Sharon A Tooze

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3440331/publications.pdf

Version: 2024-02-01

17440 28,002 145 63 citations h-index papers

135 g-index 152 152 152 34623 docs citations times ranked citing authors all docs

11607

#	Article	IF	CITATIONS
1	Autophagy tunes chondrocyte differentiation and joint developmental precision in zebrafish. , 2022, 1, 214-218.		O
2	Unraveling membrane properties at the organelle-level with LipidDyn. Computational and Structural Biotechnology Journal, 2022, 20, 3604-3614.	4.1	8
3	Homozygous missense $\langle i \rangle$ WIPI2 $\langle i \rangle$ variants cause a congenital disorder of autophagy with neurodevelopmental impairments of variable clinical severity and disease course. Brain Communications, 2021, 3, fcab183.	3.3	10
4	The phosphatidylinositol 3-phosphate-binding protein SNX4 controls ATG9A recycling and autophagy. Journal of Cell Science, 2021, 134, .	2.0	27
5	SAMM50 acts with p62 in piecemeal basal- and OXPHOS-induced mitophagy of SAM and MICOS components. Journal of Cell Biology, 2021, 220, .	5.2	39
6	Phosphorylation of the LIR Domain of SCOC Modulates ATG8 Binding Affinity and Specificity. Journal of Molecular Biology, 2021, 433, 166987.	4.2	14
7	Phosphoproteomic identification of ULK substrates reveals VPS15â€dependent ULK/VPS34 interplay in the regulation of autophagy. EMBO Journal, 2021, 40, e105985.	7.8	35
8	ATG4: More Than a Protease?. Trends in Cell Biology, 2021, 31, 515-516.	7.9	1
9	SAMM50 is a receptor for basal piecemeal mitophagy and acts with SQSTM1/p62 in OXPHOS-induced mitophagy. Autophagy, 2021, 17, 2656-2658.	9.1	3
10	ATG9A protects the plasma membrane from programmed and incidental permeabilization. Nature Cell Biology, 2021, 23, 846-858.	10.3	43
11	Autophagy in major human diseases. EMBO Journal, 2021, 40, e108863.	7.8	615
12	Membrane supply and remodeling during autophagosome biogenesis. Current Opinion in Cell Biology, 2021, 71, 112-119.	5 . 4	56
13	Autophagy modulates endothelial junctions to restrain neutrophil diapedesis during inflammation. Immunity, 2021, 54, 1989-2004.e9.	14.3	50
14	The ingenious ULKs: expanding the repertoire of the ULK complex with phosphoproteomics. Autophagy, 2021, 17, 4491-4493.	9.1	12
15	Autophagy coordinates chondrocyte development and early joint formation in zebrafish. FASEB Journal, 2021, 35, e22002.	0.5	9
16	Axonal autophagosome maturation defect through failure of ATG9A sorting underpins pathology in AP-4 deficiency syndrome. Autophagy, 2020, 16, 391-407.	9.1	59
17	The Role of Autophagy in Pancreatic Cancer—Recent Advances. Biology, 2020, 9, 7.	2.8	22
18	Path to autophagy therapeutics with Beth Levine. Nature Reviews Molecular Cell Biology, 2020, 21, 564-565.	37.0	4

#	Article	IF	CITATIONS
19	Emerging roles of ATG proteins and membrane lipids in autophagosome formation. Cell Discovery, 2020, 6, 32.	6.7	149
20	The Golgi as an Assembly Line to the Autophagosome. Trends in Biochemical Sciences, 2020, 45, 484-496.	7.5	61
21	ATG9A supplies PtdIns4P to the autophagosome initiation site. Autophagy, 2019, 15, 1660-1661.	9.1	8
22	Autophagy, Inflammation, and Metabolism (AIM) Center in its second year. Autophagy, 2019, 15, 1829-1833.	9.1	0
23	Molecular determinants regulating selective binding of autophagy adapters and receptors to ATG8 proteins. Nature Communications, 2019, 10, 2055.	12.8	118
24	Suppression of autophagy during mitosis via CUL4-RING ubiquitin ligases-mediated WIPI2 polyubiquitination and proteasomal degradation. Autophagy, 2019, 15, 1917-1934.	9.1	45
25	A mutation in the major autophagy gene, WIPI2, associated with global developmental abnormalities. Brain, 2019, 142, 1242-1254.	7.6	28
26	ATG9A shapes the forming autophagosome through Arfaptin 2 and phosphatidylinositol 4-kinase $III\hat{I}^2$. Journal of Cell Biology, 2019, 218, 1634-1652.	5.2	141
27	MDH1 and MPP7 Regulate Autophagy in Pancreatic Ductal Adenocarcinoma. Cancer Research, 2019, 79, 1884-1898.	0.9	20
28	Members of the autophagy class III phosphatidylinositol 3-kinase complex I interact with GABARAP and GABARAPL1 via LIR motifs. Autophagy, 2019, 15, 1333-1355.	9.1	86
29	Autophagy Pathway Mapping to Elucidate the Function of Novel Autophagy Regulators Identified by High-Throughput Screening. Methods in Molecular Biology, 2019, 1880, 375-387.	0.9	1
30	Identification and Validation of Novel Autophagy Regulators Using an Endogenous Readout siGENOME Screen. Methods in Molecular Biology, 2019, 1880, 359-374.	0.9	1
31	Expression of WIPI2B counteracts age-related decline in autophagosome biogenesis in neurons. ELife, 2019, 8, .	6.0	54
32	SNAREing an ARP requires a LIR. Journal of Cell Biology, 2018, 217, 803-805.	5.2	0
33	A molecular perspective of mammalian autophagosome biogenesis. Journal of Biological Chemistry, 2018, 293, 5386-5395.	3.4	220
34	<scp>SNX</scp> 18 regulates <scp>ATG</scp> 9A trafficking from recycling endosomes by recruiting Dynaminâ€2. EMBO Reports, 2018, 19, .	4.5	73
35	mTOR independent alteration in ULK1 Ser758 phosphorylation following chronic LRRK2 kinase inhibition. Bioscience Reports, 2018, 38, .	2.4	16
36	Emerging roles of transcriptional programs in autophagy regulation. Transcription, 2018, 9, 131-136.	3.1	20

3

#	Article	IF	CITATIONS
37	Control of GABARAPâ€mediated autophagy by the Golgi complex, centrosome and centriolar satellites. Biology of the Cell, 2018, 110, 1-5.	2.0	14
38	Autophagy pathway: Cellular and molecular mechanisms. Autophagy, 2018, 14, 207-215.	9.1	984
39	Autophagy, Inflammation, and Metabolism (AIM) Center of Biomedical Research Excellence: supporting the next generation of autophagy researchers and fostering international collaborations. Autophagy, 2018, 14, 925-929.	9.1	3
40	Fundamental mechanisms deliver the Nobel Prize to Ohsumi. Traffic, 2017, 18, 93-95.	2.7	3
41	Molecular Mechanisms of Autophagy-Part B. Journal of Molecular Biology, 2017, 429, 455-456.	4.2	0
42	ATG4B contains a C-terminal LIR motif important for binding and efficient cleavage of mammalian orthologs of yeast Atg8. Autophagy, 2017, 13, 834-853.	9.1	84
43	A switch from canonical to noncanonical autophagy shapes B cell responses. Science, 2017, 355, 641-647.	12.6	88
44	Bromodomain Protein BRD4 Is a Transcriptional Repressor of Autophagy and Lysosomal Function. Molecular Cell, 2017, 66, 517-532.e9.	9.7	196
45	Molecular definitions of autophagy and related processes. EMBO Journal, 2017, 36, 1811-1836.	7.8	1,230
46	Soft X-Ray Tomography: Filling the Gap Between Light and Electrons for Imaging Hydrated Biological Cells. Microscopy and Microanalysis, 2017, 23, 986-987.	0.4	0
47	Centriolar Satellites Control GABARAP Ubiquitination and GABARAP-Mediated Autophagy. Current Biology, 2017, 27, 2123-2136.e7.	3.9	90
48	Vps34 PI 3-kinase inactivation enhances insulin sensitivity through reprogramming of mitochondrial metabolism. Nature Communications, 2017, 8, 1804.	12.8	59
49	Centrosome to autophagosome signaling: Specific GABARAP regulation by centriolar satellites. Autophagy, 2017, 13, 2113-2114.	9.1	6
50	Molecular Pathways Controlling Autophagy in Pancreatic Cancer. Frontiers in Oncology, 2017, 7, 28.	2.8	46
51	Membrane dynamics and organelle biogenesis—lipid pipelines and vesicular carriers. BMC Biology, 2017, 15, 102.	3.8	63
52	Autophagy Captures the Nobel Prize. Cell, 2016, 167, 1433-1435.	28.9	55
53	<scp>TBC</scp> 1D14 regulates autophagy via the <scp>TRAPP</scp> complex and <scp>ATG</scp> 9 traffic. EMBO Journal, 2016, 35, 281-301.	7.8	166
54	TBC1D14 and TRAPP – Regulating autophagy through ATG9. Cell Cycle, 2016, 15, 1797-1798.	2.6	0

#	Article	IF	Citations
55	Digesting the Expanding Mechanisms of Autophagy. Trends in Cell Biology, 2016, 26, 624-635.	7.9	303
56	Rabs and GAPs in starvation-induced autophagy. Small GTPases, 2016, 7, 265-269.	1.6	22
57	An siRNA screen for ATG protein depletion reveals the extent of the unconventional functions of the autophagy proteome in virus replication. Journal of Cell Biology, 2016, 214, 619-635.	5.2	52
58	mTOR independent regulation of macroautophagy by Leucine Rich Repeat Kinase 2 via Beclin-1. Scientific Reports, 2016, 6, 35106.	3.3	69
59	Clec16a is Critical for Autolysosome Function and Purkinje Cell Survival. Scientific Reports, 2016, 6, 23326.	3.3	31
60	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	9.1	4,701
61	Activation of ULK Kinase and Autophagy by GABARAP Trafficking from the Centrosome Is Regulated by WAC and GM130. Molecular Cell, 2015, 60, 899-913.	9.7	112
62	High-throughput screening approaches to identify regulators of mammalian autophagy. Methods, 2015, 75, 96-104.	3.8	14
63	Assessing Mammalian Autophagy. Methods in Molecular Biology, 2015, 1270, 155-165.	0.9	26
64	WIPI2B links PtdIns3P to LC3 lipidation through binding ATG16L1. Autophagy, 2015, 11, 190-1.	9.1	35
65	Endocytosis and Autophagy: Exploitation or Cooperation?. Cold Spring Harbor Perspectives in Biology, 2014, 6, a018358-a018358.	5.5	174
66	WIPI2b and Atg16L1: setting the stage for autophagosome formation. Biochemical Society Transactions, 2014, 42, 1327-1334.	3.4	42
67	WIPI2 Links LC3 Conjugation with PI3P, Autophagosome Formation, and Pathogen Clearance by Recruiting Atg12–5-16L1. Molecular Cell, 2014, 55, 238-252.	9.7	650
68	Imaging endosomes and autophagosomes in whole mammalian cells using correlative cryo-fluorescence and cryo-soft X-ray microscopy (cryo-CLXM). Ultramicroscopy, 2014, 143, 77-87.	1.9	112
69	p38 signaling inhibits mTORC1-independent autophagy in senescent human CD8+ T cells. Journal of Clinical Investigation, 2014, 124, 4004-4016.	8.2	285
70	HRES-1/Rab4 Promotes the Formation of LC3+ Autophagosomes and the Accumulation of Mitochondria during Autophagy. PLoS ONE, 2014, 9, e84392.	2.5	43
71	Inhibition of LRRK2 kinase activity stimulates macroautophagy. Biochimica Et Biophysica Acta - Molecular Cell Research, 2013, 1833, 2900-2910.	4.1	124
72	Pathogenic Parkinson's disease mutations across the functional domains of LRRK2 alter the autophagic/lysosomal response to starvation. Biochemical and Biophysical Research Communications, 2013, 441, 862-866.	2.1	79

#	Article	IF	CITATIONS
73	The autophagosome: origins unknown, biogenesis complex. Nature Reviews Molecular Cell Biology, 2013, 14, 759-774.	37.0	1,105
74	Current views on the source of the autophagosome membrane. Essays in Biochemistry, 2013, 55, 29-38.	4.7	35
75	Regulation of autophagosome formation by Rho kinase. Cellular Signalling, 2013, 25, 1-11.	3.6	49
76	Regulation of nutrient-sensitive autophagy by uncoordinated 51-like kinases 1 and 2. Autophagy, 2013, 9, 361-373.	9.1	127
77	Endocytosis and autophagy: Shared machinery for degradation. BioEssays, 2013, 35, 34-45.	2.5	166
78	Identification of a candidate therapeutic autophagy-inducing peptide. Nature, 2013, 494, 201-206.	27.8	669
79	Autophagosome formationâ€"The role of ULK1 and Beclin1â€"PI3KC3 complexes in setting the stage. Seminars in Cancer Biology, 2013, 23, 301-309.	9.6	228
80	<i>Listeria</i> phospholipases subvert host autophagic defenses by stalling pre-autophagosomal structures. EMBO Journal, 2013, 32, 3066-3078.	7.8	123
81	ULK1 Regulates Melanin Levels in MNT-1 Cells Independently of mTORC1. PLoS ONE, 2013, 8, e75313.	2.5	28
82	Rab3D Is Critical for Secretory Granule Maturation in PC12 Cells. PLoS ONE, 2013, 8, e57321.	2.5	18
83	Autophagy regulation through Atg9 traffic. Journal of Cell Biology, 2012, 198, 151-153.	5.2	50
84	Recycling endosomes contribute to autophagosome formation. Autophagy, 2012, 8, 1682-1683.	9.1	55
85	Binding of the Atg1/ULK1 kinase to the ubiquitin-like protein Atg8 regulates autophagy. EMBO Journal, 2012, 31, 3691-3703.	7.8	237
86	Genome-wide siRNA screen reveals amino acid starvation-induced autophagy requires SCOC and WAC. EMBO Journal, 2012, 31, 1931-1946.	7.8	105
87	Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2012, 8, 445-544.	9.1	3,122
88	TBC1D14 regulates autophagosome formation via Rab11- and ULK1-positive recycling endosomes. Journal of Cell Biology, 2012, 197, 659-675.	5.2	348
89	Autophagy Proteins Regulate the Secretory Component of Osteoclastic Bone Resorption. Developmental Cell, 2011, 21, 966-974.	7.0	401
90	The puzzling origin of the autophagosomal membrane. F1000 Biology Reports, 2011, 3, 25.	4.0	98

#	Article	IF	CITATIONS
91	Compartmentalized regulation of autophagy regulators: fine-tuning AMBRA1 by Bcl-2. EMBO Journal, 2011, 30, 1185-1186.	7.8	12
92	A comprehensive glossary of autophagy-related molecules and processes (2 nd edition). Autophagy, 2011, 7, 1273-1294.	9.1	255
93	Membrane trafficking events that partake in autophagy. Current Opinion in Cell Biology, 2010, 22, 150-156.	5.4	62
94	New insights into the function of Atg9. FEBS Letters, 2010, 584, 1319-1326.	2.8	107
95	Trafficking and signaling in mammalian autophagy. IUBMB Life, 2010, 62, 503-508.	3.4	35
96	A Novel Syntaxin 6-Interacting Protein, SHIP164, Regulates Syntaxin 6-Dependent Sorting from Early Endosomes. Traffic, 2010, 11, 688-705.	2.7	27
97	Coordinated regulation of autophagy by p38î± MAPK through mAtg9 and p38IP. EMBO Journal, 2010, 29, 27-40.	7.8	222
98	The origin of the autophagosomal membrane. Nature Cell Biology, 2010, 12, 831-835.	10.3	501
99	A comprehensive glossary of autophagy-related molecules and processes. Autophagy, 2010, 6, 438-448.	9.1	144
100	Autophagosome formation: not necessarily an inside job. Cell Research, 2010, 20, 1181-1184.	12.0	15
101	Mammalian Atg18 (WIPI2) localizes to omegasome-anchored phagophores and positively regulates LC3 lipidation. Autophagy, 2010, 6, 506-522.	9.1	566
102	The role of membrane proteins in mammalian autophagy. Seminars in Cell and Developmental Biology, 2010, 21, 677-682.	5.0	19
103	Chapter 17 Correlative Light and Electron Microscopy. Methods in Enzymology, 2009, 452, 261-275.	1.0	41
104	Kinase-Inactivated ULK Proteins Inhibit Autophagy via Their Conserved C-Terminal Domains Using an Atg13-Independent Mechanism. Molecular and Cellular Biology, 2009, 29, 157-171.	2.3	381
105	Coordination of membrane events during autophagy by multiple class III PI3-kinase complexes. Journal of Cell Biology, 2009, 186, 773-782.	5.2	428
106	In vitro reconstitution of fusion between immature autophagosomes and endosomes. Autophagy, 2009, 5, 676-689.	9.1	37
107	Evolution of Atg1 function and regulation. Autophagy, 2009, 5, 758-765.	9.1	118
108	Early endosomes and endosomal coatomer are required for autophagy. Journal of Cell Biology, 2009, 185, 305-321.	5.2	254

#	Article	IF	CITATIONS
109	PIKfyve Regulation of Endosomeâ€Linked Pathways. Traffic, 2009, 10, 883-893.	2.7	186
110	The EmERgence of Autophagosomes. Developmental Cell, 2009, 17, 747-748.	7.0	16
111	Coordination of membrane events during autophagy by multiple class III PI3-kinase complexes. Journal of Experimental Medicine, 2009, 206, i24-i24.	8.5	O
112	Discovery and progress in our understanding of the regulated secretory pathway in neuroendocrine cells. Histochemistry and Cell Biology, 2008, 129, 243-252.	1.7	56
113	Liaisons dangereuses: autophagy, neuronal survival and neurodegeneration. Current Opinion in Neurobiology, 2008, 18, 504-515.	4.2	82
114	Guidelines for the use and interpretation of assays for monitoring autophagy in higher eukaryotes. Autophagy, 2008, 4, 151-175.	9.1	2,064
115	Protein Trafficking into Autophagosomes. Methods in Molecular Biology, 2008, 445, 147-157.	0.9	2
116	siRNA Screening of the Kinome Identifies ULK1 as a Multidomain Modulator of Autophagy. Journal of Biological Chemistry, 2007, 282, 25464-25474.	3.4	397
117	Atg9 Trafficking in Mammalian Cells. Autophagy, 2007, 3, 54-56.	9.1	82
118	Microtubules Facilitate Autophagosome Formation and Fusion of Autophagosomes with Endosomes. Traffic, 2006, 7, 129-145.	2.7	380
119	GGA function is required for maturation of neuroendocrine secretory granules. EMBO Journal, 2006, 25, 1590-1602.	7.8	42
120	Synaptotagmin IV is necessary for the maturation of secretory granules in PC12 cells. Journal of Cell Biology, 2006, 173, 241-251.	5.2	67
121	Starvation and ULK1-dependent cycling of mammalian Atg9 between the TGN and endosomes. Journal of Cell Science, 2006, 119, 3888-3900.	2.0	709
122	APâ€1 recruitment to VAMP4 is modulated by phosphorylationâ€dependent binding of PACSâ€1. EMBO Reports, 2003, 4, 1182-1189.	4.5	62
123	Changing directions: clathrin-mediated transport between the Golgi and endosomes. Journal of Cell Science, 2003, 116, 763-771.	2.0	94
124	Regulation and recruitment of phosphatidylinositol 4-kinase on immature secretory granules is independent of ADP-ribosylation factor 1. Biochemical Journal, 2002, 363, 289.	3.7	11
125	Regulation and recruitment of phosphatidylinositol 4-kinase on immature secretory granules is independent of ADP-ribosylation factor 1. Biochemical Journal, 2002, 363, 289-295.	3.7	16
126	Site-Specific Cross-Linking Reveals a Differential Direct Interaction of Class 1, 2, and 3 ADP-Ribosylation Factors with Adaptor Protein Complexes 1 and 3. Biochemistry, 2002, 41, 4669-4677.	2.5	56

#	Article	IF	CITATIONS
127	Proteolytic Processing of Chromogranin B and Secretogranin II by Prohormone Convertases. Journal of Neurochemistry, 2002, 70, 374-383.	3.9	58
128	Syntaxin 6: The Promiscuous Behaviour of a SNARE Protein. Traffic, 2001, 2, 606-611.	2.7	96
129	Homotypic Fusion of Immature Secretory Granules During Maturation Requires Syntaxin 6. Molecular Biology of the Cell, 2001, 12, 1699-1709.	2.1	123
130	Inhibition of the vacuolar H+-ATPase perturbs the transport, sorting, processing and release of regulated secretory proteins. FEBS Journal, 2000, 267, 5646-5654.	0.2	37
131	Direct and GTP-dependent Interaction of ADP-ribosylation Factor 1 with Clathrin Adaptor Protein AP-1 on Immature Secretory Granules. Journal of Biological Chemistry, 2000, 275, 21862-21869.	3.4	66
132	Trafficking/sorting and granule biogenesis in the \hat{l}^2 -cell. Seminars in Cell and Developmental Biology, 2000, 11, 243-251.	5.0	56
133	Biogenesis of secretory granules in the trans-Golgi network of neuroendocrine and endocrine cells. Biochimica Et Biophysica Acta - Molecular Cell Research, 1998, 1404, 231-244.	4.1	210
134	Homotypic Fusion of Immature Secretory Granules during Maturation in a Cell-free Assay. Journal of Cell Biology, 1998, 143, 1831-1844.	5.2	72
135	Analysis of the Sorting of Secretory Proteins to the Regulated Secretory Pathway: A Subcellular Fractionation Approach., 1998, 88, 285-324.		8
136	pH-dependent processing of secretogranin II by the endopeptidase PC2 in isolated immature secretory granules. Biochemical Journal, 1997, 321, 65-74.	3.7	60
137	Formation of secretory vesicles in the biosynthetic pathway. Biochimica Et Biophysica Acta - Molecular Cell Research, 1997, 1358, 6-22.	4.1	29
138	Maturation of Secretory Granules. , 1993, , 159-162.		0
139	GTP-Binding Proteins and Formation of Secretory Vesicles. , 1993, , 147-162.		1
140	[10] Cell-free formation of immature secretory granules and constitutive secretory vesicles from trans-golgi network. Methods in Enzymology, 1992, 219, 81-93.	1.0	36
141	Biogenesis of secretory granules. Seminars in Cell Biology, 1992, 3, 357-366.	3.4	42
142	Biogenesis of secretory granules Implications arising from the immature secretory granule in the regulated pathway of secretion. FEBS Letters, 1991, 285, 220-224.	2.8	81
143	Trimeric G-proteins of thetrans-Golgi network are involved in the formation of constitutive secretory vesicles and immature secretory granules. FEBS Letters, 1991, 294, 239-243.	2.8	100
144	Requirement for GTP hydrolysis in the formation of secretory vesicles. Nature, 1990, 347, 207-208.	27.8	113

#	Article	IF	CITATIONS
145	Cell-free protein sorting to the regulated and constitutive secretory pathways. Cell, 1990, 60, 837-847.	28.9	289