
Michael M Seidman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/343858/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Visualization of Replisome Encounters with an Antigen Tagged Blocking Lesion. Journal of Visualized Experiments, 2021, , .	0.3	0
2	Replication of the Mammalian Genome by Replisomes Specific for Euchromatin and Heterochromatin. Frontiers in Cell and Developmental Biology, 2021, 9, 729265.	3.7	4
3	RNF168 E3 ligase participates in ubiquitin signaling and recruitment of SLX4 during DNA crosslink repair. Cell Reports, 2021, 37, 109879.	6.4	6
4	RNF4 Regulates the BLM Helicase in Recovery From Replication Fork Collapse. Frontiers in Genetics, 2021, 12, 753535.	2.3	10
5	Visualizing replication fork encounters with DNA interstrand crosslinks. Methods in Enzymology, 2021, 661, 53-75.	1.0	0
6	Defective postreplication repair of UV photoproducts in melanoma: a mutator phenotype. Molecular Oncology, 2020, 14, 5-7.	4.6	1
7	DONSON and FANCM associate with different replisomes distinguished by replication timing and chromatin domain. Nature Communications, 2020, 11, 3951.	12.8	26
8	FANCJ compensates for RAP80 deficiency and suppresses genomic instability induced by interstrand cross-links. Nucleic Acids Research, 2020, 48, 9161-9180.	14.5	7
9	Replisome structure suggests mechanism for continuous fork progression and post-replication repair. DNA Repair, 2019, 81, 102658.	2.8	18
10	EXD2 Protects Stressed Replication Forks and Is Required for Cell Viability in the Absence of BRCA1/2. Molecular Cell, 2019, 75, 605-619.e6.	9.7	26
11	Loss of ARID1A in Tumor Cells Renders Selective Vulnerability to Combined Ionizing Radiation and PARP Inhibitor Therapy. Clinical Cancer Research, 2019, 25, 5584-5594.	7.0	80
12	Remodeling of Interstrand Crosslink Proximal Replisomes Is Dependent on ATR, FANCM, and FANCD2. Cell Reports, 2019, 27, 1794-1808.e5.	6.4	44
13	R-loops cause genomic instability in T helper lymphocytes from patients with Wiskott-Aldrich syndrome. Journal of Allergy and Clinical Immunology, 2018, 142, 219-234.	2.9	39
14	Imaging cellular responses to antigen tagged DNA damage. DNA Repair, 2018, 71, 183-189.	2.8	3
15	Fanconi Anemia: A DNA repair disorder characterized by accelerated decline of the hematopoietic stem cell compartment and other features of aging. Ageing Research Reviews, 2017, 33, 67-75.	10.9	58
16	CHD4 Has Oncogenic Functions in Initiating and Maintaining Epigenetic Suppression of Multiple Tumor Suppressor Genes. Cancer Cell, 2017, 31, 653-668.e7.	16.8	134
17	Mechanistic insights into how CMG helicase facilitates replication past DNA roadblocks. DNA Repair, 2017, 55, 76-82.	2.8	15
18	Arsenite Binds to the RING Finger Domain of FANCL E3 Ubiquitin Ligase and Inhibits DNA Interstrand Crosslink Repair. ACS Chemical Biology, 2017, 12, 1858-1866.	3.4	21

MICHAEL M SEIDMAN

#	Article	IF	CITATIONS
19	Single Molecule Analysis of Laser Localized Psoralen Adducts. Journal of Visualized Experiments, 2017, , .	0.3	0
20	Single Molecule Analysis of Laser Localized Interstrand Crosslinks. Frontiers in Genetics, 2016, 7, 84.	2.3	5
21	Bloom syndrome complex promotes FANCM recruitment to stalled replication forks and facilitates both repair and traverse of DNA interstrand crosslinks. Cell Discovery, 2016, 2, 16047.	6.7	47
22	Enhancing the Cytotoxic Effects of PARP Inhibitors with DNA Demethylating Agents – A Potential Therapy for Cancer. Cancer Cell, 2016, 30, 637-650.	16.8	151
23	<i>Fan1</i> deficiency results in DNA interstrand cross-link repair defects, enhanced tissue karyomegaly, and organ dysfunction. Genes and Development, 2016, 30, 645-659.	5.9	42
24	FANCM interacts with PCNA to promote replication traverse of DNA interstrand crosslinks. Nucleic Acids Research, 2016, 44, 3219-3232.	14.5	41
25	UHRF1 Contributes to DNA Damage Repair as a Lesion Recognition Factor and Nuclease Scaffold. Cell Reports, 2015, 10, 1957-1966.	6.4	80
26	CSB interacts with SNM1A and promotes DNA interstrand crosslink processing. Nucleic Acids Research, 2015, 43, 247-258.	14.5	48
27	Catalytic Strand Separation by RECQ1 Is Required for RPA-Mediated Response to Replication Stress. Current Biology, 2015, 25, 2830-2838.	3.9	33
28	MERIT40 cooperates with BRCA2 to resolve DNA interstrand cross-links. Genes and Development, 2015, 29, 1955-1968.	5.9	22
29	The DNA Translocase FANCM/MHF Promotes Replication Traverse of DNA Interstrand Crosslinks. Molecular Cell, 2013, 52, 434-446.	9.7	165
30	NEIL1 Responds and Binds to Psoralen-induced DNA Interstrand Crosslinks. Journal of Biological Chemistry, 2013, 288, 12426-12436.	3.4	23
31	Fanconi Anemia Group J Helicase and MRE11 Nuclease Interact To Facilitate the DNA Damage Response. Molecular and Cellular Biology, 2013, 33, 2212-2227.	2.3	51
32	ATR-Dependent Phosphorylation of FANCM at Serine 1045 Is Essential for FANCM Functions. Cancer Research, 2013, 73, 4300-4310.	0.9	59
33	The RecQ helicase RECQL5 participates in psoralen-induced interstrand cross-link repair. Carcinogenesis, 2013, 34, 2218-2230.	2.8	11
34	Single Molecular Analysis of the Encounter of Replication Forks with DNA Interstrand Crosslinks. FASEB Journal, 2013, 27, 538.2.	0.5	0
35	A Ubiquitin-Binding Protein, FAAP2O, Links RNF8-Mediated Ubiquitination to the Fanconi Anemia DNA Repair Network. Molecular Cell, 2012, 47, 61-75.	9.7	61
36	Physical and Functional Interaction Between Fanconi Anemia Group J Helicase and MRE11 Nuclease. FASEB Journal, 2012, 26, 539.2.	0.5	0

MICHAEL M SEIDMAN

#	Article	IF	CITATIONS
37	A novel link to base excision repair?. Trends in Biochemical Sciences, 2010, 35, 247-252.	7.5	18
38	Rif1 provides a new DNA-binding interface for the Bloom syndrome complex to maintain normal replication. EMBO Journal, 2010, 29, 3140-3155.	7.8	92
39	A Histone-Fold Complex and FANCM FormÂa Conserved DNA-Remodeling Complex to Maintain Genome Stability. Molecular Cell, 2010, 37, 865-878.	9.7	204
40	DNA interstrand crosslink repair in mammalian cells: step by step. Critical Reviews in Biochemistry and Molecular Biology, 2010, 45, 23-49.	5.2	150
41	Repair of Laser-localized DNA Interstrand Cross-links in G1 Phase Mammalian Cells. Journal of Biological Chemistry, 2009, 284, 27908-27917.	3.4	78
42	Human Replication Protein A Melts a DNA Triple Helix Structure in a Potent and Specific Manner. Biochemistry, 2008, 47, 5068-5077.	2.5	18
43	Targeted Gene Knock In and Sequence Modulation Mediated by a Psoralen-linked Triplex-forming Oligonucleotide*. Journal of Biological Chemistry, 2008, 283, 11244-11252.	3.4	39
44	Psoralen Conjugates for Visualization of Genomic Interstrand Cross-Links Localized by Laser Photoactivation. Bioconjugate Chemistry, 2007, 18, 431-437.	3.6	47
45	Targeted Cross-linking of the Human β-Globin Gene in Living Cells Mediated by a Triple Helix Forming Oligonucleotideâ€. Biochemistry, 2006, 45, 1970-1978.	2.5	36
46	The Development of Bioactive Triple Helix-Forming Oligonucleotides. Annals of the New York Academy of Sciences, 2005, 1058, 119-127.	3.8	29
47	Triplex targeted genomic crosslinks enter separable deletion and base substitution pathways. Nucleic Acids Research, 2005, 33, 5382-5393.	14.5	35
48	Werner syndrome protein 1367 variants and disposition towards coronary artery disease in Caucasian patients. Mechanisms of Ageing and Development, 2004, 125, 491-496.	4.6	27
49	Importance of Clustered 2â€~-O-(2-Aminoethyl) Residues for the Gene Targeting Activity of Triple Helix-Forming Oligonucleotides‡. Biochemistry, 2004, 43, 1343-1351.	2.5	43
50	Oligonucleotide Mediated Gene Targeting in Mammalian Cells. Current Pharmaceutical Biotechnology, 2004, 5, 421-430.	1.6	12
51	Gene Targeting by Triple Helix-Forming Oligonucleotides. Annals of the New York Academy of Sciences, 2003, 1002, 141-153.	3.8	14
52	Cell Cycle Modulation of Gene Targeting by a Triple Helix-forming Oligonucleotide. Journal of Biological Chemistry, 2003, 278, 11072-11077.	3.4	58
53	The potential for gene repair via triple helix formation. Journal of Clinical Investigation, 2003, 112, 487-494.	8.2	135
54	Minimum Number of 2â€~-O-(2-Aminoethyl) Residues Required for Gene Knockout Activity by Triple Helix Forming Oligonucleotides. Biochemistry, 2002, 41, 7716-7724.	2.5	49

MICHAEL M SEIDMAN

#	Article	IF	CITATIONS
55	DNA repair and mutagenesis in Werner syndrome. Environmental and Molecular Mutagenesis, 2001, 38, 227-234.	2.2	37
56	Targeted Gene Knockout by 2′-O-Aminoethyl Modified Triplex Forming Oligonucleotides. Journal of Biological Chemistry, 2001, 276, 28991-28998.	3.4	44
57	Unwinding of a DNA Triple Helix by the Werner and Bloom Syndrome Helicases. Journal of Biological Chemistry, 2001, 276, 3024-3030.	3.4	108
58	Targeted gene knockout mediated by triple helix forming oligonucleotides. Nature Genetics, 1998, 20, 212-214.	21.4	163
59	Single Nucleotide Positions Have Proximal and Distal Influence on UV Mutation Hotspots and Coldspots. Journal of Molecular Biology, 1996, 258, 251-260.	4.2	17