
Manuel Irimia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3438859/publications.pdf Version: 2024-02-01

MANUEL DIMIA

#	Article	IF	CITATIONS
1	A compendium of RNA-binding motifs for decoding gene regulation. Nature, 2013, 499, 172-177.	13.7	1,281
2	The Evolutionary Landscape of Alternative Splicing in Vertebrate Species. Science, 2012, 338, 1587-1593.	6.0	905
3	Elephant shark genome provides unique insights into gnathostome evolution. Nature, 2014, 505, 174-179.	13.7	689
4	Genome-wide changes in IncRNA, splicing, and regional gene expression patterns in autism. Nature, 2016, 540, 423-427.	13.7	603
5	Widespread intron retention in mammals functionally tunes transcriptomes. Genome Research, 2014, 24, 1774-1786.	2.4	554
6	A Highly Conserved Program of Neuronal Microexons Is Misregulated in Autistic Brains. Cell, 2014, 159, 1511-1523.	13.5	546
7	Algal genomes reveal evolutionary mosaicism and the fate of nucleomorphs. Nature, 2012, 492, 59-65.	13.7	377
8	Tissue-Specific Alternative Splicing Remodels Protein-Protein Interaction Networks. Molecular Cell, 2012, 46, 884-892.	4.5	366
9	MBNL proteins repress ES-cell-specific alternative splicing and reprogramming. Nature, 2013, 498, 241-245.	13.7	326
10	An atlas of alternative splicing profiles and functional associations reveals new regulatory programs and genes that simultaneously express multiple major isoforms. Genome Research, 2017, 27, 1759-1768.	2.4	316
11	Genome of Acanthamoeba castellanii highlights extensive lateral gene transfer and early evolution of tyrosine kinase signaling. Genome Biology, 2013, 14, R11.	13.9	296
12	Amphioxus functional genomics and the origins of vertebrate gene regulation. Nature, 2018, 564, 64-70.	13.7	224
13	5-hmC in the brain is abundant in synaptic genes and shows differences at the exon-intron boundary. Nature Structural and Molecular Biology, 2012, 19, 1037-1043.	3.6	221
14	A Comparative Transcriptomic Analysis Reveals Conserved Features of Stem Cell Pluripotency in Planarians and Mammals. Stem Cells, 2012, 30, 1734-1745.	1.4	181
15	Alternative splicing: decoding an expansive regulatory layer. Current Opinion in Cell Biology, 2012, 24, 323-332.	2.6	151
16	Regulated aggregative multicellularity in a close unicellular relative of metazoa. ELife, 2013, 2, e01287.	2.8	139
17	A Global Regulatory Mechanism for Activating an Exon Network Required for Neurogenesis. Molecular Cell, 2014, 56, 90-103.	4.5	131
18	An alternative splicing event amplifies evolutionary differences between vertebrates. Science, 2015, 349, 868-873.	6.0	128

#	Article	IF	CITATIONS
19	Extensive conservation of ancient microsynteny across metazoans due to <i>cis</i> -regulatory constraints. Genome Research, 2012, 22, 2356-2367.	2.4	126
20	Misregulation of an Activity-Dependent Splicing Network as a Common Mechanism Underlying Autism Spectrum Disorders. Molecular Cell, 2016, 64, 1023-1034.	4.5	121
21	MBNL1 and RBFOX2 cooperate to establish a splicing programme involved in pluripotent stem cell differentiation. Nature Communications, 2013, 4, 2480.	5.8	120
22	Essential roles for the splicing regulator nSR100/SRRM4 during nervous system development. Genes and Development, 2015, 29, 746-759.	2.7	115
23	Autism-like phenotype and risk gene mRNA deadenylation by CPEB4 mis-splicing. Nature, 2018, 560, 441-446.	13.7	113
24	Origin of Spliceosomal Introns and Alternative Splicing. Cold Spring Harbor Perspectives in Biology, 2014, 6, a016071-a016071.	2.3	112
25	Retention of paternal DNA methylome in the developing zebrafish germline. Nature Communications, 2019, 10, 3054.	5.8	99
26	Molecular regionalization of the developing amphioxus neural tube challenges major partitions of the vertebrate brain. PLoS Biology, 2017, 15, e2001573.	2.6	96
27	Transphyletic conservation of developmental regulatory state in animal evolution. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 14186-14191.	3.3	94
28	Coevolution of genomic intron number and splice sites. Trends in Genetics, 2007, 23, 321-325.	2.9	93
29	Alternative splicing landscapes in Arabidopsis thaliana across tissues and stress conditions highlight major functional differences with animals. Genome Biology, 2021, 22, 35.	3.8	93
30	Spliceosomal introns as tools for genomic and evolutionary analysis. Nucleic Acids Research, 2008, 36, 1703-1712.	6.5	91
31	Impact of gene gains, losses and duplication modes on the origin and diversification of vertebrates. Seminars in Cell and Developmental Biology, 2013, 24, 83-94.	2.3	87
32	Gene Expansion and Retention Leads to a Diverse Tyrosine Kinase Superfamily in Amphioxus. Molecular Biology and Evolution, 2008, 25, 1841-1854.	3.5	79
33	Functional and evolutionary analysis of alternatively spliced genes is consistent with an early eukaryotic origin of alternative splicing. BMC Evolutionary Biology, 2007, 7, 188.	3.2	75
34	Exon Junction Complex Shapes the Transcriptome by Repressing Recursive Splicing. Molecular Cell, 2018, 72, 496-509.e9.	4.5	75
35	Origin of introns by â€~intronization' of exonic sequences. Trends in Genetics, 2008, 24, 378-381.	2.9	74
36	Autism-Misregulated eIF4G Microexons Control Synaptic Translation and Higher Order Cognitive Functions. Molecular Cell, 2020, 77, 1176-1192.e16.	4.5	69

#	Article	IF	CITATIONS
37	Evolutionary Convergence on Highly-Conserved 3′ Intron Structures in Intron-Poor Eukaryotes and Insights into the Ancestral Eukaryotic Genome. PLoS Genetics, 2008, 4, e1000148.	1.5	65
38	When good transcripts go bad: artifactual RTâ€PCR â€~splicing' and genome analysis. BioEssays, 2008, 30, 601-605.	1.2	64
39	Mystery of intron gain: new data and new models. Trends in Genetics, 2009, 25, 67-73.	2.9	64
40	A novel protein domain in an ancestral splicing factor drove the evolution of neural microexons. Nature Ecology and Evolution, 2019, 3, 691-701.	3.4	63
41	Distinct Types of Disorder in the Human Proteome: Functional Implications for Alternative Splicing. PLoS Computational Biology, 2013, 9, e1003030.	1.5	62
42	Origin of exon skipping-rich transcriptomes in animals driven by evolution of gene architecture. Genome Biology, 2018, 19, 135.	3.8	61
43	Complex transcriptional regulation and independent evolution of fungal-like traits in a relative of animals. ELife, 2015, 4, e08904.	2.8	59
44	Rare Coding Sequence Changes are Consistent with Ecdysozoa, not Coelomata. Molecular Biology and Evolution, 2007, 24, 1604-1607.	3.5	58
45	Best practice standards for circular RNA research. Nature Methods, 2022, 19, 1208-1220.	9.0	58
46	Genomic adaptations to aquatic and aerial life in mayflies and the origin of insect wings. Nature Communications, 2020, 11, 2631.	5.8	57
47	<i>Matt</i> : Unix tools for alternative splicing analysis. Bioinformatics, 2019, 35, 130-132.	1.8	56
48	CpG island promoter hypermethylation of the Ras-effector gene NORE1A occurs in the context of a wild-type K-ras in lung cancer. Oncogene, 2004, 23, 8695-8699.	2.6	55
49	Conserved developmental expression of Fezf in chordates and Drosophila and the origin of the Zona Limitans Intrathalamica (ZLI) brain organizer. EvoDevo, 2010, 1, 7.	1.3	55
50	Conservative route to genome compaction in a miniature annelid. Nature Ecology and Evolution, 2021, 5, 231-242.	3.4	51
51	The alternative splicing factor Nova2 regulates vascular development and lumen formation. Nature Communications, 2015, 6, 8479.	5.8	50
52	Quantitative regulation of alternative splicing in evolution and development. BioEssays, 2009, 31, 40-50.	1.2	49
53	Widespread Evolutionary Conservation of Alternatively Spliced Exons in Caenorhabditis. Molecular Biology and Evolution, 2008, 25, 375-382.	3.5	48
54	Conserved functional antagonism of CELF and MBNL proteins controls stem cell-specific alternative splicing in planarians. ELife, 2016, 5, .	2.8	48

#	Article	IF	CITATIONS
55	Splicing in the eukaryotic ancestor: form, function and dysfunction. Trends in Ecology and Evolution, 2009, 24, 447-455.	4.2	47
56	Molecular basis of differential 3′ splice site sensitivity to anti-tumor drugs targeting U2 snRNP. Nature Communications, 2017, 8, 2100.	5.8	45
57	Postnatal isoform switch and protein localization of LEF1 and TCF7L2 transcription factors in cortical, thalamic, and mesencephalic regions of the adult mouse brain. Brain Structure and Function, 2013, 218, 1531-1549.	1.2	44
58	Major Roles for Pyrimidine Dimers, Nucleotide Excision Repair, and ATR in the Alternative Splicing Response to UV Irradiation. Cell Reports, 2017, 18, 2868-2879.	2.9	41
59	Rare Genomic Characters Do Not Support Coelomata: Intron Loss/Gain. Molecular Biology and Evolution, 2008, 25, 620-623.	3.5	40
60	Evolutionarily conserved A-to-I editing increases protein stability of the alternative splicing factor <i>Nova1</i> . RNA Biology, 2012, 9, 12-21.	1.5	40
61	Evolutionary recruitment of flexible Esrp-dependent splicing programs into diverse embryonic morphogenetic processes. Nature Communications, 2017, 8, 1799.	5.8	40
62	Absence of Tangentially Migrating Glutamatergic Neurons in the Developing Avian Brain. Cell Reports, 2018, 22, 96-109.	2.9	40
63	Stepwise assembly of the <i>Nova</i> -regulated alternative splicing network in the vertebrate brain. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 5319-5324.	3.3	38
64	A novel L1CAM isoform with angiogenic activity generated by NOVA2-mediated alternative splicing. ELife, 2019, 8, .	2.8	38
65	Evolutionary origin and functional divergence of totipotent cell homeobox genes in eutherian mammals. BMC Biology, 2016, 14, 45.	1.7	37
66	An ancient genomic regulatory block conserved across bilaterians and its dismantling in tetrapods by retrogene replacement. Genome Research, 2012, 22, 642-655.	2.4	35
67	Widespread Recurrent Evolution of Genomic Features. Genome Biology and Evolution, 2012, 4, 486-500.	1.1	34
68	Intron mis-splicing: no alternative?. Genome Biology, 2008, 9, 208.	13.9	33
69	Convergent Evolution of Clustering of Iroquois Homeobox Genes across Metazoans. Molecular Biology and Evolution, 2008, 25, 1521-1525.	3.5	33
70	High Qualitative and Quantitative Conservation of Alternative Splicing in Caenorhabditis elegans and Caenorhabditis briggsae. Molecular Biology and Evolution, 2007, 24, 909-917.	3.5	32
71	Huntington's disease-specific mis-splicing unveils key effector genes and altered splicing factors. Brain, 2021, 144, 2009-2023.	3.7	32
72	Very Little Intron Gain in Entamoeba histolytica Genes Laterally Transferred from Prokaryotes. Molecular Biology and Evolution, 2006, 23, 1824-1827.	3.5	30

#	Article	IF	CITATIONS
73	Rare Genomic Characters Do Not Support Coelomata: RGC_CAMs. Journal of Molecular Evolution, 2008, 66, 308-315.	0.8	30
74	Ancient cis-regulatory constraints and the evolution of genome architecture. Trends in Genetics, 2013, 29, 521-528.	2.9	30
75	Comparative genomics of the Hedgehog loci in chordates and the origins of Shh regulatory novelties. Scientific Reports, 2012, 2, 433.	1.6	29
76	Cooperative epithelial phagocytosis enables error correction in the early embryo. Nature, 2021, 590, 618-623.	13.7	28
77	Deep conservation of <i>cis</i> -regulatory elements in metazoans. Philosophical Transactions of the Royal Society B: Biological Sciences, 2013, 368, 20130020.	1.8	26
78	Gene architecture directs splicing outcome in separate nuclear spatial regions. Molecular Cell, 2022, 82, 1021-1034.e8.	4.5	26
79	Complex selection on 5′ splice sites in intron-rich organisms. Genome Research, 2009, 19, 2021-2027.	2.4	25
80	Internal and External Paralogy in the Evolution of Tropomyosin Genes in Metazoans. Molecular Biology and Evolution, 2010, 27, 1504-1517.	3.5	23
81	Stability Depends on Positive Autoregulation in Boolean Gene Regulatory Networks. PLoS Computational Biology, 2014, 10, e1003916.	1.5	23
82	RES complex is associated with intron definition and required for zebrafish early embryogenesis. PLoS Genetics, 2018, 14, e1007473.	1.5	23
83	Nodal–Activin pathway is a conserved neural induction signal in chordates. Nature Ecology and Evolution, 2017, 1, 1192-1200.	3.4	22
84	Distinct and redundant expression and transcriptional diversity of <i>MEIS</i> gene paralogs during chicken development. Developmental Dynamics, 2011, 240, 1475-1492.	0.8	21
85	Functional Genomics Evidence Unearths New Moonlighting Roles of Outer Ring Coat Nucleoporins. Scientific Reports, 2014, 4, 4655.	1.6	20
86	ARGLU1 is a transcriptional coactivator and splicing regulator important for stress hormone signaling and development. Nucleic Acids Research, 2019, 47, 2856-2870.	6.5	20
87	Origins of Human Malaria: Rare Genomic Changes and Full Mitochondrial Genomes Confirm the Relationship of Plasmodium falciparum to Other Mammalian Parasites but Complicate the Origins of Plasmodium vivax. Molecular Biology and Evolution, 2008, 25, 1192-1198.	3.5	18
88	Preferential binding of a stable G3 <scp>BP</scp> ribonucleoprotein complex to intronâ€retaining transcripts in mouse brain and modulation of their expression in the cerebellum. Journal of Neurochemistry, 2016, 139, 349-368.	2.1	17
89	Evolution of Alternative Splicing Regulation: Changes in Predicted Exonic Splicing Regulators Are Not Associated with Changes in Alternative Splicing Levels in Primates. PLoS ONE, 2009, 4, e5800.	1.1	16
90	Contrasting 5' and 3' Evolutionary Histories and Frequent Evolutionary Convergence in Meis/hth Gene Structures. Genome Biology and Evolution, 2011, 3, 551-564.	1.1	16

#	Article	IF	CITATIONS
91	Differences in enhancer activity in mouse and zebrafish reporter assays are often associated with changes in gene expression. BMC Genomics, 2012, 13, 713.	1.2	16
92	Srrm234, but not canonical SR and hnRNP proteins, drive inclusion of <i>Dscam</i> exon 9 variable exons. Rna, 2019, 25, 1353-1365.	1.6	16
93	Silencing of SRRM4 suppresses microexon inclusion and promotes tumor growth across cancers. PLoS Biology, 2021, 19, e3001138.	2.6	15
94	Parallel evolution of a splicing program controlling neuronal excitability in flies and mammals. Science Advances, 2022, 8, eabk0445.	4.7	15
95	The Integrator complex regulates differential snRNA processing and fate of adult stem cells in the highly regenerative planarian Schmidtea mediterranea. PLoS Genetics, 2018, 14, e1007828.	1.5	14
96	A developmentally programmed splicing failure contributes to DNA damage response attenuation during mammalian zygotic genome activation. Science Advances, 2022, 8, eabn4935.	4.7	14
97	Genome Evolution: Where Do New Introns Come From?. Current Biology, 2012, 22, R529-R531.	1.8	13
98	Ancient Genomic Regulatory Blocks Are a Source for Regulatory Gene Deserts in Vertebrates after Whole-Genome Duplications. Molecular Biology and Evolution, 2020, 37, 2857-2864.	3.5	13
99	Environmental Enrichment Induces Epigenomic and Genome Organization Changes Relevant for Cognition. Frontiers in Molecular Neuroscience, 2021, 14, 664912.	1.4	12
100	From the American to the European amphioxus: towards experimental Evo-Devo at the origin of chordates. International Journal of Developmental Biology, 2009, 53, 1359-1366.	0.3	11
101	Neuronal-specific microexon splicing of <i>TAF1</i> mRNA is directly regulated by SRRM4/nSR100. RNA Biology, 2020, 17, 62-74.	1.5	11
102	ExOrthist: a tool to infer exon orthologies at any evolutionary distance. Genome Biology, 2021, 22, 239.	3.8	11
103	Diversity and Evolution of Spliceosomal Systems. Methods in Molecular Biology, 2014, 1126, 13-33.	0.4	11
104	Specialization of the photoreceptor transcriptome by <i>Srrm3</i> -dependent microexons is required for outer segment maintenance and vision. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	11
105	Origin and evolution of the chordate central nervous system: insights from amphioxus genoarchitecture. International Journal of Developmental Biology, 2017, 61, 655-664.	0.3	8
106	Is There a Prechordal Region and an Acroterminal Domain in Amphioxus?. Brain, Behavior and Evolution, 2022, 96, 334-352.	0.9	6
107	Gene Regulatory Networks of Epidermal and Neural Fate Choice in a Chordate. Molecular Biology and Evolution, 2022, 39, .	3.5	4
108	The X-linked splicing regulator MBNL3 has been co-opted to restrict placental growth in eutherians. PLoS Biology, 2022, 20, e3001615.	2.6	4

#	Article	IF	CITATIONS
109	In response to letter from Benoit Chabot. BioEssays, 2008, 30, 1257-1258.	1.2	1
110	Origins of Human Malaria: Rare Genomic Changes and Full Mitochondrial Genomes Confirm the Relationship of Plasmodium falciparum to Other Mammalian Parasites but Complicate the Origins of Plasmodium vivax. Molecular Biology and Evolution, 2008, 25, 2511-2511.	3.5	1
111	22-P008 Comparison of Sowah and Iroquois expression patterns in metazoans: Together but not scrambled. Mechanisms of Development, 2009, 126, S331.	1.7	Ο
112	Boosting Macroevolution: Genomic Changes Triggering Qualitative Expansions of Regulatory Potential. Fascinating Life Sciences, 2019, , 175-207.	0.5	0