
Stephen G Waxman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/343965/publications.pdf Version: 2024-02-01

STEDHEN C. WAYMAN

#	Article	IF	CITATIONS
1	Stem cell-derived sensory neurons modelling inherited erythromelalgia: normalization of excitability. Brain, 2023, 146, 359-371.	3.7	9
2	A Buthus martensii Karsch scorpion sting targets Nav1.7 in mice and mimics a phenotype of human chronic pain. Pain, 2022, 163, e202-e214.	2.0	4
3	iPSCs and DRGs: stepping stones to new pain therapies. Trends in Molecular Medicine, 2022, 28, 110-122.	3.5	15
4	Inhibition of sodium conductance by cannabigerol contributes to a reduction of dorsal root ganglion neuron excitability. British Journal of Pharmacology, 2022, 179, 4010-4030.	2.7	16
5	Depolarizing Na _V and Hyperpolarizing K _V Channels Are Co-Trafficked in Sensory Neurons. Journal of Neuroscience, 2022, 42, 4794-4811.	1.7	6
6	Peripheral Ion Channel Gene Screening in Painful- and Painless-Diabetic Neuropathy. International Journal of Molecular Sciences, 2022, 23, 7190.	1.8	9
7	Mini-review - Sodium channels and beyond in peripheral nerve disease: Modulation by cytokines and their effector protein kinases. Neuroscience Letters, 2021, 741, 135446.	1.0	12
8	Core principles for the implementation of the neurodata without borders data standard. Journal of Neuroscience Methods, 2021, 348, 108972.	1.3	3
9	<i>KCNQ</i> variants and pain modulation: a missense variant in Kv7.3 contributes to pain resilience. Brain Communications, 2021, 3, fcab212.	1.5	13
10	Non-extensitivity and criticality of atomic hydropathicity around a voltage-gated sodium channel's pore: a modeling study. Journal of Biological Physics, 2021, 47, 61-77.	0.7	3
11	Paclitaxel increases axonal localization and vesicular trafficking of Nav1.7. Brain, 2021, 144, 1727-1737.	3.7	35
12	Hydropathicity-based prediction of pain-causing NaV1.7 variants. BMC Bioinformatics, 2021, 22, 212.	1.2	5
13	Intravenous infusion of auto serum-expanded autologous mesenchymal stem cells in spinal cord injury patients: 13 case series. Clinical Neurology and Neurosurgery, 2021, 203, 106565.	0.6	42
14	Conditional RAC1 knockout in motor neurons restores H-reflex rate-dependent depression after spinal cord injury. Scientific Reports, 2021, 11, 7838.	1.6	6
15	Human cells and networks of pain: Transforming pain target identification and therapeutic development. Neuron, 2021, 109, 1426-1429.	3.8	47
16	A novel gain-of-function sodium channel β2 subunit mutation in idiopathic small fiber neuropathy. Journal of Neurophysiology, 2021, 126, 827-839.	0.9	5
17	Hominini-specific regulation of CBLN2 increases prefrontal spinogenesis. Nature, 2021, 598, 489-494.	13.7	37
18	Trigeminal Neuralgia TRPM8 Mutation. Neurology: Genetics, 2021, 7, e550.	0.9	10

#	Article	IF	CITATIONS
19	Congenital Insensitivity to Pain. Cornea, 2021, Publish Ahead of Print, 1610-1613.	0.9	1
20	Two independent mouse lines carrying the Nav1.7 I228M gain-of-function variant display dorsal root ganglion neuron hyperexcitability but a minimal pain phenotype. Pain, 2021, 162, 1758-1770.	2.0	9
21	Lacosamide Inhibition of NaV1.7 Channels Depends on its Interaction With the Voltage Sensor Domain and the Channel Pore. Frontiers in Pharmacology, 2021, 12, 791740.	1.6	5
22	Contributions of NaV1.8 and NaV1.9 to excitability in human induced pluripotent stem-cell derived somatosensory neurons. Scientific Reports, 2021, 11, 24283.	1.6	6
23	Measurement of axonal excitability: Consensus guidelines. Clinical Neurophysiology, 2020, 131, 308-323.	0.7	63
24	The small fiber neuropathy NaV1.7 I228M mutation: impaired neurite integrity via bioenergetic and mitotoxic mechanisms, and protection by dexpramipexole. Journal of Neurophysiology, 2020, 123, 645-657.	0.9	9
25	Dexpramipexole blocks Nav1.8 sodium channels and provides analgesia in multiple nociceptive and neuropathic pain models. Pain, 2020, 161, 831-841.	2.0	22
26	Exome Sequencing Implicates Impaired GABA Signaling and Neuronal Ion Transport in Trigeminal Neuralgia. IScience, 2020, 23, 101552.	1.9	32
27	Computational pipeline to probe NaV1.7 gain-of-function variants in neuropathic painful syndromes. Scientific Reports, 2020, 10, 17930.	1.6	3
28	Genomic analysis of 21 patients with corneal neuralgia after refractive surgery. Pain Reports, 2020, 5, e826.	1.4	11
29	Status of peripheral sodium channel blockers for non-addictive pain treatment. Nature Reviews Neurology, 2020, 16, 689-705.	4.9	82
30	Evaluation of molecular inversion probe versus TruSeq \hat{A}^{\otimes} custom methods for targeted next-generation sequencing. PLoS ONE, 2020, 15, e0238467.	1.1	17
31	Sodium channel Nav1.6 in sensory neurons contributes to vincristine-induced allodynia. Brain, 2020, 143, 2421-2436.	3.7	20
32	Dendritic Spine Dynamics after Peripheral Nerve Injury: An Intravital Structural Study. Journal of Neuroscience, 2020, 40, 4297-4308.	1.7	12
33	Pharmacological characterization of a rat Nav1.7 loss-of-function model with insensitivity to pain. Pain, 2020, 161, 1350-1360.	2.0	14
34	Pharmacological activity and NMR solution structure of the leech peptide HSTX-I. Biochemical Pharmacology, 2020, 181, 114082.	2.0	2
35	Familial trigeminal neuralgia – a systematic clinical study with a genomic screen of the neuronal electrogenisome. Cephalalgia, 2020, 40, 767-777.	1.8	35
36	A 49-residue sequence motif in the C terminus of Nav1.9 regulates trafficking of the channel to the plasma membrane. Journal of Biological Chemistry, 2020, 295, 1077-1090.	1.6	8

#	Article	IF	CITATIONS
37	Differential effect of lacosamide on Nav1.7 variants from responsive and non-responsive patients with small fibre neuropathy. Brain, 2020, 143, 771-782.	3.7	31
38	Resilience to Stress and Resilience to Pain: Lessons from Molecular Neurobiology and Genetics. Trends in Molecular Medicine, 2020, 26, 924-935.	3.5	13
39	Cumulative hydropathic topology of a voltageâ€gated sodium channel at atomic resolution. Proteins: Structure, Function and Bioinformatics, 2020, 88, 1319-1328.	1.5	3
40	A 49-residue sequence motif in the C terminus of Nav1.9 regulates trafficking of the channel to the plasma membrane. Journal of Biological Chemistry, 2020, 295, 1077-1090.	1.6	6
41	Rational Drug Design for Pain Medicine. Anesthesiology, 2020, 133, 497-499.	1.3	1
42	A Novel Gain-of-Function Nav1.9 Mutation in a Child With Episodic Pain. Frontiers in Neuroscience, 2019, 13, 918.	1.4	18
43	Building sensory axons: Delivery and distribution of Na _V 1.7 channels and effects of inflammatory mediators. Science Advances, 2019, 5, eaax4755.	4.7	46
44	Sodium Channels in Human Pain Disorders: Genetics and Pharmacogenomics. Annual Review of Neuroscience, 2019, 42, 87-106.	5.0	92
45	Fibroblast growth factor homologous factor 2 (FGF-13) associates with Nav1.7 in DRG neurons and alters its current properties in an isoform-dependent manner. Neurobiology of Pain (Cambridge, Mass) Tj ETQq1	10.78431	.4 ægBT /Over
46	Na _V 1.6 regulates excitability of mechanosensitive sensory neurons. Journal of Physiology, 2019, 597, 3751-3768.	1.3	31
47	A gain-of-function sodium channel β 2-subunit mutation in painful diabetic neuropathy. Molecular Pain, 2019, 15, 174480691984980.	1.0	38
48	Restoration of brain circulation and cellular functions hours post-mortem. Nature, 2019, 568, 336-343.	13.7	175
49	The Two Sides of NaV1.7: Painful and Painless Channelopathies. Neuron, 2019, 101, 765-767.	3.8	10
50	The Role of Voltage-Gated Sodium Channels in Pain Signaling. Physiological Reviews, 2019, 99, 1079-1151.	13.1	408
51	Spinal cord motor neuron plasticity accompanies secondâ€degree burn injury and chronic pain. Physiological Reports, 2019, 7, e14288.	0.7	12
52	Pointer-kindreds and pain: big lessons from small families. Pain, 2019, 160, S49-S52.	2.0	0
53	Peripheral afferents and the pain experience. Pain, 2019, 160, 1487-1488.	2.0	7
54	Smallâ€fiber neuropathy: Expanding the clinical pain universe. Journal of the Peripheral Nervous System, 2019, 24, 19-33.	1.4	71

#	Article	IF	CITATIONS
55	Pediatric Erythromelalgia and SCN9A Mutations: Systematic Review and Single-Center Case Series. Journal of Pediatrics, 2019, 206, 217-224.e9.	0.9	18
56	Resilience to Pain: A Peripheral Component Identified Using Induced Pluripotent Stem Cells and Dynamic Clamp. Journal of Neuroscience, 2019, 39, 382-392.	1.7	66
57	Lacosamide in patients with Nav1.7 mutations-related small fibre neuropathy: a randomized controlled trial. Brain, 2019, 142, 263-275.	3.7	85
58	Expression of pathogenic SCN9A mutations in the zebrafish: A model to study small-fiber neuropathy. Experimental Neurology, 2019, 311, 257-264.	2.0	16
59	Yield of peripheral sodium channels gene screening in pure small fibre neuropathy. Journal of Neurology, Neurosurgery and Psychiatry, 2019, 90, 342-352.	0.9	47
60	Episodic Pain Syndrome Associated with a Novel Heterozygous Gain-of-Function SCN11A Missense Mutation. Neuropediatrics, 2019, 50, .	0.3	0
61	Conditional knockout of NaV1.6 in adult mice ameliorates neuropathic pain. Scientific Reports, 2018, 8, 3845.	1.6	66
62	Brain activity associated with pain in inherited erythromelalgia: stimulus-free pain engages brain areas involved in valuation and learning. Neurobiology of Pain (Cambridge, Mass), 2018, 3, 8-14.	1.0	2
63	Atypical changes in DRG neuron excitability and complex pain phenotype associated with a Nav1.7 mutation that massively hyperpolarizes activation. Scientific Reports, 2018, 8, 1811.	1.6	14
64	Na V 1.7 as a Pharmacogenomic Target for Pain: Moving Toward Precision Medicine. Trends in Pharmacological Sciences, 2018, 39, 258-275.	4.0	54
65	Reverse pharmacogenomics: carbamazepine normalizes activation and attenuates thermal hyperexcitability of sensory neurons due to Na _v 1.7 mutation I234T. British Journal of Pharmacology, 2018, 175, 2261-2271.	2.7	29
66	Detection of local and remote cellular damage caused by spinal cord and peripheral nerve injury using a heat shock signaling reporter system. IBRO Reports, 2018, 5, 91-98.	0.3	9
67	A novel gain-of-function Na _v 1.7 mutation in a carbamazepine-responsive patient with adult-onset painful peripheral neuropathy. Molecular Pain, 2018, 14, 174480691881500.	1.0	7
68	Nav1.5 in astrocytes plays a sexâ€specific role in clinical outcomes in a mouse model of multiple sclerosis. Glia, 2018, 66, 2174-2187.	2.5	10
69	Somatosensory Neurons Enter a State of Altered Excitability during Hibernation. Current Biology, 2018, 28, 2998-3004.e3.	1.8	12
70	Nav1.7 is phosphorylated by Fyn tyrosine kinase which modulates channel expression and gating in a cell type-dependent manner. Molecular Pain, 2018, 14, 174480691878222.	1.0	16
71	Nonmuscle myosin II isoforms interact with sodium channel alpha subunits. Molecular Pain, 2018, 14, 174480691878863.	1.0	7
72	Therapeutic potential of Pak1 inhibition for pain associated with cutaneous burn injury. Molecular Pain, 2018, 14, 174480691878864.	1.0	12

#	Article	IF	CITATIONS
73	Differential agingâ€related changes in neurophysiology and gene expression in IB4â€positive and IB4â€negative nociceptive neurons. Aging Cell, 2018, 17, e12795.	3.0	6
74	Loss-of-function mutations of SCN10A encoding NaV1.8 α subunit of voltage-gated sodium channel in patients with human kidney stone disease. Scientific Reports, 2018, 8, 10453.	1.6	7
75	Multiple myosin motors interact with sodium/potassium-ATPase alpha 1 subunits. Molecular Brain, 2018, 11, 45.	1.3	11
76	The Novel Activity of Carbamazepine as an Activation Modulator Extends from Na _V 1.7 Mutations to the Na _V 1.8-S242T Mutant Channel from a Patient with Painful Diabetic Neuropathy. Molecular Pharmacology, 2018, 94, 1256-1269.	1.0	24
77	Characterization of small fiber pathology in a mouse model of Fabry disease. ELife, 2018, 7, .	2.8	38
78	Alabama to Beijing… and Back: The Search for a Pain Gene. Cerebrum: the Dana Forum on Brain Science, 2018, 2018, .	0.1	0
79	Pharmacological characterisation of the highly NaV1.7 selective spider venom peptide Pn3a. Scientific Reports, 2017, 7, 40883.	1.6	120
80	<i>COL6A5</i> variants in familial neuropathic chronic itch. Brain, 2017, 140, aww343.	3.7	25
81	Detection of vulnerable neurons damaged by environmental insults in utero. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 2367-2372.	3.3	17
82	Familial gain-of-function Na _v 1.9 mutation in a painful channelopathy. Journal of Neurology, Neurosurgery and Psychiatry, 2017, 88, 233-240.	0.9	49
83	Safety and efficacy of a Nav1.7 selective sodium channel blocker in patients with trigeminal neuralgia: a double-blind, placebo-controlled, randomised withdrawal phase 2a trial. Lancet Neurology, The, 2017, 16, 291-300.	4.9	144
84	Network topology of NaV1.7 mutations in sodium channel-related painful disorders. BMC Systems Biology, 2017, 11, 28.	3.0	29
85	Gain-of-function mutation of a voltage-gated sodium channel NaV1.7 associated with peripheral pain and impaired limb development. Journal of Biological Chemistry, 2017, 292, 9262-9272.	1.6	21
86	Sodium channels in pain disorders: pathophysiology and prospects for treatment. Pain, 2017, 158, S97-S107.	2.0	64
87	Nonlinear effects of hyperpolarizing shifts in activation of mutant Na _v 1.7 channels on resting membrane potential. Journal of Neurophysiology, 2017, 117, 1702-1712.	0.9	6
88	Dendritic spine dysgenesis in superficial dorsal horn sensory neurons after spinal cord injury. Molecular Pain, 2017, 13, 174480691668801.	1.0	26
89	Mechanism of inhibition by chlorpromazine of the human pain threshold sodium channel, Nav1.7. Neuroscience Letters, 2017, 639, 1-7.	1.0	3
90	Ode to Glia: A Tribute to Bruce Ransom. Neurochemical Research, 2017, 42, 2442-2442.	1.6	0

#	Article	IF	CITATIONS
91	Between fire and ice: refractory hypothermia and warmth-induced pain in inherited erythromelalgia. BMJ Case Reports, 2017, 2017, bcr-2017-219486.	0.2	8
92	Sodium channel NaV1.9 mutations associated with insensitivity to pain dampen neuronal excitability. Journal of Clinical Investigation, 2017, 127, 2805-2814.	3.9	65
93	The AMPK Activator A769662 Blocks Voltage-Gated Sodium Channels: Discovery of a Novel Pharmacophore with Potential Utility for Analgesic Development. PLoS ONE, 2017, 12, e0169882.	1.1	16
94	A Gain-of-Function Mutation in Nav1.6 in a Case of Trigeminal Neuralgia. Molecular Medicine, 2016, 22, 338-348.	1.9	98
95	Subtype-Selective Small Molecule Inhibitors Reveal a Fundamental Role for Nav1.7 in Nociceptor Electrogenesis, Axonal Conduction and Presynaptic Release. PLoS ONE, 2016, 11, e0152405.	1.1	152
96	Sodium channels in astroglia and microglia. Clia, 2016, 64, 1628-1645.	2.5	62
97	Dendritic spine remodeling following early and late Rac1 inhibition after spinal cord injury: evidence for a pain biomarker. Journal of Neurophysiology, 2016, 115, 2893-2910.	0.9	29
98	A SCN10A SNP biases human pain sensitivity. Molecular Pain, 2016, 12, 174480691666608.	1.0	40
99	Pharmacotherapy for Pain in a Family With Inherited Erythromelalgia Guided by Genomic Analysis and Functional Profiling. JAMA Neurology, 2016, 73, 659.	4.5	70
100	Pain Perception. JAMA Neurology, 2016, 73, 628.	4.5	14
101	Sodium Channels, Mitochondria, and Axonal Degeneration in Peripheral Neuropathy. Trends in Molecular Medicine, 2016, 22, 377-390.	3.5	46
102	Nav1.7-A1632G Mutation from a Family with Inherited Erythromelalgia: Enhanced Firing of Dorsal Root Ganglia Neurons Evoked by Thermal Stimuli. Journal of Neuroscience, 2016, 36, 7511-7522.	1.7	61
103	Pharmacological reversal of a pain phenotype in iPSC-derived sensory neurons and patients with inherited erythromelalgia. Science Translational Medicine, 2016, 8, 335ra56.	5.8	154
104	A painful neuropathy-associated Nav1.7 mutant leads to time-dependent degeneration of small-diameter axons associated with intracellular Ca ²⁺ dysregulation and decrease in ATP levels. Molecular Pain, 2016, 12, 174480691667447.	1.0	23
105	Inherited erythromelalgia due to mutations in <i>SCN9A:</i> natural history, clinical phenotype and somatosensory profile. Brain, 2016, 139, 1052-1065.	3.7	72
106	Sodium channel Na _v 1.8. Neurology, 2016, 86, 473-483.	1.5	83
107	The cerebellar channelopathy of multiple sclerosis. Neurology, 2016, 86, 406-407.	1.5	4

108 Voltage-Gated Ion Channels as Molecular Targets for Pain. , 2016, , 415-436.

#	Article	IF	CITATIONS
109	Sodium Channel Nav1.7 in Vascular Myocytes, Endothelium, and Innervating Axons in Human Skin. Molecular Pain, 2015, 11, s12990-015-0024.	1.0	28
110	Diversity of composition and function of sodium channels in peripheral sensory neurons. Pain, 2015, 156, 2406-2407.	2.0	22
111	Oral Administration of PF-01247324, a Subtype-Selective Nav1.8 Blocker, Reverses Cerebellar Deficits in a Mouse Model of Multiple Sclerosis. PLoS ONE, 2015, 10, e0119067.	1.1	18
112	Preferential Targeting of Nav1.6 Voltage-Gated Na+ Channels to the Axon Initial Segment during Development. PLoS ONE, 2015, 10, e0124397.	1.1	59
113	Contactin-1 and Neurofascin-155/-186 Are Not Targets of Auto-Antibodies in Multifocal Motor Neuropathy. PLoS ONE, 2015, 10, e0134274.	1.1	19
114	Virus-Mediated Knockdown of Nav1.3 in Dorsal Root Ganglia of STZ-Induced Diabetic Rats Alleviates Tactile Allodynia. Molecular Medicine, 2015, 21, 544-552.	1.9	62
115	De novo gain-of-function and loss-of-function mutations of <i>SCN8A</i> in patients with intellectual disabilities and epilepsy. Journal of Medical Genetics, 2015, 52, 330-337.	1.5	124
116	Painful peripheral neuropathy and sodium channel mutations. Neuroscience Letters, 2015, 596, 51-59.	1.0	66
117	Dendritic spine dysgenesis contributes to hyperreflexia after spinal cord injury. Journal of Neurophysiology, 2015, 113, 1598-1615.	0.9	42
118	NaV1.9: a sodium channel linked to human pain. Nature Reviews Neuroscience, 2015, 16, 511-519.	4.9	161
119	Human Na _v 1.8: enhanced persistent and ramp currents contribute to distinct firing properties of human DRG neurons. Journal of Neurophysiology, 2015, 113, 3172-3185.	0.9	89
120	The Domain II S4-S5 Linker in Nav1.9: A Missense Mutation Enhances Activation, Impairs Fast Inactivation, and Produces Human Painful Neuropathy. NeuroMolecular Medicine, 2015, 17, 158-169.	1.8	70
121	Destruction of paranodal architecture in inflammatory neuropathy with anti-contactin-1 autoantibodies. Journal of Neurology, Neurosurgery and Psychiatry, 2015, 86, 720-728.	0.9	152
122	Neurology—the next 10 years. Nature Reviews Neurology, 2015, 11, 658-664.	4.9	7
123	Dendritic spine dysgenesis in neuropathic pain. Neuroscience Letters, 2015, 601, 54-60.	1.0	25
124	Decreased Resting Functional Connectivity after Traumatic Brain Injury in the Rat. PLoS ONE, 2014, 9, e95280.	1.1	54
125	Translational pain research: Lessons from genetics and genomics. Science Translational Medicine, 2014, 6, 249sr4.	5.8	45
126	Depolarized Inactivation Overcomes Impaired Activation to Produce DRG Neuron Hyperexcitability in a Na _v 1.7 Mutation in a Patient with Distal Limb Pain. Journal of Neuroscience, 2014, 34, 12328-12340.	1.7	18

#	Article	IF	CITATIONS
127	Painful neuropathies: the emerging role of sodium channelopathies. Journal of the Peripheral Nervous System, 2014, 19, 53-65.	1.4	82
128	Dynamics of sodium channel Nav1.5 expression in astrocytes in mouse models of multiple sclerosis. NeuroReport, 2014, 25, 1208-1215.	0.6	15
129	Regulating excitability of peripheral afferents: emerging ion channel targets. Nature Neuroscience, 2014, 17, 153-163.	7.1	361
130	Voltageâ€gated sodium channel Na _v 1.5 contributes to astrogliosis in an <i>in vitro</i> model of glial injury via reverse Na ⁺ /Ca ²⁺ exchange. Glia, 2014, 62, 1162-1175.	2.5	69
131	Contribution of sodium channels to lamellipodial protrusion and Rac1 and ERK1/2 activation in ATPâ€stimulated microglia. Glia, 2014, 62, 2080-2095.	2.5	30
132	Neuropathic pain in two-generation twins carrying the sodium channel Nav1.7 functional variant R1150W. Pain, 2014, 155, 2199-2203.	2.0	12
133	The Role of Sodium Channels in Painful Diabetic and Idiopathic Neuropathy. Current Diabetes Reports, 2014, 14, 538.	1.7	33
134	Sodium channel genes in pain-related disorders: phenotype–genotype associations and recommendations for clinical use. Lancet Neurology, The, 2014, 13, 1152-1160.	4.9	148
135	The G1662S NaV1.8 mutation in small fibre neuropathy: impaired inactivation underlying DRG neuron hyperexcitability. Journal of Neurology, Neurosurgery and Psychiatry, 2014, 85, 499-505.	0.9	80
136	Channelopathies, painful neuropathy, and diabetes: which way does the causal arrow point?. Trends in Molecular Medicine, 2014, 20, 544-550.	3.5	32
137	Gain-of-function mutations in sodium channel NaV1.9 in painful neuropathy. Brain, 2014, 137, 1627-1642.	3.7	242
138	Characterization of a de novo SCN8A mutation in a patient with epileptic encephalopathy. Epilepsy Research, 2014, 108, 1511-1518.	0.8	92
139	Paroxysmal itch caused by gain-of-function Nav1.7 mutation. Pain, 2014, 155, 1702-1707.	2.0	78
140	A novel de novo mutation of SCN8A (Nav1.6) with enhanced channel activation in a child with epileptic encephalopathy. Neurobiology of Disease, 2014, 69, 117-123.	2.1	96
141	Dynamic-clamp analysis of wild-type human Na _v 1.7 and erythromelalgia mutant channel L858H. Journal of Neurophysiology, 2014, 111, 1429-1443.	0.9	59
142	Approach to Small Fiber Neuropathy. , 2014, , 507-517.		2
143	Altered Sodium Channel Gating as Molecular Basis for Pain: Contribution of Activation, Inactivation, and Resurgent Currents. Handbook of Experimental Pharmacology, 2014, 221, 91-110.	0.9	45
144	Painful Na-channelopathies: an expanding universe. Trends in Molecular Medicine, 2013, 19, 406-409.	3.5	60

#	Article	IF	CITATIONS
145	Sodium Channels Contribute to Degeneration of Dorsal Root Ganglion Neurites Induced by Mitochondrial Dysfunction in an <i>In Vitro</i> Model of Axonal Injury. Journal of Neuroscience, 2013, 33, 19250-19261.	1.7	61
146	Correlation of Nav1.8 and Nav1.9 Sodium Channel Expression with Neuropathic Pain in Human Subjects with Lingual Nerve Neuromas. Molecular Pain, 2013, 9, 1744-8069-9-52.	1.0	23
147	Nav1.7: Stress-Induced Changes in Immunoreactivity within Magnocellular Neurosecretory Neurons of the Supraoptic Nucleus. Molecular Pain, 2013, 9, 1744-8069-9-39.	1.0	24
148	Small-Fiber Neuropathy Nav1.8 Mutation Shifts Activation to Hyperpolarized Potentials and Increases Excitability of Dorsal Root Ganglion Neurons. Journal of Neuroscience, 2013, 33, 14087-14097.	1.7	107
149	The NaV1.7 sodium channel: from molecule to man. Nature Reviews Neuroscience, 2013, 14, 49-62.	4.9	474
150	Noncanonical Roles of Voltage-Gated Sodium Channels. Neuron, 2013, 80, 280-291.	3.8	171
151	Differential effect of D623N variant and wild-type Nav1.7 sodium channels on resting potential and interspike membrane potential of dorsal root ganglion neurons. Brain Research, 2013, 1529, 165-177.	1.1	14
152	Wound-healing growth factor, basic FGF, induces Erk1/2-dependent mechanical hyperalgesia. Pain, 2013, 154, 2216-2226.	2.0	41
153	Burn injury-induced mechanical allodynia is maintained by Rac1-regulated dendritic spine dysgenesis. Experimental Neurology, 2013, 248, 509-519.	2.0	32
154	A new Nav1.7 mutation in an erythromelalgia patient. Biochemical and Biophysical Research Communications, 2013, 432, 99-104.	1.0	21
155	The response of Na _V 1.3 sodium channels to ramp stimuli: multiple components and mechanisms. Journal of Neurophysiology, 2013, 109, 306-314.	0.9	36
156	Axonal Protection with Sodium Channel Blocking Agents in Models of Multiple Sclerosis. , 2013, , 179-201.		0
157	Nav1.5 sodium channels in macrophages in multiple sclerosis lesions. Multiple Sclerosis Journal, 2013, 19, 532-542.	1.4	30
158	Virus-mediated shRNA Knockdown of Nav1.3 in Rat Dorsal Root Ganglion Attenuates Nerve Injury-induced Neuropathic Pain. Molecular Therapy, 2013, 21, 49-56.	3.7	91
159	Neuropathyâ€associated Na _V 1.7 variant I228M impairs integrity of dorsal root ganglion neuron axons. Annals of Neurology, 2013, 73, 140-145.	2.8	52
160	Multistate Structural Modeling and Voltage-Clamp Analysis of Epilepsy/Autism Mutation Kv10.2–R327H Demonstrate the Role of This Residue in Stabilizing the Channel Closed State. Journal of Neuroscience, 2013, 33, 16586-16593.	1.7	39
161	Molecular Architecture of a Sodium Channel S6 Helix. Journal of Biological Chemistry, 2013, 288, 13741-13747.	1.6	21
162	Screening Fluorescent Voltage Indicators with Spontaneously Spiking HEK Cells. PLoS ONE, 2013, 8, e85221.	1.1	77

#	Article	IF	CITATIONS
163	Opportunities in rehabilitation research. Journal of Rehabilitation Research and Development, 2013, 50, vii-xxxii.	1.6	7
164	Membrane properties and electrogenesis in the distal axons of small dorsal root ganglion neurons in vitro. Journal of Neurophysiology, 2012, 108, 729-740.	0.9	47
165	Extraterritorial temperature pain threshold abnormalities in subjects with healed thermal injury. Journal of Rehabilitation Research and Development, 2012, 49, 515.	1.6	12
166	Interaction of Voltage-gated Sodium Channel Nav1.6 (SCN8A) with Microtubule-associated Protein Map1b. Journal of Biological Chemistry, 2012, 287, 18459-18466.	1.6	32
167	Functional profiles of SCN9A variants in dorsal root ganglion neurons and superior cervical ganglion neurons correlate with autonomic symptoms in small fibre neuropathy. Brain, 2012, 135, 2613-2628.	3.7	90
168	Small nerve fibres, small hands and small feet: a new syndrome of pain, dysautonomia and acromesomelia in a kindred with a novel NaV1.7 mutation. Brain, 2012, 135, 345-358.	3.7	69
169	Interview: Pathways to discovery: making the translational leap. Pain Management, 2012, 2, 117-118.	0.7	0
170	Gain-of-function Na _v 1.8 mutations in painful neuropathy. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 19444-19449.	3.3	369
171	An AnkyrinG-Binding Motif Is Necessary and Sufficient for Targeting Na _v 1.6 Sodium Channels to Axon Initial Segments and Nodes of Ranvier. Journal of Neuroscience, 2012, 32, 7232-7243.	1.7	115
172	Sodium Channel Na _v 1.7 Is Essential for Lowering Heat Pain Threshold after Burn Injury. Journal of Neuroscience, 2012, 32, 10819-10832.	1.7	88
173	Maladaptive Dendritic Spine Remodeling Contributes to Diabetic Neuropathic Pain. Journal of Neuroscience, 2012, 32, 6795-6807.	1.7	94
174	Structural modelling and mutant cycle analysis predict pharmacoresponsiveness of a Nav1.7 mutant channel. Nature Communications, 2012, 3, 1186.	5.8	88
175	Analysis of Voltage-Gated Sodium Channel Membrane Dynamics in Hippocampal Neurons via a Fluorescent Protein and Biotin Tagged Nav1.6 Channel. Biophysical Journal, 2012, 102, 528a.	0.2	0
176	Mesenchymal stem cells: therapeutic outlook for stroke. Trends in Molecular Medicine, 2012, 18, 292-297.	3.5	160
177	Sodium channel slow inactivation and adaptation in Câ€fibres. Journal of Physiology, 2012, 590, 1513-1514.	1.3	5
178	Sodium channels, the electrogenisome and the electrogenistat: lessons and questions from the clinic. Journal of Physiology, 2012, 590, 2601-2612.	1.3	37
179	Hodgkin and Huxley and the basis for electrical signalling: a remarkable legacy still going strong. Journal of Physiology, 2012, 590, 2569-2570.	1.3	9
180	Small-fibre neuropathies—advances in diagnosis, pathophysiology and management. Nature Reviews Neurology, 2012, 8, 369-379.	4.9	187

#	Article	IF	CITATIONS
181	Diagnosis of neuropathic pain: challenges and possibilities. Expert Opinion on Medical Diagnostics, 2012, 6, 89-93.	1.6	9
182	Nav1.8 expression is not restricted to nociceptors in mouse peripheral nervous system. Pain, 2012, 153, 2017-2030.	2.0	223
183	Expression of Nav1.7 in DRG Neurons Extends from Peripheral Terminals in the Skin to Central Preterminal Branches and Terminals in the Dorsal Horn. Molecular Pain, 2012, 8, 1744-8069-8-82.	1.0	156
184	De Novo Pathogenic SCN8A Mutation Identified by Whole-Genome Sequencing of a Family Quartet Affected by Infantile Epileptic Encephalopathy and SUDEP. American Journal of Human Genetics, 2012, 90, 502-510.	2.6	365
185	Spinal cord injury, dendritic spine remodeling, and spinal memory mechanisms. Experimental Neurology, 2012, 235, 142-151.	2.0	70
186	Sodium channels and microglial function. Experimental Neurology, 2012, 234, 302-315.	2.0	53
187	Gain of function Na _V 1.7 mutations in idiopathic small fiber neuropathy. Annals of Neurology, 2012, 71, 26-39.	2.8	518
188	A channelopathy contributes to cerebellar dysfunction in a model of multiple sclerosis. Annals of Neurology, 2012, 71, 186-194.	2.8	41
189	PKCε phosphorylation of the sodium channel NaV1.8 increases channel function and produces mechanical hyperalgesia in mice. Journal of Clinical Investigation, 2012, 122, 1306-1315.	3.9	41
190	Physiological interactions between Na _v 1.7 and Na _v 1.8 sodium channels: a computer simulation study. Journal of Neurophysiology, 2011, 106, 3173-3184.	0.9	68
191	Novel SCN1A Mutation in a Proband With Malignant Migrating Partial Seizures of Infancy. Archives of Neurology, 2011, 68, 665-71.	4.9	81
192	Kinetic modeling of Nav1.7 provides insight into erythromelalgia-associated F1449V mutation. Journal of Neurophysiology, 2011, 105, 1546-1557.	0.9	16
193	Channelopathies have many faces. Nature, 2011, 472, 173-174.	13.7	15
194	NaV1.7 accumulates and co-localizes with phosphorylated ERK1/2 within transected axons in early experimental neuromas. Experimental Neurology, 2011, 230, 273-279.	2.0	42
195	Rac1-regulated dendritic spine remodeling contributes to neuropathic pain after peripheral nerve injury. Experimental Neurology, 2011, 232, 222-233.	2.0	74
196	Cerebellar dysfunction in multiple sclerosis: in the blink of an eye. Multiple Sclerosis Journal, 2011, 17, 1152-1154.	1.4	0
197	Na _v 1.7 is the Predominant Sodium Channel in Rodent Olfactory Sensory Neurons. Molecular Pain, 2011, 7, 1744-8069-7-32.	1.0	51
198	Intra- and Interfamily Phenotypic Diversity in Pain Syndromes Associated with a Gain-of-Function Variant of Na _V 1.7. Molecular Pain, 2011, 7, 1744-8069-7-92.	1.0	94

#	Article	IF	CITATIONS
199	Deletion mutation of sodium channel NaV1.7 in inherited erythromelalgia: enhanced slow inactivation modulates dorsal root ganglion neuron hyperexcitability. Brain, 2011, 134, 1972-1986.	3.7	66
200	Intravenous administration of auto serum-expanded autologous mesenchymal stem cells in stroke. Brain, 2011, 134, 1790-1807.	3.7	452
201	Paroxysmal extreme pain disorder: a molecular lesion of peripheral neurons. Nature Reviews Neurology, 2011, 7, 51-55.	4.9	57
202	Slowly Progressive Axonal Degeneration in a Rat Model of Chronic, Nonimmune-Mediated Demyelination. Journal of Neuropathology and Experimental Neurology, 2010, 69, 1256-1269.	0.9	29
203	Neuroma Removal for Neuropathic Pain. Clinical Journal of Pain, 2010, 26, 788-793.	0.8	28
204	Mutations at opposite Ends of the DIII/S4-S5 Linker of Sodium Channel NaV1.7 Produce Distinct Pain Disorders. Molecular Pain, 2010, 6, 1744-8069-6-24.	1.0	33
205	A new Na _v 1.7 sodium channel mutation I234T in a child with severe pain. European Journal of Pain, 2010, 14, 944-950.	1.4	42
206	Effects of Ranolazine on Wild-Type and Mutant hNa _v 1.7 Channels and on DRG Neuron Excitability. Molecular Pain, 2010, 6, 1744-8069-6-35.	1.0	30
207	Neurological channelopathies: new insights into disease mechanisms and ion channel function. Journal of Physiology, 2010, 588, 1823-1827.	1.3	95
208	Familial pain syndromes from mutations of the Na _v 1.7 sodium channel. Annals of the New York Academy of Sciences, 2010, 1184, 196-207.	1.8	96
209	ERK1/2 Mitogen-Activated Protein Kinase Phosphorylates Sodium Channel Na _v 1.7 and Alters Its Gating Properties. Journal of Neuroscience, 2010, 30, 1637-1647.	1.7	149
210	Polymorphisms in ion channel genes: emerging roles in pain. Brain, 2010, 133, 2515-2518.	3.7	9
211	Alternative splicing may contribute to time-dependent manifestation of inherited erythromelalgia. Brain, 2010, 133, 1823-1835.	3.7	56
212	Astrocytes within multiple sclerosis lesions upregulate sodium channel Nav1.5. Brain, 2010, 133, 835-846.	3.7	74
213	Neuropathic pain in diabetes—evidence for a central mechanism. Nature Reviews Neurology, 2010, 6, 462-466.	4.9	75
214	Two Nedd4-binding Motifs Underlie Modulation of Sodium Channel Nav1.6 by p38 MAPK. Journal of Biological Chemistry, 2010, 285, 26149-26161.	1.6	47
215	Isoform-specific and pan-channel partners regulate trafficking and plasma membrane stability; and alter sodium channel gating properties. Neuroscience Letters, 2010, 486, 84-91.	1.0	25
216	Channelopathic Pain: A Growing but Still Small List of Model Disorders. Neuron, 2010, 66, 622-624.	3.8	11

#	Article	IF	CITATIONS
217	Sodium Channels in Normal and Pathological Pain. Annual Review of Neuroscience, 2010, 33, 325-347.	5.0	529
218	A sodium channel mutation linked to epilepsy increases ramp and persistent current of Nav1.3 and induces hyperexcitability in hippocampal neurons. Experimental Neurology, 2010, 224, 362-368.	2.0	80
219	Unilateral Focal Burn Injury Is Followed by Long-Lasting Bilateral Allodynia and Neuronal Hyperexcitability in Spinal Cord Dorsal Horn. Journal of Pain, 2010, 11, 119-130.	0.7	73
220	Minocycline Attenuates Mechanical Allodynia and Central Sensitization Following Peripheral Second-Degree Burn Injury. Journal of Pain, 2010, 11, 1146-1154.	0.7	61
221	Sodium-Calcium Exchanger and Multiple Sodium Channel Isoforms in Intra-Epidermal Nerve Terminals. Molecular Pain, 2010, 6, 1744-8069-6-84.	1.0	104
222	Early- and late-onset inherited erythromelalgia: genotype–phenotype correlation. Brain, 2009, 132, 1711-1722.	3.7	117
223	Dendritic Spine Remodeling After Spinal Cord Injury Alters Neuronal Signal Processing. Journal of Neurophysiology, 2009, 102, 2396-2409.	0.9	44
224	The <i>ataxia3</i> Mutation in the N-Terminal Cytoplasmic Domain of Sodium Channel Na _v 1.6 Disrupts Intracellular Trafficking. Journal of Neuroscience, 2009, 29, 2733-2741.	1.7	43
225	Regulation of Podosome Formation in Macrophages by a Splice Variant of the Sodium Channel SCN8A. Journal of Biological Chemistry, 2009, 284, 8114-8126.	1.6	102
226	Thalamic neuron hyperexcitability and enlarged receptive fields in the STZ model of diabetic pain. Brain Research, 2009, 1268, 154-161.	1.1	58
227	A novel Na _v 1.7 mutation producing carbamazepineâ€responsive erythromelalgia. Annals of Neurology, 2009, 65, 733-741.	2.8	132
228	A sodium channel gene <i>SCN9A</i> polymorphism that increases nociceptor excitability. Annals of Neurology, 2009, 66, 862-866.	2.8	91
229	Sodium channel activity modulates multiple functions in microglia. Clia, 2009, 57, 1072-1081.	2.5	133
230	Transfection of rat or mouse neurons by biolistics or electroporation. Nature Protocols, 2009, 4, 1118-1127.	5.5	110
231	Voltage-clamp and current-clamp recordings from mammalian DRG neurons. Nature Protocols, 2009, 4, 1103-1112.	5.5	94
232	Voltage-Gated Sodium Channels: Therapeutic Targets for Pain. Pain Medicine, 2009, 10, 1260-1269.	0.9	200
233	Role of hippocampal sodium channel Nav1.6 in kindling epileptogenesis. Epilepsia, 2009, 50, 44-55.	2.6	129
234	Mexiletine-responsive erythromelalgia due to a new Nav1.7 mutation showing use-dependent current fall-off. Experimental Neurology, 2009, 216, 383-389.	2.0	73

#	Article	IF	CITATIONS
235	Erythromelalgia mutation L823R shifts activation and inactivation of threshold sodium channel Nav1.7 to hyperpolarized potentials. Biochemical and Biophysical Research Communications, 2009, 390, 319-324.	1.0	34
236	FGF14 N-terminal splice variants differentially modulate Nav1.2 and Nav1.6-encoded sodium channels. Molecular and Cellular Neurosciences, 2009, 42, 90-101.	1.0	117
237	An exciting year for neuroscience, and for Neuroscience Letters. Neuroscience Letters, 2009, 467, 187.	1.0	0
238	Title is missing!. Journal of Rehabilitation Research and Development, 2009, 46, 123.	1.6	50
239	Early microglial inhibition preemptively mitigates chronic pain development after experimental spinal cord injury. Journal of Rehabilitation Research and Development, 2009, 46, 123-33.	1.6	18
240	Locomotor Dysfunction and Pain: The Scylla and Charybdis of Fiber Sprouting After Spinal Cord Injury. Molecular Neurobiology, 2008, 37, 52-63.	1.9	35
241	Axonal dysfunction in chronic multiple sclerosis: Meltdown in the membrane. Annals of Neurology, 2008, 63, 411-413.	2.8	29
242	Multiple sodium channel isoforms and mitogenâ€activated protein kinases are present in painful human neuromas. Annals of Neurology, 2008, 64, 644-653.	2.8	224
243	Na _v 1.9, Gâ€proteins, and nociceptors. Journal of Physiology, 2008, 586, 917-918.	1.3	5
244	Early treatment suppresses the development of spikeâ€wave epilepsy in a rat model. Epilepsia, 2008, 49, 400-409.	2.6	185
245	Alarm or curse? The pain of neuroinflammation. Brain Research Reviews, 2008, 58, 226-235.	9.1	36
246	Phenytoin protects central axons in experimental autoimmune encephalomyelitis. Journal of the Neurological Sciences, 2008, 274, 57-63.	0.3	24
247	Paroxysmal Extreme Pain Disorder M1627K Mutation in Human Na _v 1.7 Renders DRG Neurons Hyperexcitable. Molecular Pain, 2008, 4, 1744-8069-4-37.	1.0	112
248	Mutation 1136V Alters Electrophysiological Properties of the Na _V 1.7 Channel in a Family with Onset of Erythromelalgia in the Second Decade. Molecular Pain, 2008, 4, 1744-8069-4-1.	1.0	101
249	Voltage-gated sodium channel expression in rat and human epidermal keratinocytes: Evidence for a role in pain. Pain, 2008, 139, 90-105.	2.0	153
250	Acceleration. , 2008, , 4-4.		0
251	Neuropathic Pain Memory Is Maintained by Rac1-Regulated Dendritic Spine Remodeling after Spinal Cord Injury. Journal of Neuroscience, 2008, 28, 13173-13183.	1.7	108
252	A Pore-blocking Hydrophobic Motif at the Cytoplasmic Aperture of the Closed-state Nav1.7 Channel Is Disrupted by the Erythromelalgia-associated F1449V Mutation. Journal of Biological Chemistry, 2008, 283, 24118-24127.	1.6	40

#	Article	IF	CITATIONS
253	Disruption of cAMP and Prostaglandin E ₂ Transport by Multidrug Resistance Protein 4 Deficiency Alters cAMP-Mediated Signaling and Nociceptive Response. Molecular Pharmacology, 2008, 73, 243-251.	1.0	95
254	Mechanisms of Disease: sodium channels and neuroprotection in multiple sclerosis—current status. Nature Clinical Practice Neurology, 2008, 4, 159-169.	2.7	168
255	Phosphorylation of Sodium Channel Na _v 1.8 by p38 Mitogen-Activated Protein Kinase Increases Current Density in Dorsal Root Ganglion Neurons. Journal of Neuroscience, 2008, 28, 3190-3201.	1.7	156
256	Chapter 4 Genetics and Molecular Pathophysiology of Nav1.7â€Related Pain Syndromes. Advances in Genetics, 2008, 63, 85-110.	0.8	60
257	Diverse Functions and Dynamic Expression of Neuronal Sodium Channels. Novartis Foundation Symposium, 2008, , 34-60.	1.2	21
258	Chair's Introduction: Sodium Channels and Neuronal Dysfunction - Emerging Concepts, Converging Themes. Novartis Foundation Symposium, 2008, , 1-4.	1.2	0
259	Sodium channel expression and the molecular pathophysiology of pain after SCI. Progress in Brain Research, 2007, 161, 195-203.	0.9	86
260	The Dawn of Molecular and Cellular Therapies for Traumatic Spinal Cord Injury. , 2007, , 207-220.		0
261	Schwann cells and their precursors for repair of central nervous system myelin. Brain, 2007, 130, 1978-1980.	3.7	29
262	A case of inherited erythromelalgia. Nature Clinical Practice Neurology, 2007, 3, 229-234.	2.7	31
263	Na _v 1.7, its mutations, and the syndromes that they cause. Neurology, 2007, 69, 505-507.	1.5	41
264	Retinal involvement in multiple sclerosis. Neurology, 2007, 69, 1562-1563.	1.5	13
265	Modulation of Thalamic Nociceptive Processing after Spinal Cord Injury through Remote Activation of Thalamic Microglia by Cysteine–Cysteine Chemokine Ligand 21. Journal of Neuroscience, 2007, 27, 8893-8902.	1.7	195
266	Expression of the Voltage-Gated Sodium Channel NaV1.5 in the Macrophage Late Endosome Regulates Endosomal Acidification. Journal of Immunology, 2007, 178, 7822-7832.	0.4	114
267	Extracellular Signal-Regulated Kinase-Regulated Microglia-Neuron Signaling by Prostaglandin E2 Contributes to Pain after Spinal Cord Injury. Journal of Neuroscience, 2007, 27, 2357-2368.	1.7	188
268	Differential Slow Inactivation and Use-Dependent Inhibition of Nav1.8 Channels Contribute to Distinct Firing Properties in IB4+ and IB4â^ DRG Neurons. Journal of Neurophysiology, 2007, 97, 1258-1265.	0.9	75
269	Sodium Channel Expression Within Chronic Multiple Sclerosis Plaques. Journal of Neuropathology and Experimental Neurology, 2007, 66, 828-837.	0.9	73
270	From genes to pain: Nav1.7 and human pain disorders. Trends in Neurosciences, 2007, 30, 555-563.	4.2	231

#	Article	IF	CITATIONS
271	The roles of sodium channels in nociception: Implications for mechanisms of pain. Pain, 2007, 131, 243-257.	2.0	402
272	Inactivation Properties of Sodium Channel Nav1.8 Maintain Action Potential Amplitude in Small DRG Neurons in the Context of Depolarization. Molecular Pain, 2007, 3, 1744-8069-3-12.	1.0	25
273	Temperature Dependence of Erythromelalgia Mutation L858F in Sodium Channel Nav1.7. Molecular Pain, 2007, 3, 1744-8069-3-3.	1.0	39
274	In Silico Modeling of Axonal Reconnection within A Discrete Fiber Tract after Spinal Cord Injury. Journal of Neurotrauma, 2007, 24, 421-432.	1.7	6
275	Mutations in sodium-channel gene SCN9A cause a spectrum of human genetic pain disorders. Journal of Clinical Investigation, 2007, 117, 3603-3609.	3.9	291
276	Multiple Sclerosis as a Neurodegenerative Disease. , 2007, , 333-346.		0
277	Exacerbation of experimental autoimmune encephalomyelitis after withdrawal of phenytoin and carbamazepine. Annals of Neurology, 2007, 62, 21-33.	2.8	105
278	Multiple sodium channels and their roles in electrogenesis within dorsal root ganglion neurons. Journal of Physiology, 2007, 579, 1-14.	1.3	350
279	A Nav1.7 channel mutation associated with hereditary erythromelalgia contributes to neuronal hyperexcitability and displays reduced lidocaine sensitivity. Journal of Physiology, 2007, 581, 1019-1031.	1.3	158
280	Channel, neuronal and clinical function in sodium channelopathies: from genotype to phenotype. Nature Neuroscience, 2007, 10, 405-409.	7.1	85
281	Chronic Pain as a Molecular Disorder. , 2007, , 427-438.		0
282	Sodium Channel Expression in the Ventral Posterolateral Nucleus of the Thalamus after Peripheral Nerve Injury. Molecular Pain, 2006, 2, 1744-8069-2-27.	1.0	60
283	Activated Microglia Contribute to the Maintenance of Chronic Pain after Spinal Cord Injury. Journal of Neuroscience, 2006, 26, 4308-4317.	1.7	563
284	Mutations in the sodium channel Nav1.7 underlie inherited erythromelalgia. Drug Discovery Today Disease Mechanisms, 2006, 3, 343-350.	0.8	14
285	lons, energy and axonal injury: towards a molecular neurology of multiple sclerosis. Trends in Molecular Medicine, 2006, 12, 192-195.	3.5	67
286	Reduced thermal sensitivity and Nav1.8 and TRPV1 channel expression in sensory neurons of aged mice. Neurobiology of Aging, 2006, 27, 895-903.	1.5	59
287	Fire and phantoms after spinal cord injury: Na+ channels and central pain. Trends in Neurosciences, 2006, 29, 207-215.	4.2	129
288	Alterations in Burst Firing of Thalamic VPL Neurons and Reversal by Nav1.3 Antisense After Spinal Cord Injury. Journal of Neurophysiology, 2006, 95, 3343-3352.	0.9	97

#	Article	IF	CITATIONS
289	Calmodulin Regulates Current Density and Frequency-Dependent Inhibition of Sodium Channel Nav1.8 in DRG Neurons. Journal of Neurophysiology, 2006, 96, 97-108.	0.9	44
290	Differential modulation of sodium channel Nav1.6 by two members of the fibroblast growth factor homologous factor 2 subfamily. European Journal of Neuroscience, 2006, 23, 2551-2562.	1.2	73
291	A channel sets the gain on pain. Nature, 2006, 444, 831-832.	13.7	106
292	Axonal conduction and injury in multiple sclerosis: the role of sodium channels. Nature Reviews Neuroscience, 2006, 7, 932-941.	4.9	350
293	Upregulation of persistent and ramp sodium current in dorsal horn neurons after spinal cord injury. Experimental Brain Research, 2006, 174, 660-666.	0.7	87
294	Protection of corticospinal tract neurons after dorsal spinal cord transection and engraftment of olfactory ensheathing cells. Glia, 2006, 53, 352-359.	2.5	96
295	Sporadic onset of erythermalgia: A gain-of-function mutation in Nav1.7. Annals of Neurology, 2006, 59, 553-558.	2.8	150
296	Remyelination of dorsal column axons by endogenous Schwann cells restores the normal pattern of Nav1.6 and Kv1.2 at nodes of Ranvier. Brain, 2006, 129, 1319-1329.	3.7	79
297	Long-term protection of central axons with phenytoin in monophasic and chronic-relapsing EAE. Brain, 2006, 129, 3196-3208.	3.7	110
298	Inherited erythermalgia: Limb pain from an S4 charge-neutral Na channelopathy. Neurology, 2006, 67, 1563-1567.	1.5	86
299	Size Matters: Erythromelalgia Mutation S241T in Nav1.7 Alters Channel Gating. Journal of Biological Chemistry, 2006, 281, 36029-36035.	1.6	78
300	Intense Isolectin-B4 Binding in Rat Dorsal Root Ganglion Neurons Distinguishes C-Fiber Nociceptors with Broad Action Potentials and High Nav1.9 Expression. Journal of Neuroscience, 2006, 26, 7281-7292.	1.7	226
301	Molecular Reconstruction of Nodes of Ranvier after Remyelination by Transplanted Olfactory Ensheathing Cells in the Demyelinated Spinal Cord. Journal of Neuroscience, 2006, 26, 1803-1812.	1.7	102
302	Nav1.7 Mutant A863P in Erythromelalgia: Effects of Altered Activation and Steady-State Inactivation on Excitability of Nociceptive Dorsal Root Ganglion Neurons. Journal of Neuroscience, 2006, 26, 12566-12575.	1.7	136
303	A single sodium channel mutation produces hyper- or hypoexcitability in different types of neurons. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 8245-8250.	3.3	350
304	Contactin regulates the current density and axonal expression of tetrodotoxin-resistant but not tetrodotoxin-sensitive sodium channels in DRG neurons. European Journal of Neuroscience, 2005, 22, 39-49.	1.2	75
305	Electrophysiological properties of two axonal sodium channels, Nav1.2 and Nav1.6, expressed in mouse spinal sensory neurones. Journal of Physiology, 2005, 564, 803-815.	1.3	244
306	Sodium channels contribute to microglia/macrophage activation and function in EAE and MS. Glia, 2005, 49, 220-229.	2.5	234

#	Article	IF	CITATIONS
307	Erythromelalgia: A hereditary pain syndrome enters the molecular era. Annals of Neurology, 2005, 57, 785-788.	2.8	77
308	Pharmacological properties of neuronal TTX-resistant sodium channels and the role of a critical serine pore residue. Pflugers Archiv European Journal of Physiology, 2005, 451, 454-463.	1.3	72
309	New Molecular Targets for the Treatment of Neuropathic Pain. , 2005, , 339-355.		1
310	Altered Distributions and Functions of Multiple Sodium Channel Subtypes in Multiple Sclerosis and Its Models. , 2005, , 101-118.		8
311	Neuroprotection by Sodium Channel Blockade with Phenytoin in an Experimental Model of Glaucoma. , 2005, 46, 4164.		38
312	Changes in electrophysiological properties and sodium channel Nav1.3 expression in thalamic neurons after spinal cord injury. Brain, 2005, 128, 2359-2371.	3.7	159
313	Voltage-Gated Sodium Channel Nav1.6 Is Modulated by p38 Mitogen-Activated Protein Kinase. Journal of Neuroscience, 2005, 25, 6621-6630.	1.7	105
314	trkA Is Expressed in Nociceptive Neurons and Influences Electrophysiological Properties via Nav1.8 Expression in Rapidly Conducting Nociceptors. Journal of Neuroscience, 2005, 25, 4868-4878.	1.7	130
315	International Union of Pharmacology. XLVII. Nomenclature and Structure-Function Relationships of Voltage-Gated Sodium Channels. Pharmacological Reviews, 2005, 57, 397-409.	7.1	1,481
316	Erythermalgia: molecular basis for an inherited pain syndrome. Trends in Molecular Medicine, 2005, 11, 555-562.	3.5	121
317	CAP-1A is a novel linker that binds clathrin and the voltage-gated sodium channel Nav1.8. Molecular and Cellular Neurosciences, 2005, 28, 636-649.	1.0	35
318	Nav 1.6 channels generate resurgent sodium currents in spinal sensory neurons. FEBS Letters, 2005, 579, 2166-2170.	1.3	98
319	Hypergraphia in temporal lobe epilepsy. Epilepsy and Behavior, 2005, 6, 282-291.	0.9	11
320	Cerebellar dysfunction in multiple sclerosis: evidence for an acquired channelopathy. Progress in Brain Research, 2005, 148, 353-365.	0.9	23
321	The Conduction Properties of Demyelinated and Remyelinated Axons. , 2005, , 85-100.		16
322	Molecular Mechanisms of Calcium Influx in Axonal Degeneration. , 2005, , 275-292.		1
323	Blocking the Axonal Injury Cascade: Neuroprotection in Multiple Sclerosis and Its Models. , 2005, , 435-449.		2
324	Neuronal Blocking Factors in Demyelinating Diseases. , 2005, , 317-326.		2

#	Article	IF	CITATIONS
325	Transcriptional Channelopathies of the Nervous System: New Targets for Molecular Medicine. , 2005, , 319-338.		Ο
326	Electrophysiological Properties of Mutant Nav1.7 Sodium Channels in a Painful Inherited Neuropathy. Journal of Neuroscience, 2004, 24, 8232-8236.	1.7	353
327	Altered Sodium Channel Expression in Second-Order Spinal Sensory Neurons Contributes to Pain after Peripheral Nerve Injury. Journal of Neuroscience, 2004, 24, 4832-4839.	1.7	241
328	Co-localization of sodium channel Nav1.6 and the sodium-calcium exchanger at sites of axonal injury in the spinal cord in EAE. Brain, 2004, 127, 294-303.	3.7	211
329	Molecular changes in neurons in multiple sclerosis: Altered axonal expression of Nav1.2 and Nav1.6 sodium channels and Na+/Ca2+ exchanger. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 8168-8173.	3.3	421
330	Sodium channel blockers and axonal protection in neuroinflammatory disease. Brain, 2004, 128, 5-6.	3.7	31
331	Fibroblast Growth Factor Homologous Factor 2B: Association with Nav1.6 and Selective Colocalization at Nodes of Ranvier of Dorsal Root Axons. Journal of Neuroscience, 2004, 24, 6765-6775.	1.7	124
332	Contactin Associates with Sodium Channel Nav1.3 in Native Tissues and Increases Channel Density at the Cell Surface. Journal of Neuroscience, 2004, 24, 7387-7399.	1.7	52
333	Dysregulation of sodium channel expression in cortical neurons in a rodent model of absence epilepsy. Brain Research, 2004, 1000, 102-109.	1.1	124
334	PGE2 increases the tetrodotoxin-resistant Nav1.9 sodium current in mouse DRG neurons via G-proteins. Brain Research, 2004, 1023, 264-271.	1.1	143
335	Abnormal Purkinje cell activity in vivo in experimental allergic encephalomyelitis. Experimental Brain Research, 2004, 158, 1-8.	0.7	41
336	Electrophysiologic Consequences of Myelination. , 2004, , 117-141.		7
337	Sodium channel blockade with phenytoin protects spinal cord axons, enhances axonal conduction, and improves functional motor recovery after contusion SCI. Experimental Neurology, 2004, 188, 365-377.	2.0	84
338	Functional role of the C-terminus of voltage-gated sodium channel Nav1.8. FEBS Letters, 2004, 572, 256-260.	1.3	20
339	Na+ channel expression along axons in multiple sclerosis and its models. Trends in Pharmacological Sciences, 2004, 25, 584-591.	4.0	82
340	Changes in the expression of tetrodotoxin-sensitive sodium channels within dorsal root ganglia neurons in inflammatory pain. Pain, 2004, 108, 237-247.	2.0	350
341	Apoptosis of vasopressinergic hypothalamic neurons in chronic diabetes mellitus. Neurobiology of Disease, 2004, 15, 221-228.	2.1	30
342	Upregulation and colocalization of p75 and Nav1.8 in Purkinje neurons in experimental autoimmune encephalomyelitis. Neuroscience Letters, 2004, 369, 186-190.	1.0	31

#	Article	IF	CITATIONS
343	Potentiation of sural nerve AÎ ² action potential after neurogenic inflammation. NeuroReport, 2004, 15, 1773-1777.	0.6	2
344	Gifts From The Molecular Revolution: Protection Andrepair Of The Injured Spinal Cord. Journal of Spinal Cord Medicine, 2004, 27, 304-310.	0.7	6
345	Ischemic White Matter Damage. , 2004, , 985-1007.		2
346	GTP?S increases Nav1.8 current in small-diameter dorsal root ganglia neurons. Experimental Brain Research, 2003, 152, 415-419.	0.7	29
347	The brain in diabetes: molecular changes in neurons and their implications for end-organ damage. Lancet Neurology, The, 2003, 2, 548-554.	4.9	102
348	Tetrodotoxin-resistant sodium channels Nav1.8/SNS and Nav1.9/NaN in afferent neurons innervating urinary bladder in control and spinal cord injured rats. Brain Research, 2003, 963, 132-138.	1.1	56
349	Primary cortical motor neurons undergo apoptosis after axotomizing spinal cord injury. Journal of Comparative Neurology, 2003, 462, 328-341.	0.9	166
350	Patterned electrical activity modulates sodium channel expression in sensory neurons. Journal of Neuroscience Research, 2003, 74, 192-198.	1.3	54
351	Noninactivating, tetrodotoxin-sensitive Na+ conductance in peripheral axons. Muscle and Nerve, 2003, 28, 212-217.	1.0	19
352	Nitric oxide and the axonal death cascade. Annals of Neurology, 2003, 53, 150-153.	2.8	40
353	International Union of Pharmacology. XXXIX. Compendium of Voltage-Gated Ion Channels: Sodium Channels. Pharmacological Reviews, 2003, 55, 575-578.	7.1	122
354	Phenytoin Protects Spinal Cord Axons and Preserves Axonal Conduction and Neurological Function in a Model of Neuroinflammation In Vivo. Journal of Neurophysiology, 2003, 90, 3566-3571.	0.9	175
355	Modulation of the Cardiac Sodium Channel Nav1.5 by Fibroblast Growth Factor Homologous Factor 1B. Journal of Biological Chemistry, 2003, 278, 1029-1036.	1.6	140
356	Abnormal sodium channel distribution in optic nerve axons in a model of inflammatory demyelination. Brain, 2003, 126, 1552-1561.	3.7	163
357	Annexin II/p11 is up-regulated in Purkinje cells in EAE and MS. NeuroReport, 2003, 14, 555-558.	0.6	36
358	Temporal Course of Upregulation of Na _v 1.8 in Purkinje Neurons Parallels the Progression of Clinical Deficit in Experimental Allergic Encephalomyelitis. Journal of Neuropathology and Experimental Neurology, 2003, 62, 968-975.	0.9	29
359	Selective Expression of a Persistent Tetrodotoxin-Resistant Na ⁺ Current and Na _V 1.9 Subunit in Myenteric Sensory Neurons. Journal of Neuroscience, 2003, 23, 2715-2725.	1.7	133
360	Calmodulin Binds to the C Terminus of Sodium Channels Na _v 1.4 and Na _v 1.6 and Differentially Modulates Their Functional Properties. Journal of Neuroscience, 2003, 23, 8261-8270.	1.7	135

#	Article	IF	CITATIONS
361	GTP-induced tetrodotoxin-resistant Na+ current regulates excitability in mouse and rat small diameter sensory neurones. Journal of Physiology, 2003, 548, 373-382.	1.3	160
362	Distinct repriming and closed-state inactivation kinetics of Nav1.6 and Nav1.7 sodium channels in mouse spinal sensory neurons. Journal of Physiology, 2003, 551, 741-750.	1.3	280
363	Upregulation of Sodium Channel Na _v 1.3 and Functional Involvement in Neuronal Hyperexcitability Associated with Central Neuropathic Pain after Spinal Cord Injury. Journal of Neuroscience, 2003, 23, 8881-8892.	1.7	322
364	Ion Channels and Neuronal Dysfunction in Multiple Sclerosis. Archives of Neurology, 2002, 59, 1377-80.	4.9	22
365	Characterization and Developmental Changes of Na+Currents of Petrosal Neurons With Projections to the Carotid Body. Journal of Neurophysiology, 2002, 88, 2993-3002.	0.9	21
366	Preferential expression of IGF-I in small DRG neurons and down-regulation following injury. NeuroReport, 2002, 13, 1649-1652.	0.6	58
367	Sodium channel expression in hypothalamic osmosensitive neurons in experimental diabetes. NeuroReport, 2002, 13, 1481-1484.	0.6	9
368	Subthreshold Oscillations Induced by Spinal Nerve Injury in Dissociated Muscle and Cutaneous Afferents of Mouse DRG. Journal of Neurophysiology, 2002, 87, 2009-2017.	0.9	88
369	Neuroprotection of axons with phenytoin in experimental allergic encephalomyelitis. NeuroReport, 2002, 13, 1909-1912.	0.6	74
370	Molecular Identities of Two Tetrodotoxin-Resistant Sodium Channels in Corneal Axons. Experimental Eye Research, 2002, 75, 193-199.	1.2	53
371	Sodium channel Nav1.6 is expressed along nonmyelinated axons and it contributes to conduction. Molecular Brain Research, 2002, 105, 19-28.	2.5	119
372	NaN/Nav1.9: a sodium channel with unique properties. Trends in Neurosciences, 2002, 25, 253-259.	4.2	232
373	Molecular determinant of Nav1.8 sodium channel resistance to the venom from the scorpion Leiurus quinquestriatus hebraeus. Neuroscience Letters, 2002, 331, 79-82.	1.0	20
374	The Presence and Role of the Tetrodotoxin-Resistant Sodium Channel Na _v 1.9 (NaN) in Nociceptive Primary Afferent Neurons. Journal of Neuroscience, 2002, 22, 7425-7433.	1.7	227
375	GDNF and NGF Reverse Changes in Repriming of TTX-Sensitive Na ⁺ Currents Following Axotomy of Dorsal Root Ganglion Neurons. Journal of Neurophysiology, 2002, 88, 650-658.	0.9	91
376	HSV-1 Helper Virus 5dl1.2 Suppresses Sodium Currents in Amplicon-Transduced Neurons. Journal of Neurophysiology, 2002, 87, 2149-2157.	0.9	4
377	Nitric Oxide Blocks Fast, Slow, and Persistent Na ⁺ Channels in C-Type DRG Neurons by S-Nitrosylation. Journal of Neurophysiology, 2002, 87, 761-775.	0.9	98
378	Changes of sodium channel expression in experimental painful diabetic neuropathy. Annals of Neurology, 2002, 52, 786-792.	2.8	177

#	Article	IF	CITATIONS
379	Primary motor neurons fail to up-regulate voltage-gated sodium channel Nav1.3/brain type III following axotomy resulting from spinal cord injury. Journal of Neuroscience Research, 2002, 70, 546-552.	1.3	24
380	Structure of the Sodium Channel Gene SCN11A: Evidence for Intron-to-Exon Conversion Model and Implications for Gene Evolution. Molecular Neurobiology, 2002, 26, 235-250.	1.9	13
381	Sodium channels and the molecular basis for pain. , 2002, , 23-50.		3
382	Chair's introduction: sodium channels and neuronal dysfunctionemerging concepts, converging themes. Novartis Foundation Symposium, 2002, 241, 1-4; discussion 226-32.	1.2	1
383	Diverse functions and dynamic expression of neuronal sodium channels. Novartis Foundation Symposium, 2002, 241, 34-51; discussion 51-60.	1.2	15
384	Sodium channels as molecular targets in multiple sclerosis. Journal of Rehabilitation Research and Development, 2002, 39, 233-42.	1.6	12
385	β1 adducin gene expression in DRG is developmentally regulated and is upregulated by glial-derived neurotrophic factor and nerve growth factor. Molecular Brain Research, 2001, 90, 118-124.	2.5	4
386	Contribution of Na _v 1.8 Sodium Channels to Action Potential Electrogenesis in DRG Neurons. Journal of Neurophysiology, 2001, 86, 629-640.	0.9	466
387	Glycosylation Alters Steady-State Inactivation of Sodium Channel Na _v 1.9/NaN in Dorsal Root Ganglion Neurons and Is Developmentally Regulated. Journal of Neuroscience, 2001, 21, 9629-9637.	1.7	99
388	Nav1.3 Sodium Channels: Rapid Repriming and Slow Closed-State Inactivation Display Quantitative Differences after Expression in a Mammalian Cell Line and in Spinal Sensory Neurons. Journal of Neuroscience, 2001, 21, 5952-5961.	1.7	287
389	Flanking regulatory sequences of the locus encoding the murine GDNF receptor,c-ret, directs lac Z (?-galactosidase) expression in developing somatosensory system. Developmental Dynamics, 2001, 222, 389-402.	0.8	14
390	Transcriptional channelopathies: An emerging class of disorders. Nature Reviews Neuroscience, 2001, 2, 652-659.	4.9	117
391	Direct Interaction with Contactin Targets Voltage-gated Sodium Channel Nav1.9/NaN to the Cell Membrane. Journal of Biological Chemistry, 2001, 276, 46553-46561.	1.6	76
392	Fibroblast Growth Factor Homologous Factor 1B Binds to the C Terminus of the Tetrodotoxin-resistant Sodium Channel rNav1.9a (NaN). Journal of Biological Chemistry, 2001, 276, 18925-18933.	1.6	111
393	Localization of the tetrodotoxin-resistant sodium channel NaN in nociceptors. NeuroReport, 2000, 11, 199-202.	0.6	116
394	Do â€~demyelinating' diseases involve more than myelin?. Nature Medicine, 2000, 6, 738-739.	15.2	22
395	Sodium channels and their genes: dynamic expression in the normal nervous system, dysregulation in disease states11Published on the World Wide Web on 15 August 2000 Brain Research, 2000, 886, 5-14.	1.1	84
396	Development of Glutamatergic Synaptic Activity in Cultured Spinal Neurons. Journal of Neurophysiology, 2000, 83, 659-670.	0.9	11

#	Article	IF	CITATIONS
397	Glial-Derived Neurotrophic Factor Upregulates Expression of Functional SNS and NaN Sodium Channels and Their Currents in Axotomized Dorsal Root Ganglion Neurons. Journal of Neuroscience, 2000, 20, 8754-8761.	1.7	142
398	Changes in Expression of Two Tetrodotoxin-Resistant Sodium Channels and Their Currents in Dorsal Root Ganglion Neurons after Sciatic Nerve Injury But Not Rhizotomy. Journal of Neuroscience, 2000, 20, 7279-7289.	1.7	193
399	The Neuroscientist Enters the New Millennium. Neuroscientist, 2000, 6, 66-66.	2.6	0
400	Multiple Sclerosis as a Neuronal Disease. Archives of Neurology, 2000, 57, 22.	4.9	36
401	Sodium channels and the molecular pathophysiology of pain. Progress in Brain Research, 2000, 129, 3-19.	0.9	36
402	The neuron as a dynamic electrogenic machine: modulation of sodium–channel expression as a basis for functional plasticity in neurons. Philosophical Transactions of the Royal Society B: Biological Sciences, 2000, 355, 199-213.	1.8	62
403	A double mutation in families with periodic paralysis defines new aspects of sodium channel slow inactivation. Journal of Clinical Investigation, 2000, 106, 431-438.	3.9	34
404	Experimental Approaches to Restoration of Function of Ascending and Descending Axons in Spinal Cord Injury. , 2000, , 215-239.		3
405	In Vivo NGF Deprivation Reduces SNS Expression and TTX-R Sodium Currents in IB4-Negative DRG Neurons. Journal of Neurophysiology, 1999, 81, 803-810.	0.9	89
406	A Novel Persistent Tetrodotoxin-Resistant Sodium Current In SNS-Null And Wild-Type Small Primary Sensory Neurons. Journal of Neuroscience, 1999, 19, RC43-RC43.	1.7	396
407	Activation and Inactivation of the Voltage-Gated Sodium Channel: Role of Segment S5 Revealed by a Novel Hyperkalaemic Periodic Paralysis Mutation. Journal of Neuroscience, 1999, 19, 4762-4771.	1.7	77
408	Characterization of a new sodium channel mutation at arginine 1448 associated with moderate paramyotonia congenita in humans. Journal of Physiology, 1999, 518, 337-344.	1.3	41
409	The role of voltage-gated Ca 2+ channels in anoxic injury of spinal cord white matter. Brain Research, 1999, 817, 84-92.	1.1	47
410	Changes in expression of voltage-gated potassium channels in dorsal root ganglion neurons following axotomy. , 1999, 22, 502-507.		164
411	Sodium channels, excitability of primary sensory neurons, and the molecular basis of pain. , 1999, 22, 1177-1187.		180
412	Sodium channel expression in NGF-overexpressing transgenic mice. , 1999, 57, 39-47.		60
413	The molecular pathophysiology of pain: abnormal expression of sodium channel genes and its contributions to hyperexcitability of primary sensory neurons. Pain, 1999, 82, S133-S140.	2.0	132
414	Plasticity of sodium channel expression in DRG neurons in the chronic constriction injury model of neuropathic pain. Pain, 1999, 83, 591-600.	2.0	249

#	Article	IF	CITATIONS
415	Sodium channels: from mechanisms to medicines?. Brain Research Bulletin, 1999, 50, 309-310.	1.4	8
416	Differential role of GDNF and NGF in the maintenance of two TTX-resistant sodium channels in adult DRG neurons. Molecular Brain Research, 1999, 67, 267-282.	2.5	192
417	Coding Sequence, Genomic Organization, and Conserved Chromosomal Localization of the Mouse Gene Scn11a Encoding the Sodium Channel NaN. Genomics, 1999, 59, 309-318.	1.3	51
418	Sodium channel expression in NGFâ€overexpressing transgenic mice. Journal of Neuroscience Research, 1999, 57, 39-47.	1.3	2
419	Sodium channels, excitability of primary sensory neurons, and the molecular basis of pain. , 1999, 22, 1177.		2
420	Resistance to anoxic injury in the dorsal columns of adult rat spinal cord following demyelination. Brain Research, 1998, 779, 292-296.	1.1	20
421	Mechanisms of enhancement of neurite regeneration in vitro following a conditioning sciatic nerve lesion. , 1998, 391, 11-29.		71
422	Demyelinating Diseases — New Pathological Insights, New Therapeutic Targets. New England Journal of Medicine, 1998, 338, 323-325.	13.9	174
423	Novel splice variants of the voltage-sensitive sodium channel alpha subunit. NeuroReport, 1998, 9, 1267-1272.	0.6	48
424	SNS Na+ channel expression increases in dorsal root ganglion neurons in the carrageenan inflammatory pain model. NeuroReport, 1998, 9, 967-972.	0.6	219
425	Slow Closed-State Inactivation: A Novel Mechanism Underlying Ramp Currents in Cells Expressing the hNE/PN1 Sodium Channel. Journal of Neuroscience, 1998, 18, 9607-9619.	1.7	345
426	Transplanted Olfactory Ensheathing Cells Remyelinate and Enhance Axonal Conduction in the Demyelinated Dorsal Columns of the Rat Spinal Cord. Journal of Neuroscience, 1998, 18, 6176-6185.	1.7	324
427	Effects of Glucose Deprivation, Chemical Hypoxia, and Simulated Ischemia on Na+Homeostasis in Rat Spinal Cord Astrocytes. Journal of Neuroscience, 1998, 18, 3554-3562.	1.7	102
428	Axon Conduction and Survival in CNS White Matter During Energy Deprivation: A Developmental Study. Journal of Neurophysiology, 1998, 79, 95-105.	0.9	76
429	Endogenous NMDA-Receptor Activation Regulates Glutamate Release in Cultured Spinal Neurons. Journal of Neurophysiology, 1998, 80, 196-208.	0.9	17
430	Anoxie Injury in the Rat Spinal Cord: Pharmacological Evidence for Multiple Steps in Ca ²⁺ -Dependent Injury of the Dorsal Columns. Journal of Neurotrauma, 1997, 14, 299-311.	1.7	66
431	Different Strokes in Different Folks: Unique Molecular Signatures of Cortical and Deep Brain Infarcts. Cerebrovascular Diseases, 1997, 7, 243-244.	0.8	2
432	Exciting Times for <i>The Neuroscientist</i> . Neuroscientist, 1997, 3, i-i.	2.6	0

#	Article	IF	CITATIONS
433	Downregulation of Na+ channel mRNA in olfactory bulb tufted cells following deafferentiation. NeuroReport, 1997, 8, 1289-1293.	0.6	18
434	NGF has opposing effects on Na+ channel III and SNS gene expression in spinal sensory neurons. NeuroReport, 1997, 8, 2331-2335.	0.6	125
435	Regulation of Na+ channel β1 and β2 subunit mRNA levels in cultured rat astrocytes. Neuroscience Letters, 1997, 234, 107-110.	1.0	21
436	Differential Effects of NGF and BDNF on Axotomy-Induced Changes in GABAA-Receptor-Mediated Conductance and Sodium Currents in Cutaneous Afferent Neurons. Journal of Neurophysiology, 1997, 78, 31-42.	0.9	76
437	Pharmacological Characterization of Na+ Influx via Voltage-Gated Na+ Channels in Spinal Cord Astrocytes. Journal of Neurophysiology, 1997, 78, 3249-3258.	0.9	20
438	TTX-Sensitive and -Resistant Na ⁺ Currents, and mRNA for the TTX-Resistant rH1 Channel, Are Expressed in B104 Neuroblastoma Cells. Journal of Neurophysiology, 1997, 77, 236-246.	0.9	21
439	Axon-glia interactions: Building a smart nerve fiber. Current Biology, 1997, 7, R406-R410.	1.8	66
440	Immunolocalization of the Na+–Ca2+ exchanger in mammalian myelinated axons. Brain Research, 1997, 776, 1-9.	1.1	46
441	Downregulation of Tetrodotoxin-Resistant Sodium Currents and Upregulation of a Rapidly Repriming Tetrodotoxin-Sensitive Sodium Current in Small Spinal Sensory Neurons after Nerve Injury. Journal of Neuroscience, 1997, 17, 3503-3514.	1.7	462
442	Voltage-gated Na+ channels in glia: properties and possible functions. Trends in Neurosciences, 1996, 19, 325-331.	4.2	117
443	Orphan nuclear receptor RORα gene: isoform-specific spatiotemporal expression during postnatal development of brain. Molecular Brain Research, 1996, 42, 109-117.	2.5	50
444	Editorial The Whiplash (Hyperextension-Flexion) Syndrome: A Disorder of Dorsal Root Ganglion Neurons?. Journal of Neurotrauma, 1996, 13, 735-739.	1.7	7
445	Restoration of Normal Conduction Properties in Demyelinated Spinal Cord Axons in the Adult Rat by Transplantation of Exogenous Schwann Cells. Journal of Neuroscience, 1996, 16, 3199-3208.	1.7	244
446	Mechanisms of Paresthesiae, Dysesthesiae, and Hyperesthesiae: Role of Na ⁺ Channel Heterogeneity. European Neurology, 1996, 36, 3-12.	0.6	74
447	White Matter Stroke: Autoprotective Mechanisms with Therapeutic Implications. Cerebrovascular Diseases, 1996, 6, 59-65.	0.8	10
448	Action potential-like responses in B 104 cells with low Na+ channel densities. Brain Research, 1996, 735, 50-58.	1.1	8
449	Autoprotective mechanisms in the CNS. Molecular and Chemical Neuropathology, 1996, 27, 107-129.	1.0	20
450	Expression of mRNA for a sodium channel in subfamily 2 in spinal sensory neurons. Neurochemical Research, 1996, 21, 395-401.	1.6	11

#	Article	IF	CITATIONS
451	Manipulation of the delayed rectifier Kv1.5 potassium channel in glial cells by antisense oligodeoxynucleotides. Glia, 1996, 18, 177-184.	2.5	47
452	Chapter 35 Clinical observations on the emotional motor system. Progress in Brain Research, 1996, 107, 595-604.	0.9	6
453	Sodium channel blockade by antibodies: A new mechanism of neurological disease?. Annals of Neurology, 1995, 37, 421-423.	2.8	68
454	Letters to the editor. Muscle and Nerve, 1995, 18, 673-677.	1.0	0
455	Differential Na+ channel ?1 subunit mRNA expression in stellate and flat astrocytes cultured from rat cortex and cerebellum: A combined in situ hybridization and immunocytochemistry study. Glia, 1995, 13, 166-173.	2.5	19
456	Expression of sodium channel ?- and ?-subunits in the nervous system of themyelin-deficient rat. Journal of Neurocytology, 1995, 24, 654-666.	1.6	10
457	Na+ channel β1 subunit mRNA: differential expression in rat spinal sensory neurons. Molecular Brain Research, 1995, 30, 357-361.	2.5	20
458	An orphan nuclear receptor, mROR α, and its spatial expression in adult mouse brain. Molecular Brain Research, 1995, 33, 217-226.	2.5	58
459	Na+ channel β1 subunit mRNA expression in developing rat central nervous system. Molecular Brain Research, 1995, 34, 239-250.	2.5	33
460	Selective loss of slow and enhancement of fast Na+currents in cutaneous afferent dorsal root ganglion neurones following axotomy. Neurobiology of Disease, 1995, 2, 87-96.	2.1	129
461	Differential up-regulation of sodium channel α- and β1-subunit mRNAs in cultured embryonic DRG neurons following exposure to NGF. Molecular Brain Research, 1995, 30, 97-105.	2.5	59
462	Clivus and cervical spinal osteomyelitis with epidural abscess presenting with multiple cranial neuropathies. Clinical Neurology and Neurosurgery, 1995, 97, 239-244.	0.6	29
463	Pathophysiology of demyelinated axons. , 1995, , 438-461.		33
464	Activity-dependent modulation of excitability: Implications for axonal physiology and pathophysiology. Muscle and Nerve, 1994, 17, 969-974.	1.0	44
465	Intracellular calcium mobilization and neurite outgrowth in mammalian neurons. Journal of Neurobiology, 1994, 25, 252-264.	3.7	77
466	Type II sodium channels in spinal cord astrocytes in situ: Immunocytochemical observations. Glia, 1994, 12, 219-227.	2.5	27
467	The expression of rat brain voltage-sensitive Na+ channel mRNAs in astrocytes. Molecular Brain Research, 1994, 23, 57-65.	2.5	41
468	Nuclear and cytoplasmic Ca2+ signals in developing rat dorsal root ganglion neurons studied in excised tissue. Brain Research, 1994, 635, 231-237.	1.1	23

#	Article	IF	CITATIONS
469	Anoxic injury of rat optic nerve: ultrastructural evidence for coupling between Na+ influx and Ca2+-mediated injury in myelinated CNS axons. Brain Research, 1994, 644, 197-204.	1.1	92
470	Rat brain Na+channel mRNAs in non-excitable Schwann cells. FEBS Letters, 1994, 350, 342-346.	1.3	18
471	In situ hybridization localization of the Na+ channel β1 subunit mRNA in rat CNS neurons. Neuroscience Letters, 1994, 176, 119-122.	1.0	25
472	Chapter 14 Nuclear calcium elevation may initiate neurite outgrowth in mammalian neurons. Progress in Brain Research, 1994, 103, 137-151.	0.9	4
473	Peripheral nerve abnormalities in multiple sclerosis. Muscle and Nerve, 1993, 16, 1-5.	1.0	56
474	Molecular dissection of the myelinated axon. Annals of Neurology, 1993, 33, 121-136.	2.8	324
475	Protection of the axonal cytoskeleton in anoxic optic nerve by decreased extracellular calcium. Brain Research, 1993, 614, 137-145.	1.1	87
476	Painless aortic dissection presenting as a progressive myelopathy. Journal of the Neurological Sciences, 1993, 120, 141-144.	0.3	21
477	Editorial: Aminopyridines and the Treatment of Spinal Cord Injury. Journal of Neurotrauma, 1993, 10, 19-24.	1.7	34
478	The Perinodal Astrocyte: Functional and Developmental Considerations. , 1993, , 15-25.		4
479	Chapter 8: The expression of sodium channels in astrocytes in situ and in vitro. Progress in Brain Research, 1992, 94, 89-107.	0.9	9
480	Ultrastructural concomitants of anoxic injury and early post-anoxic recovery in rat optic nerve. Brain Research, 1992, 574, 105-119.	1.1	123
481	Effects of Temperature on Evoked Electrical Activity and Anoxic Injury in CNS White Matter. Journal of Cerebral Blood Flow and Metabolism, 1992, 12, 977-986.	2.4	38
482	Non-synaptic mechanisms of Ca2+-mediated injury in CNS white matter. Trends in Neurosciences, 1991, 14, 461-468.	4.2	116
483	Differential sensitivity to hypoxia of the peripheral versus central trajectory of primary afferent axons. Brain Research, 1991, 551, 136-141.	1.1	30
484	Compound action potential of nerve recorded by suction electrode: a theoretical and experimental analysis. Brain Research, 1991, 546, 18-32.	1.1	179
485	Reverse Operation of the Na+-Ca2+Exchanger Mediates Ca2+Influx during Anoxia in Mammalian CNS White Matter. Annals of the New York Academy of Sciences, 1991, 639, 328-332.	1.8	39
486	Lhermitte's sign in a patient with herpes zoster. Journal of the Neurological Sciences, 1991, 106, 153-157.	0.3	17

#	Article	IF	CITATIONS
487	Tea-sensitive potassium channels and inward rectification in regenerated rat sciatic nerve. Muscle and Nerve, 1991, 14, 640-646.	1.0	16
488	Na+-Ca2+ exchanger mediates Ca2+ influx during anoxia in mammalian central nervous system white matter. Annals of Neurology, 1991, 30, 375-380.	2.8	196
489	Anoxic injury of mammalian central white matter: Decreased susceptibility in myelin-deficient optic nerve. Annals of Neurology, 1990, 28, 335-340.	2.8	38
490	Effects of polyvalent cations and dihydropyridine calcium channel blockers on recovery of CNS white matter from anoxia. Neuroscience Letters, 1990, 115, 293-299.	1.0	59
491	Emotional facial paresis with striatocapsular infarction. Journal of the Neurological Sciences, 1990, 98, 195-201.	0.3	27
492	Depolarization-dependent actions of dihydropyridines on synaptic transmission in the in vitro rat hippocampus. Brain Research, 1990, 527, 181-191.	1.1	15
493	The voltage-dependent sodium channel in mammalian CNS and PNS: antibody characterization and immunocytochemical localization. Brain Research, 1990, 532, 222-231.	1.1	34
494	Trophic influence of the distal nerve segment on GABAA receptor expression in axotomized adult sensory neurons. Experimental Neurology, 1990, 109, 273-278.	2.0	54
495	Ion channel organization of the myelinated fiber. Trends in Neurosciences, 1990, 13, 48-54.	4.2	148
496	Anoxic injury of CNS white matter. Neurology, 1990, 40, 1399-1399.	1.5	64
497	Demyelination in spinal cord injury. Journal of the Neurological Sciences, 1989, 91, 1-14.	0.3	144
498	Pharmacological sensitivities of two afterhyperpolarizations in rat optic nerve. Brain Research, 1989, 502, 252-257.	1.1	21
499	The perinodal astrocyte. Glia, 1988, 1, 169-183.	2.5	141
500	Unmyelinated and myelinated axon membrane from rat corpus callosum: differences in macromolecular structure. Brain Research, 1988, 453, 337-343.	1.1	12
501	Evidence for the presence of two types of potassium channels in the rat optic nerve. Brain Research, 1988, 447, 1-9.	1.1	57
502	Regional membrane heterogeneity in premyelinated CNS axons: factors influencing the binding of sterol-specific probes. Brain Research, 1988, 443, 231-242.	1.1	11
503	Evoked potentials in suspected multiple sclerosis: Diagnostic value and prediction of clinical course. Journal of the Neurological Sciences, 1988, 83, 191-210.	0.3	87
504	Thalamic Amnesia: Clinical and Experimental Aspects. International Review of Neurobiology, 1988, 29, 245-257.	0.9	2

#	Article	IF	CITATIONS
505	Macromolecular Structure of Axonal Membrane in the Optic Nerve of the Jimpy Mouse. Journal of Neuropathology and Experimental Neurology, 1988, 47, 588-598.	0.9	6
506	Chapter 8 Ionic channel organization of normal and regenerating mammalian axons. Progress in Brain Research, 1987, 71, 89-101.	0.9	26
507	Chapter 11 Rules governing membrane reorganization and axon—glial interactions during the development of myelinated fibers. Progress in Brain Research, 1987, 71, 121-141.	0.9	21
508	Macromolecular Structure of Axonal Membrane during Acute Experimental Allergic Encephalomyelitis in Rat and Guinea Pig Spinal Cord. Journal of Neuropathology and Experimental Neurology, 1987, 46, 167-184.	0.9	14
509	Macromolecular structure of the Schwann cell membrane. Journal of the Neurological Sciences, 1987, 77, 23-34.	0.3	12
510	Carbonic anhydrase activity develops postnatally in the rat optic nerve. Developmental Brain Research, 1987, 31, 291-298.	2.1	34
511	Explant cultures of teleost spinal cord: Source of neurite outgrowth. Developmental Biology, 1987, 119, 601-604.	0.9	12
512	Filipin-cholesterol binding in CNS axons prior to myelination: evidence for microheterogeneity in premyelinated axolemma. Brain Research, 1987, 404, 21-32.	1.1	11
513	Molecular differentiation of neurons from ependyma-derived cells in tissue cultures of regenerating teleost spinal cord. Molecular Brain Research, 1987, 2, 131-136.	2.5	21
514	Changes in synaptic morphology associated with presynaptic and postsynaptic activity: An in vitro study of the electrosensory organ of the thornback ray. Synapse, 1987, 1, 335-346.	0.6	12
515	Physiological effects of 4-aminopyridine on demyelinated mammalian motor and sensory fibers. Annals of Neurology, 1987, 22, 264-268.	2.8	73
516	The astrocyte as a component of the node of Ranvier. Trends in Neurosciences, 1986, 9, 250-253.	4.2	35
517	Molecular structure of the axolemma of developing axons following altered gliogenesis in rat optic nerve. Developmental Biology, 1986, 115, 301-312.	0.9	12
518	Thalamic hemorrhage with neglect and memory disorder. Journal of the Neurological Sciences, 1986, 75, 105-112.	0.3	26
519	Mammalian optic nerve fibers display two pharmacologically distinct potassium channels. Brain Research, 1986, 383, 357-361.	1.1	50
520	Effects of delayed myelination by oligodendrocytes and Schwann cells on the macromolecular structure of axonal membrane in rat spinal cord. Journal of Neurocytology, 1986, 15, 745-761.	1.6	33
521	Selforganization of ependyma in regenerating teleost spinal cord: evidence from serial section reconstructions. Development (Cambridge), 1986, 96, 1-18.	1.2	8
522	Dorsal—Ventral Differences in the Glia Limitans of the Spinal Cord: An Ultrastructural Study in Developing Normal and Irradiated Rats. Journal of Neuropathology and Experimental Neurology, 1985, 44, 415-429.	0.9	36

#	Article	IF	CITATIONS
523	Membrane ultrastructure of developing axons in glial cell deficient rat spinal cord. Journal of Neurocytology, 1985, 14, 79-104.	1.6	37
524	Axo-glial relations in the retina-optic nerve junction of the adult rat: freeze-fracture observations on axon membrane structure. Journal of Neurocytology, 1985, 14, 887-907.	1.6	35
525	Ligature-induced injury in peripheral nerve: Electrophysiological observations on changes in action potential characteristics following blockade of potassium conductance. Muscle and Nerve, 1985, 8, 85-92.	1.0	22
526	Neurogenesis in Adult Vertebrate Spinal Cord in Situ and in Vitro: A New Model System. Annals of the New York Academy of Sciences, 1985, 457, 213-233.	1.8	54
527	Generation of electromotor neurons in Sternarchus albifrons: Differences between normally growing and regenerating spinal cord. Developmental Biology, 1985, 112, 338-344.	0.9	27
528	Norman Geschwind, M.D. 1926–1984. Journal of the Neurological Sciences, 1985, 69, 113-115.	0.3	1
529	Perinodal astrocytic processes at nodes of ranvier in developing normal and glial cell deficient rat spinal cord. Brain Research, 1985, 337, 321-331.	1.1	43
530	Neurogenesis in tissue cultures of adult teleost spinal cord. Developmental Brain Research, 1985, 20, 203-212.	2.1	31
531	Cell death of asynaptic neurons in regenerating spinal cord. Developmental Biology, 1984, 103, 443-455.	0.9	22
532	Specificity in central myelination: evidence for local regulation of myelin thickness. Brain Research, 1984, 292, 179-185.	1.1	96
533	Freeze-fracture ultrastructure of the perinodal astrocyte and associated glial junctions. Brain Research, 1984, 308, 77-87.	1.1	112
534	Impulse conduction in inhomogeneous axons: Effects of variation in voltage-sensitive ionic conductances on invasion of demyelinated axon segments and preterminal fibers. Brain Research, 1984, 294, 111-122.	1.1	65
535	NODELIKE MEMBRANE AT EXTRANODAL SITES: COMPARATIVE MORPHOLOGY AND PHYSIOLOGY. , 1984, , 311-351.		8
536	Long-term regenerated nerve fibres retain sensitivity to potassium channel blocking agents. Nature, 1983, 304, 640-642.	13.7	70
537	The supernormal period of the cerebellar parallel fibers effects of [Ca2+]o and [K+]o. Pflugers Archiv European Journal of Physiology, 1983, 397, 176-183.	1.3	13
538	Freeze-fracture ultrastructure of developing and adult non-myelinated ganglion cell axolemma in the retinal nerve fibre layer. Journal of Neurocytology, 1983, 12, 201-212.	1.6	20
539	Fine structure of regenerated ependyma and spinal cord inSternarchus albifrons. The Anatomical Record, 1983, 205, 73-83.	2.3	47
540	Caudal spinal cord of the teleostSternarchus albifrons resembles regenerating cord. The Anatomical Record, 1983, 205, 85-92.	2.3	34

#	Article	IF	CITATIONS
541	Major morbidity related to hyperthermia in multiple sclerosis. Annals of Neurology, 1983, 13, 348-348.	2.8	21
542	Myelin protein metabolism in demyelination and remyelination in the sciatic nerve. Brain Research, 1983, 270, 37-44.	1.1	22
543	Action potential propagation and conduction velocity — new perspectives and questions. Trends in Neurosciences, 1983, 6, 157-161.	4.2	21
544	Ontogenesis of the Axolemma and Axoglial Relationships in Myelinated Fibers: Electrophysiological and Freeze-Fracture Correlates of Membrane Plasticity. International Review of Neurobiology, 1983, 24, 433-484.	0.9	20
545	ELECTROPHYSIOLOGY OF CONDUCTION IN MAMMALIAN REGENERATING NERVES., 1983, , 89-107.		0
546	Membranes, Myelin, and the Pathophysiology of Multiple Sclerosis. New England Journal of Medicine, 1982, 306, 1529-1533.	13.9	144
547	Rat optic nerve: Electrophysiological, pharmacological and anatomical studies during development. Developmental Brain Research, 1982, 3, 371-386.	2.1	267
548	Intra-axonal recordings in rat dorsal column axons: membrane hyperpolarization and decreased excitability precede the primary afferent depolarization. Brain Research, 1982, 238, 222-227.	1.1	47
549	Rat optic nerve: Freeze-fracture studies during development of myelinated axons. Brain Research, 1982, 250, 1-20.	1.1	105
550	Spatial heterogeneity of the axolemma of non-myelinated fibers in the optic disc of the adult rat. Cell and Tissue Research, 1982, 224, 239-246.	1.5	15
551	Diabetic Radiculoneuropathy: Clinical patterns of sensory loss and distal paresthesias. Acta Diabetologica Latina, 1982, 19, 199-207.	0.2	7
552	Effects of variations in temperature on impulse conduction along nonmyelinated axons in the mammalian brain. Experimental Neurology, 1981, 71, 383-389.	2.0	25
553	Cytochemical heterogeneity of the axon membrane. Trends in Neurosciences, 1981, 4, 7-9.	4.2	10
554	Freeze-fracture ultrastructure of rat C.N.S. and P.N.S. nonmyelinated axolemma. Journal of Neurocytology, 1981, 10, 981-993.	1.6	54
555	Pathophysiology of Nerve Conduction: Relation to Diabetic Neuropathy. Annals of Internal Medicine, 1980, 92, 297.	2.0	33
556	Determinants of conduction velocity in myelinated nerve fibers. Muscle and Nerve, 1980, 3, 141-150.	1.0	528
557	Absence of potassium conductance in central myelinated axons. Nature, 1980, 287, 348-349.	13.7	99
558	Lysophosphatidyl choline-induced focal demyelination in the rabbit corpus callosum. Journal of the Neurological Sciences, 1980, 48, 221-231.	0.3	30

#	Article	IF	CITATIONS
559	Ionic channel distribution and heterogeneity of the axon membrane in myelinated fibers. Brain Research Reviews, 1980, 2, 205-IN2.	9.1	108
560	Ultrastructural and Cytochemical Observations in a Case of Dominantly Inherited Hypertrophic (Charcot-Marie-Tooth) Neuropathy. Journal of Neuropathology and Experimental Neurology, 1979, 38, 586-595.	0.9	11
561	Ultrastructure and Conduction Properties of Visual Callosal Axons of the Rabbit. , 1979, , 195-210.		22
562	Demyelination of Sternarchus electrocyte fibers by injection of diphtheria toxin. Journal of the Neurological Sciences, 1978, 35, 235-241.	0.3	7
563	The cells of origin of the corpus callosum in rabbit visual cortex. Brain Research, 1978, 156, 129-134.	1.1	39
564	Intra-axonal ferric ion-ferrocyanide staining of nodes of Ranvier and initial segments in central myelinated fibers. Brain Research, 1978, 144, 1-10.	1.1	71
565	The conduction properties of axons in central white matter. Progress in Neurobiology, 1977, 8, 297-324.	2.8	102
566	Specific staining of the axon membrane at nodes of Ranvier with ferric ion and ferrocyanide. Journal of the Neurological Sciences, 1977, 31, 1-11.	0.3	85
567	Evidence for inorganic phosphate binding at nodes of Ranvier in peripheral nerves. Journal of the Neurological Sciences, 1977, 33, 207-211.	0.3	16
568	Ferric ion, ferrocyanide, and inorganic phosphate as cytochemical reactants at peripheral nodes of Ranvier. Journal of Neurocytology, 1977, 6, 555-570.	1.6	42
569	Morphology and physiology of visual callosal axons: evidence for a supernormal period in central myelinated axons. Brain Research, 1976, 113, 179-187.	1.1	44
570	Variations in conduction velocity and excitability following single and multiple impulses of visual callosal axons in the rabbit. Experimental Neurology, 1976, 53, 128-150.	2.0	130
571	Ultrastructure of visual callosal axons in the rabbit. Experimental Neurology, 1976, 53, 115-127.	2.0	127
572	Integrative Properties and Design Principles of Axons. International Review of Neurobiology, 1975, 18, 1-40.	0.9	93
573	Morphology of spinal electromotor neurons and presynaptic coupling in the gymnotidSternarchus albifrons. Journal of Neurocytology, 1975, 4, 469-478.	1.6	49
574	Electron-microscopic observations on preterminal fibers in the oculomotor nucleus of the cat. Journal of the Neurological Sciences, 1975, 26, 395-400.	0.3	9
575	Ultrastructural observations on branching patterns of central axons. Neuroscience Letters, 1975, 1, 251-256.	1.0	4
576	The Interictal Behavior Syndrome of Temporal Lobe Epilepsy. Archives of General Psychiatry, 1975, 32, 1580.	13.8	408

#	Article	IF	CITATIONS
577	Ultrastructural differentiation of the axon membrane at synaptic and non-synaptic central nodes of Ranvier. Brain Research, 1974, 65, 338-342.	1.1	25
578	Features associated with paranodal demyelination at a specialized site in the non-pathological nervous system. Journal of the Neurological Sciences, 1973, 19, 357-362.	0.3	7
579	Regional differentiation of the axon: A review with special reference to the concept of the multiplex neuron. Brain Research, 1972, 47, 269-288.	1.1	137
580	An ultrastructural study of the pattern of myelination of preterminal fibers in teleost oculomotor nuclei, and spinal cord. Brain Research, 1971, 27, 189-201.	1.1	36
581	Closely spaced nodes of Ranvier in the mammalian brain. Brain Research, 1971, 32, 445-448.	1.1	29
582	An electron microscopic study of synaptic morphology in the oculomotor nuclei of three inframammalian species. Journal of Comparative Neurology, 1971, 143, 41-71.	0.9	27
583	Closely Spaced Nodes of Ranvier in the Teleost Brain. Nature, 1970, 227, 283-284.	13.7	34
584	Pinocytosis at postsynaptic membranes: electron microscopic evidence. Brain Research, 1969, 14, 240-244.	1.1	41
585	Information Content of Ensembles of Hypotheses. Psychological Reports, 1969, 24, 367-371.	0.9	0
586	Micropinocytotic invaginations in the axolemma of peripheral nerves. Cell and Tissue Research, 1968, 86, 571-573.	1.5	30
587	Contextual Categorization by Lateral Inhibition. IEEE Transactions on Systems Science and Cybernetics, 1968, 4, 191-192.	0.6	1
588	Peripheral nerve axon processes sharing common myelin sheaths. Brain Research, 1968, 7, 469-473.	1.1	7
589	Procedure for Determination of Contextual Links within Models. Psychological Reports, 1968, 23, 1261-1262.	0.9	0
590	Dysfunction and recovery in demyelinated and dysmyelinated axons. , 0, , 468-486.		0
591	Dysfunction and recovery in demyelinated and dysmyelinated axons. , 0, , 457-471.		0
592	Sodium Channels and Pain. , 0, , 233-262.		0
593	Sodium channel expression and function in multiple sclerosis. , 0, , 29-43.		0
594	Voltage-Gated Sodium Channels: Multiple Roles in the Pathophysiology of Pain. , 0, , 67-104.		0