, 2013, 8, e80728.	2.5	56
24	Leptin: The Prototypic Adipocytokine and its Role in NAFLD. Current Pharmaceutical Design, 2010, 16, 1902-1912.	1.9	53
25	Leptin Signaling: A Key Pathway in Immune Responses. Current Signal Transduction Therapy, 2009, 4, 22-30.	0.5	50
26	Metabolic control of immune tolerance in health and autoimmunity. Seminars in Immunology, 2016, 28, 491-504.	5.6	47
27	IFN-Î ³ orchestrates mesenchymal stem cell plasticity through the signal transducer and activator of transcription 1 and 3 and mammalian target of rapamycin pathways. Journal of Allergy and Clinical Immunology, 2017, 139, 1667-1676.	2.9	46
28	Leptin modulates autophagy in human CD4+CD25â^' conventional T cells. Metabolism: Clinical and Experimental, 2014, 63, 1272-1279.	3.4	45
29	Signals of pseudo-starvation unveil the amino acid transporter SLC7A11 as key determinant in the control of Treg cell proliferative potential. Immunity, 2021, 54, 1543-1560.e6.	14.3	42
30	At the crossroad of T cells, adipose tissue, and diabetes. Immunological Reviews, 2012, 249, 116-134.	6.0	40
31	Immune-metabolic profiling of anorexic patients reveals an anti-oxidant and anti-inflammatory phenotype. Metabolism: Clinical and Experimental, 2015, 64, 396-405.	3.4	37
32	AMBRA1 Controls Regulatory T-Cell Differentiation and Homeostasis Upstream of the FOXO3-FOXP3 Axis. Developmental Cell, 2018, 47, 592-607.e6.	7.0	34
33	IFNÎ ² enhances mesenchymal stromal (Stem) cells immunomodulatory function through STAT1-3 activation and mTOR-associated promotion of glucose metabolism. Cell Death and Disease, 2019, 10, 85.	6.3	34
34	Hunger-promoting hypothalamic neurons modulate effector and regulatory T-cell responses. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 6193-6198.	7.1	29
35	Divergent immunomodulatory effects of recombinant and urinary-derived FSH, LH, and hCG on human CD4+ T cells. Journal of Reproductive Immunology, 2010, 85, 172-179.	1.9	28
36	Effects on Immune Cells of a New 1,8-Naphthyridin-2-One Derivative and Its Analogues as Selective CB2 Agonists: Implications in Multiple Sclerosis. PLoS ONE, 2013, 8, e62511.	2.5	27

CLAUDIO PROCACCINI

#	Article	IF	CITATIONS
37	Polychlorinated Biphenyls Induce Mitochondrial Dysfunction in SH-SY5Y Neuroblastoma Cells. PLoS ONE, 2015, 10, e0129481.	2.5	25
38	Regulatory T Cells, Leptin and Angiogenesis. Chemical Immunology and Allergy, 2014, 99, 155-169.	1.7	24
39	Type 1 diabetes progression is associated with loss of CD3+CD56+ regulatory T cells that control CD8+ T-cell effector functions. Nature Metabolism, 2020, 2, 142-152.	11.9	23
40	Histamine regulates autoreactive T cell activation and adhesiveness in inflamed brain microcirculation. Journal of Leukocyte Biology, 2010, 89, 259-267.	3.3	21
41	Meta-Immunological Profiling of Children With Type 1 Diabetes Identifies New Biomarkers to Monitor Disease Progression. Diabetes, 2013, 62, 2481-2491.	0.6	21
42	Resveratrol regulates p66Shc activation in HaCaT cells. Experimental Dermatology, 2010, 19, 895-903.	2.9	19
43	Altered Bioenergetic Profile in Umbilical Cord and Amniotic Mesenchymal Stem Cells from Newborns of Obese Women. Stem Cells and Development, 2018, 27, 199-206.	2.1	17
44	Convergent Effects of Resveratrol and PYK2 on Prostate Cells. International Journal of Molecular Sciences, 2016, 17, 1542.	4.1	16
45	Modulation of p38 MAPK Activity in Regulatory T Cells after Tolerance with Anti-DNA Ig Peptide in (NZB) Tj ETQq1	1,0,78431 0.8	l4_rgBT /O∨
46	Regulatory T cells, mTOR kinase, and metabolic activity. Cellular and Molecular Life Sciences, 2012, 69, 3975-3987.	5.4	13
47	Human Trisomic iPSCs from Down Syndrome Fibroblasts Manifest Mitochondrial Alterations Early during Neuronal Differentiation. Biology, 2021, 10, 609.	2.8	11
48	PTX3: an inflammatory protein modulating ultrastructure and bioenergetics of human endothelial cells. Immunity and Ageing, 2019, 16, 4.	4.2	9
49	CD8+ T cells specific for cryptic apoptosis-associated epitopes exacerbate experimental autoimmune encephalomyelitis. Cell Death and Disease, 2021, 12, 1026.	6.3	6
50	CD4+ T Cell Defects in a Mulibrey Patient With Specific TRIM37 Mutations. Frontiers in Immunology, 2020, 11, 1742.	4.8	5
51	Where Mitochondria Meet Autoimmunity: The Treg Cell Link. Cell Metabolism, 2020, 32, 507-509.	16.2	4
52	Obesity and Inflammation. , 2016, , 1017-1029.		2
53	Complex interface between immunity and metabolism: The lung as a target organ. , 2019, , 23-43.		0