
Eric M Suuberg

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3440107/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Adsorption of trichloroethylene on common indoor materials studied using a combined inverse gas chromatography and frequency response technique. Journal of Chromatography A, 2022, 1669, 462926.	3.7	3
2	The effects of temperature and relative humidity on trichloroethylene sorption capacities of building materials under conditions relevant to vapor intrusion. Journal of Hazardous Materials, 2021, 401, 123807.	12.4	8
3	An examination of the building pressure cycling technique as a tool in vapor intrusion investigations with analytical simulations. Journal of Hazardous Materials, 2020, 389, 121915.	12.4	6
4	Very low concentration adsorption isotherms of trichloroethylene on common building materials. Building and Environment, 2020, 179, 106954.	6.9	9
5	Vapor Pressure of Nine Perfluoroalkyl Substances (PFASs) Determined Using the Knudsen Effusion Method. Journal of Chemical & Engineering Data, 2020, 65, 2332-2342.	1.9	20
6	High-frequency fluctuations of indoor pressure: A potential driving force for vapor intrusion in urban areas. Science of the Total Environment, 2020, 710, 136309.	8.0	5
7	Factors affecting temporal variations in vapor intrusion-induced indoor air contaminant concentrations. Building and Environment, 2019, 161, 106196.	6.9	10
8	Risk Assessment Tool for Chlorinated Vapor Intrusion Based on a Two-Dimensional Analytical Model Involving Vertical Heterogeneity. Environmental Engineering Science, 2019, 36, 969-980.	1.6	2
9	Investigating two-dimensional soil gas transport of trichloroethylene in vapor intrusion scenarios involving surface pavements using a pilot-scale tank. Journal of Hazardous Materials, 2019, 371, 138-145.	12.4	10
10	Examining the Use of USEPA's Generic Attenuation Factor in Determining Groundwater Screening Levels for Vapor Intrusion. Ground Water Monitoring and Remediation, 2018, 38, 79-89.	0.8	13
11	Evaluation and Management Strategies for Per- and Polyfluoroalkyl Substances (PFASs) in Drinking Water Aquifers: Perspectives from Impacted U.S. Northeast Communities. Environmental Health Perspectives, 2018, 126, 065001.	6.0	54
12	A twoâ€dimensional analytical model of vapor intrusion involving vertical heterogeneity. Water Resources Research, 2017, 53, 4499-4513.	4.2	27
13	Investigating the Role of Soil Texture in Vapor Intrusion from Groundwater Sources. Journal of Environmental Quality, 2017, 46, 776-784.	2.0	22
14	Threeâ€Dimensional Simulation of Land Drains as a Preferential Pathway for Vapor Intrusion into Buildings. Journal of Environmental Quality, 2017, 46, 1424-1433.	2.0	15
15	Comparison between PVI2D and Abreu–Johnson's Model for Petroleum Vapor Intrusion Assessment. Vadose Zone Journal, 2016, 15, 1-11.	2.2	3
16	A twoâ€dimensional analytical model of petroleum vapor intrusion. Water Resources Research, 2016, 52, 1528-1539.	4.2	32
17	An Excel [®] â€Based Visualization Tool of Twoâ€Dimensional Soil Gas Concentration Profiles in Petroleum Vapor Intrusion. Ground Water Monitoring and Remediation, 2016, 36, 94-100.	0.8	10
18	Field data and numerical modeling: A multiple lines of evidence approach for assessing vapor intrusion exposure risks. Science of the Total Environment, 2016, 556, 291-301.	8.0	13

ERIC M SUUBERG

#	Article	IF	CITATIONS
19	Estimating the oxygenated zone beneath building foundations for petroleum vapor intrusion assessment. Journal of Hazardous Materials, 2016, 312, 84-96.	12.4	19
20	Impacts of changes of indoor air pressure and air exchange rate in vapor intrusion scenarios. Building and Environment, 2016, 96, 178-187.	6.9	21
21	Thermodynamic study of (anthracene+phenanthrene) solid state mixtures. Journal of Chemical Thermodynamics, 2015, 90, 79-86.	2.0	15
22	Vapor intrusion attenuation factors relative to subslab and source, reconsidered in light of background data. Journal of Hazardous Materials, 2015, 286, 553-561.	12.4	11
23	A Petroleum Vapor Intrusion Model Involving Upward Advective Soil Gas Flow Due to Methane Generation. Environmental Science & Technology, 2015, 49, 11577-11585.	10.0	27
24	Evaluation of site-specific lateral inclusion zone for vapor intrusion based on an analytical approach. Journal of Hazardous Materials, 2015, 298, 221-231.	12.4	18
25	Estimation of contaminant subslab concentration in petroleum vapor intrusion. Journal of Hazardous Materials, 2014, 279, 336-347.	12.4	28
26	Analytical modeling of the subsurface volatile organic vapor concentration in vapor intrusion. Chemosphere, 2014, 95, 140-149.	8.2	22
27	Analytical quantification of the subslab volatile organic vapor concentration from a non-uniform source. Environmental Modelling and Software, 2014, 54, 1-8.	4.5	8
28	Thermochemical and vapor pressure behavior of anthracene and brominated anthracene mixtures. Fluid Phase Equilibria, 2013, 342, 60-70.	2.5	3
29	A numerical investigation of oxygen concentration dependence on biodegradation rate laws in vapor intrusion. Environmental Sciences: Processes and Impacts, 2013, 15, 2345.	3.5	8
30	A Review of Vapor Intrusion Models. Environmental Science & amp; Technology, 2013, 47, 2457-2470.	10.0	76
31	Modeling quantification of the influence of soil moisture on subslab vapor concentration. Environmental Sciences: Processes and Impacts, 2013, 15, 1444.	3.5	20
32	Simulating the effect of slab features on vapor intrusion of crack entry. Building and Environment, 2013, 59, 417-425.	6.9	22
33	Examination of the Influence of Environmental Factors on Contaminant Vapor Concentration Attenuation Factors Using the U.S. EPA's Vapor Intrusion Database. Environmental Science & Technology, 2013, 47, 906-913.	10.0	30
34	Examination of the U.S. EPA's vapor intrusion database based on models. Environmental Science & Technology, 2013, 47, 130107231555002.	10.0	14
35	Sewer Gas: An Indoor Air Source of <scp>PCE</scp> to Consider During Vapor Intrusion Investigations. Ground Water Monitoring and Remediation, 2013, 33, 119-126.	0.8	34
36	Influence of Soil Moisture on Soil Gas Vapor Concentration for Vapor Intrusion. Environmental Engineering Science, 2013, 30, 628-637.	1.6	43

ERIC M SUUBERG

#	Article	IF	CITATIONS
37	Estimation of Contaminant Subslab Concentration in Vapor Intrusion Including Lateral Source–Building Separation. Vadose Zone Journal, 2013, 12, 1-9.	2.2	26
38	A numerical investigation of vapor intrusion — The dynamic response of contaminant vapors to rainfall events. Science of the Total Environment, 2012, 437, 110-120.	8.0	38
39	Estimation of contaminant subslab concentration in vapor intrusion. Journal of Hazardous Materials, 2012, 231-232, 10-17.	12.4	46
40	Thermochemical properties and phase behavior of halogenated polycyclic aromatic hydrocarbons. Environmental Toxicology and Chemistry, 2012, 31, 486-493.	4.3	24
41	Vapor pressure of three brominated flame retardants determined by using the Knudsen effusion method. Environmental Toxicology and Chemistry, 2012, 31, 574-578.	4.3	10
42	Comparison of the Johnsonâ^'Ettinger Vapor Intrusion Screening Model Predictions with Full Three-Dimensional Model Results. Environmental Science & Technology, 2011, 45, 2227-2235.	10.0	54
43	Thermodynamics of Multicomponent PAH Mixtures and Development of Tarlike Behavior. Industrial & Engineering Chemistry Research, 2011, 50, 3613-3620.	3.7	11
44	Vapor intrusion in urban settings: effect of foundation features and source location. Procedia Environmental Sciences, 2011, 4, 245-250.	1.4	20
45	Vapor pressure of solid polybrominated diphenyl ethers determined via Knudsen effusion method. Environmental Toxicology and Chemistry, 2011, 30, 2216-2219.	4.3	13
46	Solid vapor pressure for five heavy PAHs via the Knudsen effusion method. Journal of Chemical Thermodynamics, 2011, 43, 1660-1665.	2.0	20
47	Phase behavior and vapor pressures of the pyrene+9,10-dibromoanthracene system. Fluid Phase Equilibria, 2010, 298, 219-224.	2.5	18
48	Deviations from ideal sublimation vapor pressure behavior in mixtures of polycyclic aromatic compounds with interacting heteroatoms. Journal of Chemical Thermodynamics, 2010, 42, 1009-1015.	2.0	1
49	Vapor pressures and sublimation enthalpies of seven heteroatomic aromatic hydrocarbons measured using the Knudsen effusion technique. Journal of Chemical Thermodynamics, 2010, 42, 781-786.	2.0	26
50	Anthracene + Pyrene Solid Mixtures: Eutectic and Azeotropic Character. Journal of Chemical & Engineering Data, 2010, 55, 3598-3605.	1.9	18
51	Simulation of the Vapor Intrusion Process for Nonhomogeneous Soils Using a Threeâ€Dimensional Numerical Model. Ground Water Monitoring and Remediation, 2009, 29, 92-104.	0.8	76
52	Kinetics of tire derived fuel (TDF) char oxidation and accompanying changes in surface area. Fuel, 2009, 88, 179-186.	6.4	20
53	Development and Application of a Three-Dimensional Finite Element Vapor Intrusion Model. Journal of the Air and Waste Management Association, 2009, 59, 447-460.	1.9	73
54	The effect of halogen hetero-atoms on the vapor pressures and thermodynamics of polycyclic aromatic compounds measured via the Knudsen effusion technique. Journal of Chemical Thermodynamics, 2008, 40, 460-466.	2.0	24

ERIC M SUUBERG

#	Article	IF	CITATIONS
55	Vapor pressures and thermodynamics of oxygen ontaining polycyclic aromatic hydrocarbons measured using knudsen effusion. Environmental Toxicology and Chemistry, 2008, 27, 1244-1249.	4.3	43
56	Vapor Pressures and Enthalpies of Sublimation of Ten Polycyclic Aromatic Hydrocarbons Determined via the Knudsen Effusion Method. Journal of Chemical & Engineering Data, 2008, 53, 670-676.	1.9	83
57	Raoult's Law and Its Application to Sublimation Vapor Pressures of Mixtures of Polycyclic Aromatic Hydrocarbons. Environmental Engineering Science, 2008, 25, 1429-1438.	1.6	10
58	Porosity development in carbons derived from scrap automobile tires. Carbon, 2007, 45, 1719-1726.	10.3	44
59	The role of porosity in char combustion. Proceedings of the Combustion Institute, 2007, 31, 1897-1903.	3.9	27
60	VAPOR PRESSURES AND THERMODYNAMICS OF OXYGEN-CONTAINING POLYCYCLIC AROMATIC HYDROCARBONS MEASURED USING KNUDSEN EFFUSION. Environmental Toxicology and Chemistry, 2007, preprint, 1.	4.3	8
61	Vapor Liquid Equilibrium in Polycyclic Aromatic Compound Mixtures and in Coal Tars. ACS Symposium Series, 2005, , 113-122.	0.5	3
62	Dry and Semi-Dry Methods for Removal of Ammonia from Pulverized Fuel Combustion Fly Ash. Energy & amp; Fuels, 2002, 16, 1398-1404.	5.1	6
63	Development of porosity during coal char combustion. Proceedings of the Combustion Institute, 2002, 29, 495-501.	3.9	29
64	The Role of Carbon Monoxide in the NOâ^'Carbon Reaction. Energy & Fuels, 1999, 13, 1145-1153.	5.1	103
65	Vapor Pressures and Enthalpies of Sublimation of Polycyclic Aromatic Hydrocarbons and Their Derivatives. Journal of Chemical & Engineering Data, 1998, 43, 486-492.	1.9	144
66	Changes in reactive surface area and porosity during char oxidation. Proceedings of the Combustion Institute, 1998, 27, 2933-2939.	0.3	49
67	Cooperative Effects in Solvent Swelling of a Bituminous Coal. Energy & amp; Fuels, 1998, 12, 798-800.	5.1	13
68	Measurements of the Vapor Pressures of Coal Tars Using the Nonisothermal Knudsen Effusion Method. Energy & Fuels, 1998, 12, 1313-1321.	5.1	10
69	Comments Regarding the Use of Coal Swelling To Count Hydrogen-Bond Cross-Links in Coals. Energy & Fuels, 1997, 11, 1103-1104.	5.1	7
70	Temperature Dependence of Solvent Swelling and Diffusion Processes in Coals. Energy & Fuels, 1997, 11, 1155-1164.	5.1	68
71	Development of a Nonisothermal Knudsen Effusion Method and Application to PAH and Cellulose Tar Vapor Pressure Measurement. Analytical Chemistry, 1997, 69, 4619-4626.	6.5	41
72	Thermal Effects in Cellulose Pyrolysis:Â Relationship to Char Formation Processes. Industrial & Engineering Chemistry Research, 1996, 35, 653-662.	3.7	256