List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3439198/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Room-temperature coherent manipulation of single-spin qubits in silicon carbide with a high readout contrast. National Science Review, 2022, 9, .	9.5	44
2	Ultrafast coherent control of a hole spin qubit in a germanium quantum dot. Nature Communications, 2022, 13, 206.	12.8	58
3	Transverse Mode-Encoded Quantum Gate on a Silicon Photonic Chip. Physical Review Letters, 2022, 128, 060501.	7.8	10
4	Near-Field Modulation of Differently Oriented Single Photon Emitters with A Plasmonic Probe. Nano Letters, 2022, 22, 2244-2250.	9.1	4
5	Quantum Approach to Accelerate Finite Volume Method on Steady Computational Fluid Dynamics Problems. Quantum Information Processing, 2022, 21, 1.	2.2	9
6	Shortcuts to the quantum approximate optimization algorithm. Physical Review A, 2022, 105, .	2.5	5
7	Characterization of a Triple Quantum Dot via an Onâ€chip Microwave Resonator. Advanced Quantum Technologies, 2022, 5, 2100104.	3.9	2
8	Gate ontrolled Quantum Dots Based on 2D Materials. Advanced Quantum Technologies, 2022, 5, .	3.9	13
9	Gate-Tunable Spin-Orbit Coupling in a Germanium Hole Double Quantum Dot. Physical Review Applied, 2022, 17, .	3.8	15
10	Superconducting and Silicon-Based Semiconductor Quantum Computers: A Review IEEE Nanotechnology Magazine, 2022, , 2-11.	1.3	0
11	Quantum computational quantitative trading: high-frequency statistical arbitrage algorithm. New Journal of Physics, 2022, 24, 073036.	2.9	4
12	Correlated spectrum of distant semiconductor qubits coupled by microwave photons. Science Bulletin, 2021, 66, 332-338.	9.0	21
13	Tunable parametric amplification of a graphene nanomechanical resonator in the nonlinear regime. Nanotechnology, 2021, 32, 155203.	2.6	3
14	Experimental realization of nonadiabatic geometric gates with a superconducting Xmon qubit. Science China: Physics, Mechanics and Astronomy, 2021, 64, 1.	5.1	23
15	Supercompact Photonic Quantum Logic Gate on a Silicon Chip. Physical Review Letters, 2021, 126, 130501.	7.8	25
16	Effects of Quantum Noise on Quantum Approximate Optimization Algorithm. Chinese Physics Letters, 2021, 38, 030302.	3.3	44
17	Near-field modulation of single photon emitter with a plasmonic probe. Applied Physics Letters, 2021, 118, .	3.3	9
18	Microwave-Resonator-Detected Excited-State Spectroscopy of a Double Quantum Dot. Physical Review Applied, 2021, 15, .	3.8	9

#	Article	IF	CITATIONS
19	Micro-scale photon source in a hybrid cQED system*. Chinese Physics B, 2021, 30, 048507.	1.4	2
20	Growth of h-BN/graphene heterostructure using proximity catalysis. Nanotechnology, 2021, 32, 275602.	2.6	4
21	Controlling Synthetic Spin-Orbit Coupling in a Silicon Quantum Dot with Magnetic Field. Physical Review Applied, 2021, 15, .	3.8	13
22	Anisotropic <i>g</i> -Factor and Spin–Orbit Field in a Germanium Hut Wire Double Quantum Dot. Nano Letters, 2021, 21, 3835-3842.	9.1	16
23	Floquet state depletion in ac-driven circuit QED. Physical Review B, 2021, 103, .	3.2	11
24	A cryogenic low power CMOS analog buffer at 4.2K. IEICE Electronics Express, 2021, 18, 20210183-20210183.	0.8	1
25	Optimization of a Controlled- <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline" overflow="scroll"> <mml:mi>Z</mml:mi> </mml:math> Gate with Data-Driven Gradient-Ascent Pulse Engineering in a Superconducting-Qubit System. Physical Review Applied, 2021, 15	3.8	9
26	Mitigating Crosstalk-Induced Qubit Readout Error with Shallow-Neural-Network Discrimination. Physical Review Applied, 2021, 16, .	3.8	9
27	Kondo induced <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi>ï€</mml:mi> -phase shift of microwave photons in a circuit quantum electrodynamics architecture. Physical Review B, 2021, 104, .</mml:math 	3.2	3
28	Experimental Determination of Electronic States via Digitized Shortcut to Adiabaticity and Sequential Digitized Adiabaticity. Physical Review Applied, 2021, 16, .	3.8	3
29	Characterization and Modeling of Native MOSFETs Down to 4.2 K. IEEE Transactions on Electron Devices, 2021, 68, 4267-4273.	3.0	18
30	An Operation Guide of Si-MOS Quantum Dots for Spin Qubits. Nanomaterials, 2021, 11, 2486.	4.1	5
31	A quantum circuit simulator and its applications on Sunway TaihuLight supercomputer. Scientific Reports, 2021, 11, 355.	3.3	8
32	Graphene-Based Nanoelectromechanical Periodic Array with Tunable Frequency. Nano Letters, 2021, 21, 8571-8578.	9.1	13
33	Quantum homotopy perturbation method for nonlinear dissipative ordinary differential equations. New Journal of Physics, 2021, 23, 123035.	2.9	12
34	Quantum error correction with the color-Gottesman-Kitaev-Preskill code. Physical Review A, 2021, 104, .	2.5	5
35	Hot Carrier Degradation in MOSFETs at Cryogenic Temperatures Down to 4.2 K. IEEE Transactions on Device and Materials Reliability, 2021, 21, 620-626.	2.0	4
36	A Suspended Silicon Singleâ€Hole Transistor as an Extremely Scaled Gigahertz Nanoelectromechanical Beam Resonator. Advanced Materials, 2020, 32, e2005625.	21.0	5

#	Article	IF	CITATIONS
37	Controlling spins in silicon quantum dots. Journal of Semiconductors, 2020, 41, 070402.	3.7	4
38	Simultaneous Feedback and Feedforward Control and Its Application to Realize a Random Walk on the Bloch Sphere in an Xmon-Superconducting-Qubit System. Physical Review Applied, 2020, 14, .	3.8	8
39	Characterization and Modeling of 0.18 <i>μ4</i> m Bulk CMOS Technology at Sub-Kelvin Temperature. IEEE Journal of the Electron Devices Society, 2020, 8, 897-904.	2.1	10
40	Topological Hall Effect in Traditional Ferromagnet Embedded with Black-Phosphorus-Like Bismuth Nanosheets. ACS Applied Materials & Interfaces, 2020, 12, 25135-25142.	8.0	21
41	Coherent Control of Nitrogen-Vacancy Center Spins in Silicon Carbide at Room Temperature. Physical Review Letters, 2020, 124, 223601.	7.8	102
42	Improving mobility of silicon metal-oxide–semiconductor devices for quantum dots by high vacuum activation annealing. Europhysics Letters, 2020, 130, 27001.	2.0	8
43	Giant Anisotropy of Spin Relaxation and Spin-Valley Mixing in a Silicon Quantum Dot. Physical Review Letters, 2020, 124, 257701.	7.8	31
44	Coherent phonon dynamics in spatially separated graphene mechanical resonators. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 5582-5587.	7.1	40
45	Hole spin in tunable Ge hut wire double quantum dot. Applied Physics Express, 2020, 13, 065002.	2.4	9
46	Entanglement area law for shallow and deep quantum neural network states. New Journal of Physics, 2020, 22, 053022.	2.9	6
47	Dipole coupling of a hole double quantum dot in germanium hut wire to a microwave resonator. New Journal of Physics, 2020, 22, 083068.	2.9	14
48	Transport characteristics of multi-terminal pristine and defective phosphorene systems. Nanotechnology, 2019, 30, 455705.	2.6	6
49	Building quantum neural networks based on a swap test. Physical Review A, 2019, 100, .	2.5	29
50	0.18μm CMOS Ring Oscillator at Liquid Helium Temperature. , 2019, , .		0
51	Generation of a frequency-degenerate four-photon entangled state using a silicon nanowire. Npj Quantum Information, 2019, 5, .	6.7	15
52	Single-shot realization of nonadiabatic holonomic gates with a superconducting Xmon qutrit. New Journal of Physics, 2019, 21, 073024.	2.9	28
53	Design of graphene waveguides: Effect of edge orientation and waveguide configuration. Physical Review B, 2019, 100, .	3.2	4
54	On-Demand Generation of Single Silicon Vacancy Defects in Silicon Carbide. ACS Photonics, 2019, 6, 1736-1743.	6.6	60

#	Article	IF	CITATIONS
55	Generation of multiphoton quantum states on silicon. Light: Science and Applications, 2019, 8, 41.	16.6	41
56	Experimental Realization of a Fast Controlled- <i>Z</i> Gate via a Shortcut to Adiabaticity. Physical Review Applied, 2019, 11, .	3.8	36
57	Quantum Neural Network States: A Brief Review of Methods and Applications. Advanced Quantum Technologies, 2019, 2, 1800077.	3.9	49
58	MOSFET characterization and modeling at cryogenic temperatures. Cryogenics, 2019, 98, 12-17.	1.7	43
59	Efficient machine-learning representations of a surface code with boundaries, defects, domain walls, and twists. Physical Review A, 2019, 99, .	2.5	20
60	On-chip transverse-mode entangled photon pair source. Npj Quantum Information, 2019, 5, .	6.7	41
61	Semiconductor quantum computation. National Science Review, 2019, 6, 32-54.	9.5	102
62	Collecting quantum dot fluorescence with a hybrid plasmonic probe. OSA Continuum, 2019, 2, 881.	1.8	2
63	Modelling and kink correction of bulk CMOS at liquid helium temperature. Electronics Letters, 2019, 55, 780-783.	1.0	4
64	Coupling a Germanium Hut Wire Hole Quantum Dot to a Superconducting Microwave Resonator. Nano Letters, 2018, 18, 2091-2097.	9.1	36
65	Direct observation of the orbital spin Kondo effect in gallium arsenide quantum dots. Physical Review B, 2018, 97, .	3.2	3
66	Controlled Quantum Operations of a Semiconductor Three-Qubit System. Physical Review Applied, 2018, 9, .	3.8	20
67	Strong indirect coupling between graphene-based mechanical resonators via a phonon cavity. Nature Communications, 2018, 9, 383.	12.8	63
68	Qubits based on semiconductor quantum dots. Chinese Physics B, 2018, 27, 020305.	1.4	37
69	Fast Quantum Control of Semiconductor Qubit. , 2018, , .		0
70	Charge noise acting on graphene double quantum dots in circuit quantum electrodynamics architecture. Chinese Physics B, 2018, 27, 076105.	1.4	2
71	Coherent transport in Y-junction graphene waveguide. Journal of Physics Condensed Matter, 2018, 30, 445301.	1.8	4
72	Three-leaf dart-shaped single-crystal BN formation promoted by surface oxygen. Applied Physics Letters, 2018, 113, 163101.	3.3	0

#	Article	IF	CITATIONS
73	Spin manipulation in semiconductor quantum dots qubit. Chinese Physics B, 2018, 27, 090308.	1.4	11
74	Stressed carbon nanotube devices for high tunability, high quality factor, single mode GHz resonators. Nano Research, 2018, 11, 5812-5822.	10.4	13
75	Gap plasmon-enhanced photoluminescence of monolayer MoS ₂ in hybrid nanostructure. Chinese Physics B, 2018, 27, 047302.	1.4	11
76	64-qubit quantum circuit simulation. Science Bulletin, 2018, 63, 964-971.	9.0	91
77	Perfectly conducting graphene electronic waveguide with curved channels. Journal of Physics Condensed Matter, 2018, 30, 325301.	1.8	7
78	Measuring the complex admittance and tunneling rate of a germanium hut wire hole quantum dot. Journal of Applied Physics, 2018, 123, 174305.	2.5	3
79	The experimental realization of high-fidelity †shortcut-to-adiabaticity' quantum gates in a superconducting Xmon qubit. New Journal of Physics, 2018, 20, 065003.	2.9	58
80	Optoelectronic properties of bottom gate-defined in-plane monolayer WSe ₂ p–n junction. Chinese Physics B, 2018, 27, 087303.	1.4	3
81	Experimental demonstration of work fluctuations along a shortcut to adiabaticity with a superconducting Xmon qubit. New Journal of Physics, 2018, 20, 085001.	2.9	30
82	Quantum plasmonic N00N state in a silver nanowire and its use for quantum sensing. Optica, 2018, 5, 1229.	9.3	27
83	Coherent Phonon Rabi Oscillations with a High-Frequency Carbon Nanotube Phonon Cavity. Nano Letters, 2017, 17, 915-921.	9.1	37
84	Quantum dot behavior in transition metal dichalcogenides nanostructures. Frontiers of Physics, 2017, 12, 1.	5.0	25
85	Spin blockade and coherent dynamics of high-spin states in a three-electron double quantum dot. Physical Review B, 2017, 95, .	3.2	21
86	Coherent control and charge echo in a GaAs charge qubit. Europhysics Letters, 2017, 117, 57006.	2.0	5
87	Measuring hole spin states of single quantum dot in germanium hut wire. Applied Physics Letters, 2017, 110, .	3.3	19
88	Coupling graphene nanomechanical motion to a single-electron transistor. Nanoscale, 2017, 9, 5608-5614.	5.6	21
89	Electrotunable artificial molecules based on van der Waals heterostructures. Science Advances, 2017, 3, e1701699.	10.3	47
90	Enhanced readout of spin states in double quantum dot. Science Bulletin, 2017, 62, 712-716.	9.0	8

#	Article	IF	CITATIONS
91	Radio-frequency measurement in semiconductor quantum computation. Science China: Physics, Mechanics and Astronomy, 2017, 60, 1.	5.1	8
92	Tunable Hybrid Qubit in a Triple Quantum Dot. Physical Review Applied, 2017, 8, .	3.8	19
93	Quantum computation based on semiconductor quantum dots. Scientia Sinica Informationis, 2017, 47, 1255-1276.	0.4	1
94	On-chip coherent conversion of photonic quantum entanglement between different degrees of freedom. , 2017, , .		0
95	Multiplexing Read-Out of Charge Qubits by a Superconducting Resonator. Chinese Physics Letters, 2016, 33, 047301.	3.3	3
96	Improving the luminescence enhancement of hybrid Au nanoparticle-monolayer MoS_2 by focusing radially-polarized beams. Optics Express, 2016, 24, 27554.	3.4	10
97	Photon-assisted tunneling in an asymmetrically coupled triple quantum dot. Journal of Applied Physics, 2016, 120, 064302.	2.5	6
98	On-chip coherent conversion of photonic quantum entanglement between different degrees of freedom. Nature Communications, 2016, 7, 11985.	12.8	97
99	Strongly Coupled Nanotube Electromechanical Resonators. Nano Letters, 2016, 16, 5456-5462.	9.1	55
100	Parametric strong mode-coupling in carbon nanotube mechanical resonators. Nanoscale, 2016, 8, 14809-14813.	5.6	19
101	Tunable Hybrid Qubit in a GaAs Double Quantum Dot. Physical Review Letters, 2016, 116, 086801.	7.8	67
102	On-chip quantum optics with quantum dots and superconducting resonators. Proceedings of SPIE, 2016, , .	0.8	0
103	Tunable capacitive coupling between two semiconductor charge qubits. Nanotechnology, 2016, 27, 324003.	2.6	6
104	Coherence times of precise depth controlled NV centers in diamond. Nanoscale, 2016, 8, 5780-5785.	5.6	30
105	High-sensitivity temperature sensing using an implanted single nitrogen-vacancy center array in diamond. Physical Review B, 2015, 91, .	3.2	77
106	Charge Number Dependence of the Dephasing Rates of a Graphene Double Quantum Dot in a Circuit QED Architecture. Physical Review Letters, 2015, 115, 126804.	7.8	51
107	Arbitrary phase shift of a semiconductor quantum dot charge qubit on a short time scale. Europhysics Letters, 2015, 112, 37005.	2.0	2
108	Waveguide Mode Splitter Based on Multi-mode Dielectric-Loaded Surface Plasmon Polariton Waveguide. Chinese Physics Letters, 2015, 32, 107305.	3.3	4

#	Article	IF	CITATIONS
109	Temperature dependence of Coulomb oscillations in a few-layer two-dimensional WS2 quantum dot. Scientific Reports, 2015, 5, 16113.	3.3	39
110	Suppression of low-frequency charge noise in gates-defined GaAs quantum dots. Applied Physics Letters, 2015, 107, .	3.3	4
111	High visibility on-chip quantum interference of single surface plasmons. , 2015, , .		Ο
112	Enhanced quantum coherence in graphene caused by Pd cluster deposition. Applied Physics Letters, 2015, 106, .	3.3	10
113	Observation of the Kondo effect in a quadruple quantum dot. Physical Review B, 2015, 91, .	3.2	3
114	Suspending Effect on Low-Frequency Charge Noise in Graphene Quantum Dot. Scientific Reports, 2015, 5, 8142.	3.3	16
115	Measuring the coherence of charge states in undoped GaAs/AlGaAs double quantum dots with photon-assisted tunneling. Europhysics Letters, 2015, 111, 17001.	2.0	6
116	Ultrafast Manipulation of a Double Quantum-Dot Charge Qubit Using Lyapunov-Based Control Method. IEEE Journal of Quantum Electronics, 2015, 51, 1-8.	1.9	9
117	Introduction of DC line structures into a superconducting microwave 3D cavity. Review of Scientific Instruments, 2015, 86, 023108.	1.3	9
118	Transmission of Photonic Quantum Polarization Entanglement in a Nanoscale Hybrid Plasmonic Waveguide. Nano Letters, 2015, 15, 2380-2384.	9.1	88
119	Observation of high-Q optomechanical modes in the mounted silica microspheres. Photonics Research, 2015, 3, 243.	7.0	17
120	Propagation of quantum signal in plasmonic waveguides. , 2015, , .		0
121	Conditional rotation of two strongly coupled semiconductor charge qubits. Nature Communications, 2015, 6, 7681.	12.8	56
122	A gate defined quantum dot on the two-dimensional transition metal dichalcogenide semiconductor WSe ₂ . Nanoscale, 2015, 7, 16867-16873.	5.6	70
123	Coupling Two Distant Double Quantum Dots with a Microwave Resonator. Nano Letters, 2015, 15, 6620-6625.	9.1	71
124	INTRINSIC AND EXTRINSIC DECOHERENCE FOR CHARGE QUBIT DYNAMICS IN A DOUBLE QUANTUM DOT. Modern Physics Letters B, 2014, 28, 1450014.	1.9	0
125	Quantum simulation of the Kibble-Zurek mechanism using a semiconductor electron charge qubit. Physical Review A, 2014, 89, .	2.5	16
126	Measuring the complex admittance of a nearly isolated graphene quantum dot. Applied Physics Letters, 2014, 105, .	3.3	11

#	Article	IF	CITATIONS
127	Probing Energy Spectrum of Quadruple Quantum Dots with Microwave Field. Chinese Physics Letters, 2014, 31, 050302.	3.3	4
128	Electron number dependence of spin triplet–singlet relaxation time. Physica E: Low-Dimensional Systems and Nanostructures, 2014, 56, 1-4.	2.7	3
129	Independently analyzing different surface plasmon polariton modes on silver nanowire. Optics Express, 2014, 22, 23372.	3.4	5
130	Fabrication and characterization of an undoped GaAs/AlGaAs quantum dot device. Journal of Applied Physics, 2014, 116, .	2.5	13
131	Symmetric reflection line resonator and its quality factor modulation by a two-dimensional electron gas. Applied Physics Letters, 2014, 104, .	3.3	10
132	High-Visibility On-Chip Quantum Interference of Single Surface Plasmons. Physical Review Applied, 2014, 2, .	3.8	52
133	Back-action-driven electron spin excitation in a single quantum dot. New Journal of Physics, 2013, 15, 023021.	2.9	4
134	Photon-assisted-tunneling in a coupled double quantum dot under high microwave excitation powers. Applied Physics Letters, 2013, 103, .	3.3	25
135	Detection and Measurement of Spin-Dependent Dynamics in Random Telegraph Signals. Physical Review Letters, 2013, 111, 126803.	7.8	12
136	COULOMB BLOCKADE IN GRAPHENE QUANTUM DOTS. Modern Physics Letters B, 2013, 27, 1350008.	1.9	6
137	Charge States and Transition of Double Quantum Dot in the Few-Electron Regime. Chinese Physics Letters, 2013, 30, 050301.	3.3	2
138	Tuning inter-dot tunnel coupling of an etched graphene double quantum dot by adjacent metal gates. Scientific Reports, 2013, 3, 3175.	3.3	23
139	WIDTH OF QUANTUM HALL TRANSITION REGION IN THE PRESENCE OF LANDAU LEVEL MIXING. Modern Physics Letters B, 2013, 27, 1350202.	1.9	4
140	Ultrafast universal quantum control of a quantum-dot charge qubit using Landau–Zener–Stückelberg interference. Nature Communications, 2013, 4, 1401.	12.8	143
141	Detecting orbital angular momentum through division-of-amplitude interference with a circular plasmonic lens. Scientific Reports, 2013, 3, 2402.	3.3	47
142	Single-Electron Transistor and Quantum Dots on Graphene. Lecture Notes in Nanoscale Science and Technology, 2013, , 325-350.	0.8	0
143	Pulse Designed Coherent Dynamics of a Quantum Dot Charge Qubit. Chinese Physics Letters, 2012, 29, 030306.	3.3	7
144	Back-action-induced non-equilibrium effect in electron charge counting statistics. Applied Physics Letters, 2012, 100, .	3.3	9

9

#	Article	IF	CITATIONS
145	Encoding photonic angular momentum information onto surface plasmon polaritons with plasmonic lens. Optics Express, 2012, 20, 24151.	3.4	31
146	SUBSTRATE MODULATED GRAPHENE QUANTUM DOTS. Modern Physics Letters B, 2012, 26, 1250162.	1.9	2
147	Controllable tunnel coupling and molecular states in a graphene double quantum dot. Applied Physics Letters, 2012, 100, 022106.	3.3	22
148	Transport through a Gate Tunable Graphene Double Quantum Dot. Chinese Physics Letters, 2012, 29, 117303.	3.3	4
149	Quantum computation on gate-defined semiconductor quantum dots. Science Bulletin, 2012, 57, 1919-1924.	1.7	9
150	Exciton-plasmon-photon conversion in silver nanowire: Polarization dependence. Applied Physics Letters, 2011, 99, 061103.	3.3	22
151	Gates controlled parallel-coupled double quantum dot on both single layer and bilayer graphene. Applied Physics Letters, 2011, 99, .	3.3	28
152	Andreev tunneling enhanced by Coulomb oscillations in superconductor-semiconductor hybrid Ge/Si nanowire devices. Physical Review B, 2011, 84, .	3.2	7
153	Quantum Computation with Graphene Nanostructure. , 2011, , .		1
154	Interference of surface plasmon polaritons from a "point―source. Applied Physics Letters, 2011, 98, 201113.	3.3	20
155	Ground States and Excited States in a Tunable Graphene Quantum Dot. Chinese Physics Letters, 2011, 28, 067301.	3.3	9
156	Multipartite Spin Entangled States in Quantum Dots with a Quantum Databus Based on Nano Electro-Mechanical Resonator. Chinese Physics Letters, 2011, 28, 040301.	3.3	2
157	Excitation of surface plasmons in a single silver nanowire using higher-order-mode light. Physica E: Low-Dimensional Systems and Nanostructures, 2010, 42, 1751-1754.	2.7	7
158	A graphene quantum dot with a single electron transistor as an integrated charge sensor. Applied Physics Letters, 2010, 97, .	3.3	114
159	Strong and Tunable Spinâ~'Orbit Coupling of One-Dimensional Holes in Ge/Si Core/Shell Nanowires. Nano Letters, 2010, 10, 2956-2960.	9.1	99
160	Quantum bus of metal nanoring with surface plasmon polaritons. Physical Review B, 2010, 82, .	3.2	21
161	Transmission of doughnut light through a bull's eye structure. Applied Physics Letters, 2009, 95, 111111.	3.3	13
162	Coupling of light from an optical fiber taper into silver nanowires. Applied Physics Letters, 2009, 95, 221109.	3.3	54

#	Article	IF	CITATIONS
163	Quantum computation with graphene nanoribbon. New Journal of Physics, 2009, 11, 123005.	2.9	50
164	SPIN-DEPHASING ON A QUANTUM DOT WITH A NEARBY QUANTUM POINT CONTACT. Modern Physics Letters B, 2009, 23, 623-631.	1.9	0
165	Phase diagram of a quantum Hall pseudospin ferromagnet in a two-subband electron system. Journal of Physics Condensed Matter, 2009, 21, 455802.	1.8	3
166	Eliminating interactions between non-neighboring qubits in the preparation of cluster states in quantum molecules. European Physical Journal B, 2008, 61, 141-146.	1.5	3
167	Remote control of extraordinary transmission through subwavelength hole arrays. Europhysics Letters, 2008, 84, 30005.	2.0	5
168	Dispersive coupling between the superconducting transmission line resonator and the double quantum dots. Physical Review A, 2008, 78, .	2.5	25
169	Interference of surface plasmon polaritons controlled by the phase of incident light. Applied Physics Letters, 2008, 92, 171106.	3.3	2
170	Generation of Quantum-Dot Cluster States with a Superconducting Transmission Line Resonator. Physical Review Letters, 2008, 101, 230501.	7.8	73
171	Experimental studies of scaling behavior of a quantum Hall system with a tunable Landau level mixing. Physical Review B, 2008, 78, .	3.2	11
172	QUANTUM NON-DEMOLITION BELL-STATE MEASUREMENT AND n-PARTY GHZ STATE PREPARATION IN QUANTUM DOT. Modern Physics Letters B, 2007, 21, 867-874.	1.9	3
173	Quantum computation and Bell-state measurements with double-dot molecules. Physical Review A, 2007, 76, .	2.5	16
174	Influence of unsymmetrical periodicity on extraordinary transmission through periodic arrays of subwavelength holes. Applied Physics Letters, 2007, 90, 161112.	3.3	13
175	One-step preparation of cluster states in quantum-dot molecules. Physical Review A, 2007, 75, .	2.5	46
176	Plasmon assisted transmission of single photon wavepacket. Metamaterials, 2007, 1, 106-109.	2.2	2
177	Observation of two-photon coherence in plasmon-assisted transmission. Physics Letters, Section A: General, Atomic and Solid State Physics, 2007, 361, 218-222.	2.1	9
178	Scaling behavior and variable hopping conductivity in the quantum Hall plateau transition. Physics Letters, Section A: General, Atomic and Solid State Physics, 2007, 368, 108-111.	2.1	6
179	Removal of surface plasmon polariton eigenmodes degeneracy. Applied Physics B: Lasers and Optics, 2007, 89, 257-260.	2.2	5
180	Spatial mode properties of plasmon-assisted transmission. Optics Letters, 2006, 31, 2792.	3.3	18

#	Article	IF	CITATIONS
181	Entanglement of the Hermite–Gaussian modes states of photons. Physics Letters, Section A: General, Atomic and Solid State Physics, 2005, 341, 81-86.	2.1	19
182	Complete Bell-states analysis using hyper-entanglement. Physics Letters, Section A: General, Atomic and Solid State Physics, 2005, 343, 8-11.	2.1	32
183	The orbital angular momentum of down-converted photons. Journal of Optics B: Quantum and Semiclassical Optics, 2004, 6, 243-247.	1.4	28
184	Quantum memory for individual polarized photons. Physics Letters, Section A: General, Atomic and Solid State Physics, 2003, 318, 337-341.	2.1	11
185	Preparation of multi-party entanglement of individual photons and atomic ensembles. Physics Letters, Section A: General, Atomic and Solid State Physics, 2003, 320, 140-144.	2.1	2
186	Quantum secret sharing without entanglement. Physics Letters, Section A: General, Atomic and Solid State Physics, 2003, 310, 247-251.	2.1	327
187	Quantum data hiding with spontaneous parameter down-conversion. Physical Review A, 2003, 68, .	2.5	16
188	Scheme for the preparation of multiparticle entanglement in cavity QED. Physical Review A, 2002, 65, .	2.5	167
189	Quantum secret sharing. , 2002, 4917, 101.		1
190	Quantum non-demolition measurement of nonlocal variables and its application in quantum authentication. Physics Letters, Section A: General, Atomic and Solid State Physics, 2001, 286, 401-404.	2.1	12
191	Quantum key distribution scheme with orthogonal product states. Physical Review A, 2001, 64, .	2.5	58
192	Quantum Transport in Graphene Quantum Dots. , 0, , .		1
193	Quantum Newton's Method for Solving the System of Nonlinear Equations. Spin, 0, , 2140004. 	1.3	1
194	Magnetic transport measurements of spin-orbit and hyperfine interactions in a Ge hut wire double quantum dot. Applied Physics Express, 0, , .	2.4	0