List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3440810/publications.pdf Version: 2024-02-01



HUAMING LL

| #  | Article                                                                                                                                                                                                                                                                                  | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Surface ligand engineering renders tube-like perovskite nanocrystal composites with outstanding<br>polar organic solvent-tolerance and strong emission. Chemical Engineering Journal, 2022, 434, 133866.                                                                                 | 12.7 | 7         |
| 2  | N-doped carbon nanotubes encapsulated with FeNi nanoparticles derived from defect-rich,<br>molecule-doped 3D g-C <sub>3</sub> N <sub>4</sub> as an efficient bifunctional electrocatalyst for<br>rechargeable zinc–air batteries. Journal of Materials Chemistry A, 2022, 10, 9911-9921. | 10.3 | 43        |
| 3  | Preparation and application of carbon black-filled rubber composite modified with a multi-functional silane coupling agent. International Polymer Processing, 2022, 37, 15-24.                                                                                                           | 0.5  | 2         |
| 4  | Facile crafting of ultralong N-doped carbon nanotube encapsulated with FeCo nanoparticles as<br>bifunctional electrocatalyst for rechargeable zinc-air batteries. Microporous and Mesoporous<br>Materials, 2022, 336, 111850.                                                            | 4.4  | 4         |
| 5  | Flexible Solid-State Supercapacitor with High Energy Density Enabled by N/B/O-Codoped Porous Carbon<br>Nanoparticles and Imidazolium-Based Gel Polymer Electrolyte. ACS Sustainable Chemistry and<br>Engineering, 2022, 10, 5548-5558.                                                   | 6.7  | 13        |
| 6  | In-situ self-templating synthesis of 3D hierarchical porous carbons from oxygen-bridged porous organic polymers for high-performance supercapacitors. Nano Research, 2022, 15, 7759-7768.                                                                                                | 10.4 | 25        |
| 7  | Ultrastable highly-emissive amphiphilic perovskite nanocrystal composites via the synergy of<br>polymer-grafted silica nanoreactor and surface ligand engineering for white light-emitting diode.<br>Nano Energy, 2022, 98, 107321.                                                      | 16.0 | 7         |
| 8  | Surface engineering of ZIF-L renders multidoped leaf-like porous carbon nanosheets for highly<br>efficient oxygen reduction reaction in both alkaline and acidic media. Colloids and Surfaces A:<br>Physicochemical and Engineering Aspects, 2022, 648, 129417.                          | 4.7  | 4         |
| 9  | Iron-nickel alloy nanoparticles encapsulated in nitrogen-doped carbon nanotubes as efficient<br>bifunctional electrocatalyst for rechargeable zinc-air batteries. Journal of Colloid and Interface<br>Science, 2022, 625, 278-288.                                                       | 9.4  | 5         |
| 10 | Analysis of effect of modification of silica and carbon black co-filled rubber composite on mechanical properties. E-Polymers, 2021, 21, 279-288.                                                                                                                                        | 3.0  | 14        |
| 11 | Synthesis and characterization of phenanthroimidazole-containing triazine frameworks and their performance in CO2 capture. Microporous and Mesoporous Materials, 2021, 316, 110939.                                                                                                      | 4.4  | 3         |
| 12 | Rechargeable Zn–Air Batteries with Outstanding Cycling Stability Enabled by Ultrafine FeNi<br>Nanoparticles-Encapsulated N-Doped Carbon Nanosheets as a Bifunctional Electrocatalyst. Nano<br>Letters, 2021, 21, 3098-3105.                                                              | 9.1  | 95        |
| 13 | Flexible Solid-State Supercapacitors with Outstanding Capacitive Performance Enabled by N/B-Codoped Porous Carbon Nanosheets. ACS Applied Energy Materials, 2021, 4, 7552-7561.                                                                                                          | 5.1  | 12        |
| 14 | A highly sensitive chemosensor for rapid recognition of Cu2+ and HSO3â^' in 100% aqueous solution.<br>Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2021, 263, 120215.                                                                                          | 3.9  | 4         |
| 15 | Polymer-Ligated Nanocrystals Enabled by Nonlinear Block Copolymer Nanoreactors: Synthesis,<br>Properties, and Applications. ACS Nano, 2020, 14, 12491-12521.                                                                                                                             | 14.6 | 59        |
| 16 | Stimuli-responsive Janus mesoporous nanosheets towards robust interfacial emulsification and catalysis. Materials Horizons, 2020, 7, 3242-3249.                                                                                                                                          | 12.2 | 29        |
| 17 | Doping and ion substitution in colloidal metal halide perovskite nanocrystals. Chemical Society Reviews, 2020, 49, 4953-5007.                                                                                                                                                            | 38.1 | 269       |
| 18 | O/N Coâ€Doped, Layered Porous Carbon with Mesoporosity up to 99 % for Ultrahighâ€Rate Capability<br>Supercapacitors. Batteries and Supercaps, 2020, 3, 1091-1098.                                                                                                                        | 4.7  | 14        |

| #  | Article                                                                                                                                                                                                                                        | lF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Dual-Shelled Multidoped Hollow Carbon Nanocages with Hierarchical Porosity for High-Performance<br>Oxygen Reduction Reaction in Both Alkaline and Acidic Media. Nano Letters, 2020, 20, 5639-5645.                                             | 9.1  | 98        |
| 20 | Phenylamino-, Phenoxy-, and Benzenesulfenyl-Linked Covalent Triazine Frameworks for CO <sub>2</sub> Capture. ACS Applied Nano Materials, 2020, 3, 2889-2898.                                                                                   | 5.0  | 33        |
| 21 | Graphene-like porous carbon nanosheets for ultra-high rate performance supercapacitors and efficient oxygen reduction electrocatalysts. Journal of Power Sources, 2020, 456, 227999.                                                           | 7.8  | 37        |
| 22 | N-Doped Porous Carbons Derived from Cross-Linked Polybenzoxazine as Efficient Catalysts for ORR in<br>Alkaline Electrolyte. Journal of the Electrochemical Society, 2020, 167, 116516.                                                         | 2.9  | 2         |
| 23 | A dual-channel and fast-response fluorescent probe for selective detection of HClO and its applications in live cells. Sensors and Actuators B: Chemical, 2019, 299, 126937.                                                                   | 7.8  | 30        |
| 24 | An injectable self-healing hydrogel-cellulose nanocrystals conjugate with excellent mechanical strength and good biocompatibility. Carbohydrate Polymers, 2019, 223, 115084.                                                                   | 10.2 | 30        |
| 25 | Polar Organic Solvent-Tolerant Perovskite Nanocrystals Permanently Ligated with Polymer Hairs via<br>Star-like Molecular Bottlebrush Trilobe Nanoreactors. Nano Letters, 2019, 19, 9019-9028.                                                  | 9.1  | 70        |
| 26 | Triple-Responsive Pickering Emulsion Stabilized by Core Cross-linked Supramolecular Polymer<br>Particles. Langmuir, 2019, 35, 11872-11880.                                                                                                     | 3.5  | 14        |
| 27 | Preparation of SiO2@TiO2 composite nanosheets and their application in photocatalytic degradation of malachite green at emulsion interface. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 582, 123858.               | 4.7  | 27        |
| 28 | N/O Codoped Porous Carbons with Layered Structure for High-Rate Performance Supercapacitors.<br>ACS Sustainable Chemistry and Engineering, 2019, 7, 11219-11227.                                                                               | 6.7  | 31        |
| 29 | Nitrogen/Cobalt Coâ€doped Mesoporous Carbon Microspheres Derived from Amorphous Metalâ€Organic<br>Frameworks as a Catalyst for the Oxygen Reduction Reaction in Both Alkaline and Acidic Electrolytes.<br>ChemElectroChem, 2019, 6, 2546-2552. | 3.4  | 15        |
| 30 | A dual-function colorimetric probe based on Carbazole-Cyanine dyad for highly sensitive recognition of cyanide and hypochlorous acid in aqueous media. Talanta, 2019, 202, 329-335.                                                            | 5.5  | 38        |
| 31 | Nitrogenâ€doped Porous Carbon with Brainâ€like Structure Derived from Quaternary Bipyridiniumâ€ŧype<br>Framework for Efficient Oxygen Reduction Electrocatalysis and Supercapacitors. ChemElectroChem,<br>2019, 6, 848-855.                    | 3.4  | 8         |
| 32 | Porous Organic-Polymer-Derived Nitrogen-Doped Porous Carbon Nanoparticles for Efficient Oxygen<br>Reduction Electrocatalysis and Supercapacitors. ACS Sustainable Chemistry and Engineering, 2019, 7,<br>2236-2244.                            | 6.7  | 31        |
| 33 | MnO <sub>2</sub> Nanostructures Deposited on Graphene-Like Porous Carbon Nanosheets for<br>High-Rate Performance and High-Energy Density Asymmetric Supercapacitors. ACS Sustainable<br>Chemistry and Engineering, 2019, 7, 3101-3110.         | 6.7  | 66        |
| 34 | The fabrication of amphiphilic double dynamers for responsive Pickering emulsifiers. Polymer<br>Chemistry, 2018, 9, 627-636.                                                                                                                   | 3.9  | 19        |
| 35 | N-doped and N/Fe-codoped porous carbon spheres derived from tetrazine-based polypyrrole as<br>efficient electrocatalysts for the oxygen reduction reaction. Applied Catalysis A: General, 2018, 559,<br>102-111.                               | 4.3  | 18        |
| 36 | Redox-responsive Pickering emulsion derived from the fabricated sheddable polymeric micelles.<br>Polymer, 2018, 158, 1-9.                                                                                                                      | 3.8  | 19        |

| #  | Article                                                                                                                                                                                                                                                      | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | A novel "turn-on―fluorescent probe based on triphenylimidazole-hemicyanine dyad for colorimetric<br>detection of CNâ^' in 100% aqueous solution. Journal of Hazardous Materials, 2018, 344, 875-882.                                                         | 12.4 | 32        |
| 38 | A Porous Organic Poly(triphenylimidazole) Decorated with Palladium Nanoparticles for the<br>Cyanation of Aryl Iodides. Chemistry - an Asian Journal, 2018, 13, 2708-2713.                                                                                    | 3.3  | 10        |
| 39 | Graphene-like porous carbon nanosheets derived from salvia splendens for high-rate performance<br>supercapacitors. Journal of Power Sources, 2018, 397, 1-10.                                                                                                | 7.8  | 194       |
| 40 | Responsive Emulsions Stabilized by Amphiphilic Supramolecular Graft Copolymers Formed in Situ at<br>the Oil–Water Interface. Langmuir, 2018, 34, 5750-5758.                                                                                                  | 3.5  | 14        |
| 41 | Bamboo-like, oxygen-doped carbon tubes with hierarchical pore structure derived from polymer tubes<br>for supercapacitor applications. Journal of Materials Science, 2017, 52, 7781-7793.                                                                    | 3.7  | 35        |
| 42 | A new "on-off-on―fluorescent probe containing triarylimidazole chromophore to sequentially detect<br>copper and sulfide ions. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2017,<br>185, 256-262.                                  | 3.9  | 31        |
| 43 | Thermoâ€Responsive Brush Copolymers by "Grafting Through―Strategy Implemented on the Surface of<br>the Macromonomer Micelles and Their High Emulsifying Performance. Macromolecular Chemistry and<br>Physics, 2017, 218, 1700131.                            | 2.2  | 5         |
| 44 | Oxygen and nitrogen co-doped porous carbon nanosheets derived from Perilla frutescens for high volumetric performance supercapacitors. Journal of Power Sources, 2017, 341, 309-317.                                                                         | 7.8  | 408       |
| 45 | Heterogeneously Modified Cellulose Nanocrystals-Stabilized Pickering Emulsion: Preparation and<br>Their Template Application for the Creation of PS Microspheres with Amino-Rich Surfaces. ACS<br>Sustainable Chemistry and Engineering, 2017, 5, 7514-7523. | 6.7  | 70        |
| 46 | Polymeric Janus Nanosheets by Template RAFT Polymerization. Macromolecules, 2017, 50, 9042-9047.                                                                                                                                                             | 4.8  | 16        |
| 47 | Enhanced Photocatalysis of g-C3N4 Thermally Modified with Calcium Chloride. Catalysis Letters, 2017, 147, 1922-1930.                                                                                                                                         | 2.6  | 8         |
| 48 | Oxygen and nitrogen co-doped porous carbons with finely-layered schistose structure for high-rate-performance supercapacitors. Carbon, 2017, 122, 538-546.                                                                                                   | 10.3 | 91        |
| 49 | Preparation of Janus-type catalysts and their catalytic performance at emulsion interface. Journal of<br>Colloid and Interface Science, 2017, 490, 357-364.                                                                                                  | 9.4  | 61        |
| 50 | Synthesis and Photophysical Properties of Porphyrin–Arylimidazole Heterodyads. Journal of<br>Heterocyclic Chemistry, 2017, 54, 1522-1528.                                                                                                                    | 2.6  | 6         |
| 51 | Cross-linking and de-cross-linking of triarylimidazole-based polymer. Polymer, 2016, 99, 529-535.                                                                                                                                                            | 3.8  | 6         |
| 52 | High-performance electrocatalyst for oxygen reduction reaction derived from copolymer networks and iron( <scp>ii</scp> ) acetate. RSC Advances, 2016, 6, 97259-97265.                                                                                        | 3.6  | 9         |
| 53 | Porous N-Doped Carbon Prepared from Triazine-Based Polypyrrole Network: A Highly Efficient<br>Metal-Free Catalyst for Oxygen Reduction Reaction in Alkaline Electrolytes. ACS Applied Materials<br>& Interfaces, 2016, 8, 28615-28623.                       | 8.0  | 47        |
| 54 | Dual responsive Pickering emulsions stabilized by constructed core crosslinked polymer nanoparticles via reversible covalent bonds. Soft Matter, 2016, 12, 9683-9691.                                                                                        | 2.7  | 21        |

| #  | Article                                                                                                                                                                                                                                                          | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | A Facile and Low-Cost Route to Heteroatom Doped Porous Carbon Derived from Broussonetia<br>Papyrifera Bark with Excellent Supercapacitance and CO2 Capture Performance. Scientific Reports,<br>2016, 6, 22646.                                                   | 3.3 | 52        |
| 56 | Well-defined polyurethane-graft-poly(N,N-dimethylacrylamide) copolymer with a controlled graft<br>density and grafted chain length: synthesis and its application as a Pickering emulsion. RSC Advances,<br>2016, 6, 58970-58978.                                | 3.6 | 7         |
| 57 | Efficient synthesis of narrowly dispersed amphiphilic double-brush copolymers through the polymerization reaction of macromonomer micelle emulsifiers at the oil–water interface. Polymer Chemistry, 2016, 7, 4476-4485.                                         | 3.9 | 28        |
| 58 | Preparation of monodispersed core-shell microspheres with surface antibacterial property<br>employingN-(4-vinylbenzyl)-N,N-diethylamine hydrochloride as surfmer. International Journal of<br>Polymeric Materials and Polymeric Biomaterials, 2016, 65, 143-150. | 3.4 | 5         |
| 59 | Dual responsive macroemulsion stabilized by Y-shaped amphiphilic AB <sub>2</sub> miktoarm star copolymers. RSC Advances, 2015, 5, 96377-96386.                                                                                                                   | 3.6 | 19        |
| 60 | Nitrogen-doped carbon nanotubes as catalysts for the oxygen reduction reaction in alkaline medium.<br>Journal of Power Sources, 2015, 279, 28-35.                                                                                                                | 7.8 | 39        |
| 61 | Copper/nickel nanoparticle decorated carbon nanotubes for nonenzymatic glucose biosensor.<br>Journal of Solid State Electrochemistry, 2015, 19, 1511-1521.                                                                                                       | 2.5 | 50        |
| 62 | pH-responsible Pickering emulsion and its catalytic application for reaction at water–oil interface.<br>Colloid and Polymer Science, 2015, 293, 1505-1513.                                                                                                       | 2.1 | 29        |
| 63 | Voltammetric Sensor for Sudan I Based on Glassy Carbon Electrode Modified by SWCNT/β-Cyclodextrin<br>Conjugate. Nano, 2015, 10, 1550026.                                                                                                                         | 1.0 | 6         |
| 64 | Self-Assembly of Colloidal Polymer Particles into Highly Ordered, Spoke Patterns by Evaporation.<br>International Journal of Polymeric Materials and Polymeric Biomaterials, 2014, 63, 130-136.                                                                  | 3.4 | 2         |
| 65 | Self-assembly of sodium 4-(4,5-diphenyl-1H-imidazol-2-yl)benzoate into ultralong microbelts.<br>CrystEngComm, 2014, 16, 7507-7514.                                                                                                                               | 2.6 | 5         |
| 66 | Synthesis of well-defined 8-shaped polymers by the combination of RAFT polymerization and click reaction. Designed Monomers and Polymers, 2014, 17, 132-139.                                                                                                     | 1.6 | 6         |
| 67 | A highly sensitive nonenzymatic glucose sensor based on nickel oxide–carbon nanotube hybrid<br>nanobelts. Journal of Solid State Electrochemistry, 2014, 18, 899-908.                                                                                            | 2.5 | 27        |
| 68 | Colorimetric fluorescent cyanide chemodosimeter based on triphenylimidazole derivative.<br>Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2014, 124, 97-101.                                                                             | 3.9 | 37        |
| 69 | Phenylboronate-diol crosslinked polymer/SWCNT hybrid gels with reversible sol-gel transition.<br>Polymers for Advanced Technologies, 2014, 25, 233-239.                                                                                                          | 3.2 | 18        |
| 70 | Synthesis and RAFT polymerization of a novel vinyl monomer containing both triarylimidazole and triazole moieties. Designed Monomers and Polymers, 2014, 17, 601-609.                                                                                            | 1.6 | 4         |
| 71 | Redox- and pH-responsive polymer gels with reversible sol–gel transitions and self-healing properties.<br>RSC Advances, 2014, 4, 47361-47367                                                                                                                     | 3.6 | 37        |
| 72 | Massage ball-like, hollow porous Au/SiO <sub>2</sub> microspheres templated by a Pickering emulsion derived from polymer–metal hybrid emulsifier micelles. RSC Advances, 2014, 4, 49866-49872.                                                                   | 3.6 | 10        |

| #  | Article                                                                                                                                                                                  | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Electrochemical sensing platform for L-CySH based on nearly uniform Au nanoparticles decorated graphene nanosheets. Materials Science and Engineering C, 2014, 38, 292-298.              | 7.3 | 27        |
| 74 | Preparation, characterization, and electrochemical performances of graphene/Ni(OH)2 hybrid nanomaterials. Journal of Nanoparticle Research, 2013, 15, 1.                                 | 1.9 | 6         |
| 75 | Well-defined poly(N-isopropylacrylamide) with a bifunctional end-group: synthesis, characterization, and thermoresponsive properties. Designed Monomers and Polymers, 2013, 16, 465-474. | 1.6 | 11        |
| 76 | Polymer-assisted fabrication of crystalline rectangular microtubes of triphenylimidazole derivatives.<br>CrystEngComm, 2012, 14, 5517.                                                   | 2.6 | 2         |
| 77 | Covalent Functionalization of Single-Walled Carbon Nanotubes with Thermoresponsive Core<br>Cross-Linked Polymeric Micelles. Macromolecules, 2012, 45, 4698-4706.                         | 4.8 | 33        |
| 78 | Synthesis, characterization, and electrochemical performances of core-shell Ni(SO4)0.3(OH)1.4/C and NiO/C nanobelts. Journal of Materials Chemistry, 2012, 22, 7224.                     | 6.7 | 39        |
| 79 | RAFT synthesis of acrylic polymers containing diol or dioxane groups. Journal of Polymer Research, 2012, 19, 1.                                                                          | 2.4 | 5         |
| 80 | Synthesis and photophysical properties of porphyrin-containing polymers. Journal of Polymer Research, 2012, 19, 1.                                                                       | 2.4 | 9         |
| 81 | Metal―and solventâ€free, clickable synthesis and postpolymerization functionalization of poly(triazole)s. Journal of Polymer Science Part A, 2012, 50, 3767-3774.                        | 2.3 | 10        |
| 82 | Unique UV absorbance for triphenylimidazoleâ€based polymer. Journal of Applied Polymer Science, 2012,<br>126, 1146-1151.                                                                 | 2.6 | 7         |
| 83 | A mean-field model for amorphization in crystalline solid solutions. Journal of Applied Physics, 2011, 109, 103507.                                                                      | 2.5 | 2         |
| 84 | A theory for polymorphic melting in binary solid solutions. Journal of Materials Research, 2011, 26, 997-1005.                                                                           | 2.6 | 6         |
| 85 | Chemical degradation of thermoplastic polyurethane for recycling polyether polyol. Fibers and Polymers, 2011, 12, 857-863.                                                               | 2.1 | 49        |
| 86 | Covalent functionalization of multiwalled carbon nanotubes with polybutadiene. Journal of Applied<br>Polymer Science, 2010, 116, 1272-1277.                                              | 2.6 | 6         |
| 87 | Synthesis and photovoltaic properties of polythiophene stars with porphyrin core. Journal of Materials Chemistry, 2010, 20, 1140-1146.                                                   | 6.7 | 56        |
| 88 | Controlled synthesis of nickel phosphate hexahedronal and flower-like architectures via a simple template-free hydrothermal route. CrystEngComm, 2010, 12, 3607.                         | 2.6 | 26        |
| 89 | Synthesis of syndiotactic polystyrene-graft-poly(ethylene glycol) copolymer by photochemical reaction. Journal of Polymer Research, 2009, 16, 709-717.                                   | 2.4 | 9         |
| 90 | Synthesis of poly(ethylene glycol) functionalized MWNTs and their inclusion complexes with α-cyclodextrin. Journal of Materials Science, 2008, 43, 5609-5617.                            | 3.7 | 10        |

| #  | Article                                                                                                                                                               | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91 | "Click―coupling between alkyneâ€decorated multiwalled carbon nanotubes and reactive PDMAâ€PNIPAM<br>micelles. Journal of Polymer Science Part A, 2008, 46, 7187-7199. | 2.3 | 60        |
| 92 | Atom transfer radical polymerization of styrene initiated by bromoacetylated syndiotactic polystyrene macroinitiator. Polymer International, 2007, 56, 976-983.       | 3.1 | 5         |