Guo-Ping Guo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3439198/publications.pdf

Version: 2024-02-01

194 papers 4,459 citations

94433 37 h-index 58 g-index

197 all docs

197
docs citations

197 times ranked

4018 citing authors

#	Article	IF	CITATIONS
1	Quantum secret sharing without entanglement. Physics Letters, Section A: General, Atomic and Solid State Physics, 2003, 310, 247-251.	2.1	327
2	Scheme for the preparation of multiparticle entanglement in cavity QED. Physical Review A, 2002, 65, .	2.5	167
3	Ultrafast universal quantum control of a quantum-dot charge qubit using Landau–Zener–StÃ⅓ckelberg interference. Nature Communications, 2013, 4, 1401.	12.8	143
4	A graphene quantum dot with a single electron transistor as an integrated charge sensor. Applied Physics Letters, 2010, 97, .	3.3	114
5	Semiconductor quantum computation. National Science Review, 2019, 6, 32-54.	9.5	102
6	Coherent Control of Nitrogen-Vacancy Center Spins in Silicon Carbide at Room Temperature. Physical Review Letters, 2020, 124, 223601.	7.8	102
7	Strong and Tunable Spinâ^'Orbit Coupling of One-Dimensional Holes in Ge/Si Core/Shell Nanowires. Nano Letters, 2010, 10, 2956-2960.	9.1	99
8	On-chip coherent conversion of photonic quantum entanglement between different degrees of freedom. Nature Communications, 2016, 7, 11985.	12.8	97
9	64-qubit quantum circuit simulation. Science Bulletin, 2018, 63, 964-971.	9.0	91
10	Transmission of Photonic Quantum Polarization Entanglement in a Nanoscale Hybrid Plasmonic Waveguide. Nano Letters, 2015, 15, 2380-2384.	9.1	88
11	High-sensitivity temperature sensing using an implanted single nitrogen-vacancy center array in diamond. Physical Review B, 2015, 91, .	3.2	77
12	Generation of Quantum-Dot Cluster States with a Superconducting Transmission Line Resonator. Physical Review Letters, 2008, 101, 230501.	7.8	73
13	Coupling Two Distant Double Quantum Dots with a Microwave Resonator. Nano Letters, 2015, 15, 6620-6625.	9.1	71
14	A gate defined quantum dot on the two-dimensional transition metal dichalcogenide semiconductor WSe ₂ . Nanoscale, 2015, 7, 16867-16873.	5 . 6	70
15	Tunable Hybrid Qubit in a GaAs Double Quantum Dot. Physical Review Letters, 2016, 116, 086801.	7.8	67
16	Strong indirect coupling between graphene-based mechanical resonators via a phonon cavity. Nature Communications, 2018, 9, 383.	12.8	63
17	On-Demand Generation of Single Silicon Vacancy Defects in Silicon Carbide. ACS Photonics, 2019, 6, 1736-1743.	6.6	60
18	Quantum key distribution scheme with orthogonal product states. Physical Review A, 2001, 64, .	2.5	58

#	Article	IF	CITATIONS
19	The experimental realization of high-fidelity  shortcut-to-adiabaticity' quantum gates in a superconducting Xmon qubit. New Journal of Physics, 2018, 20, 065003.	2.9	58
20	Ultrafast coherent control of a hole spin qubit in a germanium quantum dot. Nature Communications, 2022, 13, 206.	12.8	58
21	Conditional rotation of two strongly coupled semiconductor charge qubits. Nature Communications, 2015, 6, 7681.	12.8	56
22	Strongly Coupled Nanotube Electromechanical Resonators. Nano Letters, 2016, 16, 5456-5462.	9.1	55
23	Coupling of light from an optical fiber taper into silver nanowires. Applied Physics Letters, 2009, 95, 221109.	3.3	54
24	High-Visibility On-Chip Quantum Interference of Single Surface Plasmons. Physical Review Applied, 2014, 2, .	3.8	52
25	Charge Number Dependence of the Dephasing Rates of a Graphene Double Quantum Dot in a Circuit QED Architecture. Physical Review Letters, 2015, 115, 126804.	7.8	51
26	Quantum computation with graphene nanoribbon. New Journal of Physics, 2009, 11, 123005.	2.9	50
27	Quantum Neural Network States: A Brief Review of Methods and Applications. Advanced Quantum Technologies, 2019, 2, 1800077.	3.9	49
28	Detecting orbital angular momentum through division-of-amplitude interference with a circular plasmonic lens. Scientific Reports, 2013, 3, 2402.	3.3	47
29	Electrotunable artificial molecules based on van der Waals heterostructures. Science Advances, 2017, 3, e1701699.	10.3	47
30	One-step preparation of cluster states in quantum-dot molecules. Physical Review A, 2007, 75, .	2.5	46
31	Effects of Quantum Noise on Quantum Approximate Optimization Algorithm. Chinese Physics Letters, 2021, 38, 030302.	3.3	44
32	Room-temperature coherent manipulation of single-spin qubits in silicon carbide with a high readout contrast. National Science Review, 2022, 9, .	9.5	44
33	MOSFET characterization and modeling at cryogenic temperatures. Cryogenics, 2019, 98, 12-17.	1.7	43
34	Generation of multiphoton quantum states on silicon. Light: Science and Applications, 2019, 8, 41.	16.6	41
35	On-chip transverse-mode entangled photon pair source. Npj Quantum Information, 2019, 5, .	6.7	41
36	Coherent phonon dynamics in spatially separated graphene mechanical resonators. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 5582-5587.	7.1	40

#	Article	IF	Citations
37	Temperature dependence of Coulomb oscillations in a few-layer two-dimensional WS2 quantum dot. Scientific Reports, 2015, 5, 16113.	3.3	39
38	Coherent Phonon Rabi Oscillations with a High-Frequency Carbon Nanotube Phonon Cavity. Nano Letters, 2017, 17, 915-921.	9.1	37
39	Qubits based on semiconductor quantum dots. Chinese Physics B, 2018, 27, 020305.	1.4	37
40	Coupling a Germanium Hut Wire Hole Quantum Dot to a Superconducting Microwave Resonator. Nano Letters, 2018, 18, 2091-2097.	9.1	36
41	Experimental Realization of a Fast Controlled- $\langle i \rangle Z \langle i \rangle$ Gate via a Shortcut to Adiabaticity. Physical Review Applied, 2019, 11, .	3.8	36
42	Complete Bell-states analysis using hyper-entanglement. Physics Letters, Section A: General, Atomic and Solid State Physics, 2005, 343, 8-11.	2.1	32
43	Encoding photonic angular momentum information onto surface plasmon polaritons with plasmonic lens. Optics Express, 2012, 20, 24151.	3.4	31
44	Giant Anisotropy of Spin Relaxation and Spin-Valley Mixing in a Silicon Quantum Dot. Physical Review Letters, 2020, 124, 257701.	7.8	31
45	Coherence times of precise depth controlled NV centers in diamond. Nanoscale, 2016, 8, 5780-5785.	5.6	30
46	Experimental demonstration of work fluctuations along a shortcut to adiabaticity with a superconducting Xmon qubit. New Journal of Physics, 2018, 20, 085001.	2.9	30
47	Building quantum neural networks based on a swap test. Physical Review A, 2019, 100, .	2.5	29
48	The orbital angular momentum of down-converted photons. Journal of Optics B: Quantum and Semiclassical Optics, 2004, 6, 243-247.	1.4	28
49	Gates controlled parallel-coupled double quantum dot on both single layer and bilayer graphene. Applied Physics Letters, 2011, 99, .	3.3	28
50	Single-shot realization of nonadiabatic holonomic gates with a superconducting Xmon qutrit. New Journal of Physics, 2019, 21, 073024.	2.9	28
51	Quantum plasmonic N00N state in a silver nanowire and its use for quantum sensing. Optica, 2018, 5, 1229.	9.3	27
52	Dispersive coupling between the superconducting transmission line resonator and the double quantum dots. Physical Review A, 2008, 78, .	2.5	25
53	Photon-assisted-tunneling in a coupled double quantum dot under high microwave excitation powers. Applied Physics Letters, 2013, 103, .	3.3	25
54	Quantum dot behavior in transition metal dichalcogenides nanostructures. Frontiers of Physics, 2017, 12, 1.	5.0	25

#	Article	IF	CITATIONS
55	Supercompact Photonic Quantum Logic Gate on a Silicon Chip. Physical Review Letters, 2021, 126, 130501.	7.8	25
56	Tuning inter-dot tunnel coupling of an etched graphene double quantum dot by adjacent metal gates. Scientific Reports, 2013, 3, 3175.	3.3	23
57	Experimental realization of nonadiabatic geometric gates with a superconducting Xmon qubit. Science China: Physics, Mechanics and Astronomy, 2021, 64, 1.	5.1	23
58	Exciton-plasmon-photon conversion in silver nanowire: Polarization dependence. Applied Physics Letters, 2011, 99, 061103.	3.3	22
59	Controllable tunnel coupling and molecular states in a graphene double quantum dot. Applied Physics Letters, 2012, 100, 022106.	3.3	22
60	Quantum bus of metal nanoring with surface plasmon polaritons. Physical Review B, 2010, 82, .	3.2	21
61	Spin blockade and coherent dynamics of high-spin states in a three-electron double quantum dot. Physical Review B, 2017, 95, .	3.2	21
62	Coupling graphene nanomechanical motion to a single-electron transistor. Nanoscale, 2017, 9, 5608-5614.	5.6	21
63	Topological Hall Effect in Traditional Ferromagnet Embedded with Black-Phosphorus-Like Bismuth Nanosheets. ACS Applied Materials & Samp; Interfaces, 2020, 12, 25135-25142.	8.0	21
64	Correlated spectrum of distant semiconductor qubits coupled by microwave photons. Science Bulletin, 2021, 66, 332-338.	9.0	21
65	Interference of surface plasmon polaritons from a "point―source. Applied Physics Letters, 2011, 98, 201113.	3.3	20
66	Controlled Quantum Operations of a Semiconductor Three-Qubit System. Physical Review Applied, 2018, 9, .	3.8	20
67	Efficient machine-learning representations of a surface code with boundaries, defects, domain walls, and twists. Physical Review A, 2019, 99, .	2.5	20
68	Entanglement of the Hermite–Gaussian modes states of photons. Physics Letters, Section A: General, Atomic and Solid State Physics, 2005, 341, 81-86.	2.1	19
69	Parametric strong mode-coupling in carbon nanotube mechanical resonators. Nanoscale, 2016, 8, 14809-14813.	5.6	19
70	Measuring hole spin states of single quantum dot in germanium hut wire. Applied Physics Letters, 2017, 110, .	3.3	19
71	Tunable Hybrid Qubit in a Triple Quantum Dot. Physical Review Applied, 2017, 8, .	3.8	19
72	Spatial mode properties of plasmon-assisted transmission. Optics Letters, 2006, 31, 2792.	3.3	18

#	Article	IF	Citations
73	Characterization and Modeling of Native MOSFETs Down to 4.2 K. IEEE Transactions on Electron Devices, 2021, 68, 4267-4273.	3.0	18
74	Observation of high-Q optomechanical modes in the mounted silica microspheres. Photonics Research, 2015, 3, 243.	7.0	17
75	Quantum data hiding with spontaneous parameter down-conversion. Physical Review A, 2003, 68, .	2.5	16
76	Quantum computation and Bell-state measurements with double-dot molecules. Physical Review A, 2007, 76, .	2.5	16
77	Quantum simulation of the Kibble-Zurek mechanism using a semiconductor electron charge qubit. Physical Review A, 2014, 89, .	2.5	16
78	Suspending Effect on Low-Frequency Charge Noise in Graphene Quantum Dot. Scientific Reports, 2015, 5, 8142.	3.3	16
79	Anisotropic <i>g</i> -Factor and Spin–Orbit Field in a Germanium Hut Wire Double Quantum Dot. Nano Letters, 2021, 21, 3835-3842.	9.1	16
80	Generation of a frequency-degenerate four-photon entangled state using a silicon nanowire. Npj Quantum Information, 2019, 5, .	6.7	15
81	Gate-Tunable Spin-Orbit Coupling in a Germanium Hole Double Quantum Dot. Physical Review Applied, 2022, 17, .	3.8	15
82	Dipole coupling of a hole double quantum dot in germanium hut wire to a microwave resonator. New Journal of Physics, 2020, 22, 083068.	2.9	14
83	Influence of unsymmetrical periodicity on extraordinary transmission through periodic arrays of subwavelength holes. Applied Physics Letters, 2007, 90, 161112.	3.3	13
84	Transmission of doughnut light through a bull's eye structure. Applied Physics Letters, 2009, 95, 111111.	3.3	13
85	Fabrication and characterization of an undoped GaAs/AlGaAs quantum dot device. Journal of Applied Physics, 2014, 116, .	2.5	13
86	Stressed carbon nanotube devices for high tunability, high quality factor, single mode GHz resonators. Nano Research, 2018, 11, 5812-5822.	10.4	13
87	Controlling Synthetic Spin-Orbit Coupling in a Silicon Quantum Dot with Magnetic Field. Physical Review Applied, 2021, 15, .	3.8	13
88	Graphene-Based Nanoelectromechanical Periodic Array with Tunable Frequency. Nano Letters, 2021, 21, 8571-8578.	9.1	13
89	Gateâ€Controlled Quantum Dots Based on 2D Materials. Advanced Quantum Technologies, 2022, 5, .	3.9	13
90	Quantum non-demolition measurement of nonlocal variables and its application in quantum authentication. Physics Letters, Section A: General, Atomic and Solid State Physics, 2001, 286, 401-404.	2.1	12

#	Article	IF	CITATIONS
91	Detection and Measurement of Spin-Dependent Dynamics in Random Telegraph Signals. Physical Review Letters, 2013, 111, 126803.	7.8	12
92	Quantum homotopy perturbation method for nonlinear dissipative ordinary differential equations. New Journal of Physics, 2021, 23, 123035.	2.9	12
93	Quantum memory for individual polarized photons. Physics Letters, Section A: General, Atomic and Solid State Physics, 2003, 318, 337-341.	2.1	11
94	Experimental studies of scaling behavior of a quantum Hall system with a tunable Landau level mixing. Physical Review B, 2008, 78, .	3.2	11
95	Measuring the complex admittance of a nearly isolated graphene quantum dot. Applied Physics Letters, 2014, 105, .	3.3	11
96	Spin manipulation in semiconductor quantum dots qubit. Chinese Physics B, 2018, 27, 090308.	1.4	11
97	Gap plasmon-enhanced photoluminescence of monolayer MoS ₂ in hybrid nanostructure. Chinese Physics B, 2018, 27, 047302.	1.4	11
98	Floquet state depletion in ac-driven circuit QED. Physical Review B, 2021, 103, .	3.2	11
99	Symmetric reflection line resonator and its quality factor modulation by a two-dimensional electron gas. Applied Physics Letters, 2014, 104, .	3.3	10
100	Enhanced quantum coherence in graphene caused by Pd cluster deposition. Applied Physics Letters, 2015, 106, .	3.3	10
101	Improving the luminescence enhancement of hybrid Au nanoparticle-monolayer MoS_2 by focusing radially-polarized beams. Optics Express, 2016, 24, 27554.	3.4	10
102	Characterization and Modeling of $0.18 < i > \hat{l} \frac{1}{4} < i > m$ Bulk CMOS Technology at Sub-Kelvin Temperature. IEEE Journal of the Electron Devices Society, 2020, 8, 897-904.	2.1	10
103	Transverse Mode-Encoded Quantum Gate on a Silicon Photonic Chip. Physical Review Letters, 2022, 128, 060501.	7.8	10
104	Observation of two-photon coherence in plasmon-assisted transmission. Physics Letters, Section A: General, Atomic and Solid State Physics, 2007, 361, 218-222.	2.1	9
105	Ground States and Excited States in a Tunable Graphene Quantum Dot. Chinese Physics Letters, 2011, 28, 067301.	3.3	9
106	Back-action-induced non-equilibrium effect in electron charge counting statistics. Applied Physics Letters, 2012, 100, .	3.3	9
107	Quantum computation on gate-defined semiconductor quantum dots. Science Bulletin, 2012, 57, 1919-1924.	1.7	9
108	Ultrafast Manipulation of a Double Quantum-Dot Charge Qubit Using Lyapunov-Based Control Method. IEEE Journal of Quantum Electronics, 2015, 51, 1-8.	1.9	9

#	Article	IF	CITATIONS
109	Introduction of DC line structures into a superconducting microwave 3D cavity. Review of Scientific Instruments, 2015, 86, 023108.	1.3	9
110	Hole spin in tunable Ge hut wire double quantum dot. Applied Physics Express, 2020, 13, 065002.	2.4	9
111	Near-field modulation of single photon emitter with a plasmonic probe. Applied Physics Letters, 2021, 118, .	3.3	9
112	Microwave-Resonator-Detected Excited-State Spectroscopy of a Double Quantum Dot. Physical Review Applied, 2021, 15, .	3.8	9
113	Optimization of a Controlled- <mml:math display="inline" overflow="scroll" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>Z</mml:mi></mml:math> Gate with Data-Driven Gradient-Ascent Pulse Engineering in a Superconducting-Qubit System. Physical Review Applied, 2021, 15	3 . 8	9
114	Mitigating Crosstalk-Induced Qubit Readout Error with Shallow-Neural-Network Discrimination. Physical Review Applied, $2021,16,.$	3.8	9
115	Quantum Approach to Accelerate Finite Volume Method on Steady Computational Fluid Dynamics Problems. Quantum Information Processing, 2022, 21, 1.	2.2	9
116	Enhanced readout of spin states in double quantum dot. Science Bulletin, 2017, 62, 712-716.	9.0	8
117	Radio-frequency measurement in semiconductor quantum computation. Science China: Physics, Mechanics and Astronomy, 2017, 60, 1.	5.1	8
118	Simultaneous Feedback and Feedforward Control and Its Application to Realize a Random Walk on the Bloch Sphere in an Xmon-Superconducting-Qubit System. Physical Review Applied, 2020, 14, .	3.8	8
119	Improving mobility of silicon metal-oxide–semiconductor devices for quantum dots by high vacuum activation annealing. Europhysics Letters, 2020, 130, 27001.	2.0	8
120	A quantum circuit simulator and its applications on Sunway TaihuLight supercomputer. Scientific Reports, 2021, 11, 355.	3.3	8
121	Excitation of surface plasmons in a single silver nanowire using higher-order-mode light. Physica E: Low-Dimensional Systems and Nanostructures, 2010, 42, 1751-1754.	2.7	7
122	Andreev tunneling enhanced by Coulomb oscillations in superconductor-semiconductor hybrid Ge/Si nanowire devices. Physical Review B, 2011, 84, .	3.2	7
123	Pulse Designed Coherent Dynamics of a Quantum Dot Charge Qubit. Chinese Physics Letters, 2012, 29, 030306.	3.3	7
124	Perfectly conducting graphene electronic waveguide with curved channels. Journal of Physics Condensed Matter, 2018, 30, 325301.	1.8	7
125	Scaling behavior and variable hopping conductivity in the quantum Hall plateau transition. Physics Letters, Section A: General, Atomic and Solid State Physics, 2007, 368, 108-111.	2.1	6
126	COULOMB BLOCKADE IN GRAPHENE QUANTUM DOTS. Modern Physics Letters B, 2013, 27, 1350008.	1.9	6

#	Article	IF	Citations
127	Measuring the coherence of charge states in undoped GaAs/AlGaAs double quantum dots with photon-assisted tunneling. Europhysics Letters, 2015, 111, 17001.	2.0	6
128	Photon-assisted tunneling in an asymmetrically coupled triple quantum dot. Journal of Applied Physics, 2016, 120, 064302.	2.5	6
129	Tunable capacitive coupling between two semiconductor charge qubits. Nanotechnology, 2016, 27, 324003.	2.6	6
130	Transport characteristics of multi-terminal pristine and defective phosphorene systems. Nanotechnology, 2019, 30, 455705.	2.6	6
131	Entanglement area law for shallow and deep quantum neural network states. New Journal of Physics, 2020, 22, 053022.	2.9	6
132	Removal of surface plasmon polariton eigenmodes degeneracy. Applied Physics B: Lasers and Optics, 2007, 89, 257-260.	2.2	5
133	Remote control of extraordinary transmission through subwavelength hole arrays. Europhysics Letters, 2008, 84, 30005.	2.0	5
134	Independently analyzing different surface plasmon polariton modes on silver nanowire. Optics Express, 2014, 22, 23372.	3.4	5
135	Coherent control and charge echo in a GaAs charge qubit. Europhysics Letters, 2017, 117, 57006.	2.0	5
136	A Suspended Silicon Singleâ€Hole Transistor as an Extremely Scaled Gigahertz Nanoelectromechanical Beam Resonator. Advanced Materials, 2020, 32, e2005625.	21.0	5
137	An Operation Guide of Si-MOS Quantum Dots for Spin Qubits. Nanomaterials, 2021, 11, 2486.	4.1	5
138	Shortcuts to the quantum approximate optimization algorithm. Physical Review A, 2022, 105, .	2.5	5
139	Quantum error correction with the color-Gottesman-Kitaev-Preskill code. Physical Review A, 2021, 104, .	2.5	5
140	Transport through a Gate Tunable Graphene Double Quantum Dot. Chinese Physics Letters, 2012, 29, 117303.	3.3	4
141	Back-action-driven electron spin excitation in a single quantum dot. New Journal of Physics, 2013, 15, 023021.	2.9	4
142	WIDTH OF QUANTUM HALL TRANSITION REGION IN THE PRESENCE OF LANDAU LEVEL MIXING. Modern Physics Letters B, 2013, 27, 1350202.	1.9	4
143	Probing Energy Spectrum of Quadruple Quantum Dots with Microwave Field. Chinese Physics Letters, 2014, 31, 050302.	3 . 3	4
144	Waveguide Mode Splitter Based on Multi-mode Dielectric-Loaded Surface Plasmon Polariton Waveguide. Chinese Physics Letters, 2015, 32, 107305.	3.3	4

#	Article	IF	CITATIONS
145	Suppression of low-frequency charge noise in gates-defined GaAs quantum dots. Applied Physics Letters, 2015, 107, .	3.3	4
146	Coherent transport in Y-junction graphene waveguide. Journal of Physics Condensed Matter, 2018, 30, 445301.	1.8	4
147	Design of graphene waveguides: Effect of edge orientation and waveguide configuration. Physical Review B, 2019, 100, .	3.2	4
148	Controlling spins in silicon quantum dots. Journal of Semiconductors, 2020, 41, 070402.	3.7	4
149	Growth of h-BN/graphene heterostructure using proximity catalysis. Nanotechnology, 2021, 32, 275602.	2.6	4
150	Modelling and kink correction of bulk CMOS at liquid helium temperature. Electronics Letters, 2019, 55, 780-783.	1.0	4
151	Near-Field Modulation of Differently Oriented Single Photon Emitters with A Plasmonic Probe. Nano Letters, 2022, 22, 2244-2250.	9.1	4
152	Hot Carrier Degradation in MOSFETs at Cryogenic Temperatures Down to 4.2 K. IEEE Transactions on Device and Materials Reliability, 2021, 21, 620-626.	2.0	4
153	Quantum computational quantitative trading: high-frequency statistical arbitrage algorithm. New Journal of Physics, 2022, 24, 073036.	2.9	4
154	QUANTUM NON-DEMOLITION BELL-STATE MEASUREMENT AND n-PARTY GHZ STATE PREPARATION IN QUANTUM DOT. Modern Physics Letters B, 2007, 21, 867-874.	1.9	3
155	Eliminating interactions between non-neighboring qubits in the preparation of cluster states in quantum molecules. European Physical Journal B, 2008, 61, 141-146.	1.5	3
156	Phase diagram of a quantum Hall pseudospin ferromagnet in a two-subband electron system. Journal of Physics Condensed Matter, 2009, 21, 455802.	1.8	3
157	Electron number dependence of spin triplet–singlet relaxation time. Physica E: Low-Dimensional Systems and Nanostructures, 2014, 56, 1-4.	2.7	3
158	Observation of the Kondo effect in a quadruple quantum dot. Physical Review B, 2015, 91, .	3.2	3
159	Multiplexing Read-Out of Charge Qubits by a Superconducting Resonator. Chinese Physics Letters, 2016, 33, 047301.	3.3	3
160	Direct observation of the orbital spin Kondo effect in gallium arsenide quantum dots. Physical Review B, 2018, 97, .	3.2	3
161	Measuring the complex admittance and tunneling rate of a germanium hut wire hole quantum dot. Journal of Applied Physics, 2018, 123, 174305.	2.5	3
162	Optoelectronic properties of bottom gate-defined in-plane monolayer WSe ₂ p–n junction. Chinese Physics B, 2018, 27, 087303.	1.4	3

#	Article	lF	CITATIONS
163	Tunable parametric amplification of a graphene nanomechanical resonator in the nonlinear regime. Nanotechnology, 2021, 32, 155203.	2.6	3
164	Kondo induced <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>Ï€</mml:mi></mml:math> -phase shift of microwave photons in a circuit quantum electrodynamics architecture. Physical Review B, 2021, 104, .	3.2	3
165	Experimental Determination of Electronic States via Digitized Shortcut to Adiabaticity and Sequential Digitized Adiabaticity. Physical Review Applied, 2021, 16, .	3.8	3
166	Preparation of multi-party entanglement of individual photons and atomic ensembles. Physics Letters, Section A: General, Atomic and Solid State Physics, 2003, 320, 140-144.	2.1	2
167	Plasmon assisted transmission of single photon wavepacket. Metamaterials, 2007, 1, 106-109.	2.2	2
168	Interference of surface plasmon polaritons controlled by the phase of incident light. Applied Physics Letters, 2008, 92, 171106.	3.3	2
169	Multipartite Spin Entangled States in Quantum Dots with a Quantum Databus Based on Nano Electro-Mechanical Resonator. Chinese Physics Letters, 2011, 28, 040301.	3.3	2
170	SUBSTRATE MODULATED GRAPHENE QUANTUM DOTS. Modern Physics Letters B, 2012, 26, 1250162.	1.9	2
171	Charge States and Transition of Double Quantum Dot in the Few-Electron Regime. Chinese Physics Letters, 2013, 30, 050301.	3.3	2
172	Arbitrary phase shift of a semiconductor quantum dot charge qubit on a short time scale. Europhysics Letters, 2015, 112, 37005.	2.0	2
173	Charge noise acting on graphene double quantum dots in circuit quantum electrodynamics architecture. Chinese Physics B, 2018, 27, 076105.	1.4	2
174	Micro-scale photon source in a hybrid cQED system*. Chinese Physics B, 2021, 30, 048507.	1.4	2
175	Collecting quantum dot fluorescence with a hybrid plasmonic probe. OSA Continuum, 2019, 2, 881.	1.8	2
176	Characterization of a Triple Quantum Dot via an Onâ€chip Microwave Resonator. Advanced Quantum Technologies, 2022, 5, 2100104.	3.9	2
177	Quantum secret sharing. , 2002, 4917, 101.		1
178	Quantum Computation with Graphene Nanostructure. , 2011, , .		1
179	Quantum Transport in Graphene Quantum Dots. , 0, , .		1
180	A cryogenic low power CMOS analog buffer at 4.2K. IEICE Electronics Express, 2021, 18, 20210183-20210183.	0.8	1

#	Article	IF	CITATIONS
181	Quantum Newton's Method for Solving the System of Nonlinear Equations. Spin, 0, , 2140004.	1.3	1
182	Quantum computation based on semiconductor quantum dots. Scientia Sinica Informationis, 2017, 47, 1255-1276.	0.4	1
183	SPIN-DEPHASING ON A QUANTUM DOT WITH A NEARBY QUANTUM POINT CONTACT. Modern Physics Letters B, 2009, 23, 623-631.	1.9	0
184	INTRINSIC AND EXTRINSIC DECOHERENCE FOR CHARGE QUBIT DYNAMICS IN A DOUBLE QUANTUM DOT. Modern Physics Letters B, 2014, 28, 1450014.	1.9	0
185	High visibility on-chip quantum interference of single surface plasmons. , 2015, , .		O
186	Propagation of quantum signal in plasmonic waveguides. , 2015, , .		0
187	On-chip quantum optics with quantum dots and superconducting resonators. Proceedings of SPIE, 2016, , .	0.8	0
188	Fast Quantum Control of Semiconductor Qubit. , 2018, , .		0
189	Three-leaf dart-shaped single-crystal BN formation promoted by surface oxygen. Applied Physics Letters, 2018, 113, 163101.	3.3	0
190	0.18μm CMOS Ring Oscillator at Liquid Helium Temperature. , 2019, , .		0
191	Magnetic transport measurements of spin-orbit and hyperfine interactions in a Ge hut wire double quantum dot. Applied Physics Express, 0, , .	2.4	0
192	Single-Electron Transistor and Quantum Dots on Graphene. Lecture Notes in Nanoscale Science and Technology, 2013, , 325-350.	0.8	0
193	On-chip coherent conversion of photonic quantum entanglement between different degrees of freedom., 2017,,.		0
194	Superconducting and Silicon-Based Semiconductor Quantum Computers: A Review IEEE Nanotechnology Magazine, 2022, , 2-11.	1.3	0