Michael Uhlin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3438079/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A novel CD34-specific T-cell engager efficiently depletes acute myeloid leukemia and leukemic stem cells <i>in vitro</i> and <i>in vivo</i> . Haematologica, 2022, 107, 1786-1795.	3.5	5
2	SARSâ€CoVâ€2 (COVIDâ€19)â€specific T cell and B cell responses in convalescent rheumatoid arthritis: Monozygotic twins pair case observation. Scandinavian Journal of Immunology, 2022, , e13151.	2.7	2
3	Cryopreserved platelets and amotosalen-treated plasma in an experimental clot formation set-up Blood Transfusion, 2022, , .	0.4	1
4	Nonâ€phthalate plasticizer DEHT preserves adequate blood component quality during storage in PVC blood bags. Vox Sanguinis, 2021, 116, 60-70.	1.5	15
5	Characterization of ascites- and tumor-infiltrating $\hat{I}^{3}\hat{I}$ T cells reveals distinct repertoires and a beneficial role in ovarian cancer. Science Translational Medicine, 2021, 13, .	12.4	37
6	Revisiting the Role of γδT Cells in Anti-CMV Immune Response after Transplantation. Viruses, 2021, 13, 1031.	3.3	7
7	DEHT is a suitable plasticizer option for phthalateâ€free storage of irradiated red blood cells. Vox Sanguinis, 2021, , .	1.5	3
8	Cryopreservation of buffy coat derived platelets: Paired in vitro characterization using uncontrolled versus controlled freezing rate protocols. Transfusion, 2021, 61, 546-556.	1.6	5
9	A Novel CD34-Specific T-Cell Engager Efficiently Depletes Stem Cells and Acute Myeloid Leukemia Cells in Vitro and In Vivo. Blood, 2021, 138, 2861-2861.	1.4	1
10	Evaluating Thymic Function After Human Hematopoietic Stem Cell Transplantation in the Personalized Medicine Era. Frontiers in Immunology, 2020, 11, 1341.	4.8	23
11	Profound Functional Suppression of Tumor-Infiltrating T-Cells in Ovarian Cancer Patients Can Be Reversed Using PD-1-Blocking Antibodies or DARPinî Proteins. Journal of Immunology Research, 2020, 2020, 1-12.	2.2	8
12	TOX is expressed by exhausted and polyfunctional human effector memory CD8 ⁺ T cells. Science Immunology, 2020, 5, .	11.9	125
13	Haemostatic responsiveness and release of biological response modifiers following cryopreservation of platelets treated with amotosalen and ultraviolet A light. Blood Transfusion, 2020, 18, 191-199.	0.4	4
14	Granulocyte transfusions could benefit patients with severe oral mucositis after allogeneic hematopoietic stem cell transplantation. Vox Sanguinis, 2019, 114, 769-777.	1.5	4
15	A novel protocol for cryopreservation of paediatric red blood cell units allows increased availability of rare blood types. Vox Sanguinis, 2019, 114, 711-720.	1.5	4
16	Graft Î ³ δTCR Sequencing Identifies Public Clonotypes Associated with Hematopoietic Stem Cell Transplantation Efficacy in Acute Myeloid Leukemia Patients and Unravels Cytomegalovirus Impact on Repertoire Distribution. Journal of Immunology, 2019, 202, 1859-1870.	0.8	26
17	Effect of Graft-versus-Host Disease Prophylaxis Regimens on T and B Cell Reconstitution after Allogeneic Hematopoietic Stem Cell Transplantation. Biology of Blood and Marrow Transplantation, 2019, 25, 1260-1268.	2.0	21
18	The importance of graft cell composition in outcome after allogeneic stem cell transplantation in patients with malignant disease. Clinical Transplantation, 2019, 33, e13537.	1.6	5

#	Article	IF	CITATIONS
19	T-cell frequencies of CD8+ γδand CD27+ γδ cells in the stem cell graft predict the outcome after allogeneic hematopoietic cell transplantation. Bone Marrow Transplantation, 2019, 54, 1562-1574.	2.4	17
20	Individualization of Hematopoietic Stem Cell Transplantation Using Alpha/Beta T-Cell Depletion. Frontiers in Immunology, 2019, 10, 189.	4.8	10
21	Impact of Î ³ δT cells on clinical outcome of hematopoietic stem cell transplantation: systematic review and meta-analysis. Blood Advances, 2019, 3, 3436-3448.	5.2	41
22	CD8 ⁺ <i>Ĵ³Ĵ´</i> T Cells Are More Frequent in CMV Seropositive Bone Marrow Grafts and Display Phenotype of an Adaptive Immune Response. Stem Cells International, 2019, 2019, 1-13.	2.5	18
23	Immune profiling and identification of prognostic immune-related risk factors in human ovarian cancer. Oncolmmunology, 2019, 8, e1535730.	4.6	57
24	Change of apheresis device decreased the incidence of severe acute graft-versus-host disease among patients after allogeneic stem cell transplantation with sibling donors. Transfusion, 2018, 58, 1442-1451.	1.6	8
25	Risk Factors for Severe Acute Graft-versus-Host Disease in Donor Graft Composition. Biology of Blood and Marrow Transplantation, 2018, 24, 467-477.	2.0	13
26	CD19 Chimeric Antigen Receptor T Cells From Patients With Chronic Lymphocytic Leukemia Display an Elevated IFN-γ Production Profile. Journal of Immunotherapy, 2018, 41, 73-83.	2.4	11
27	Late presenting atypical severe combined immunodeficiency (<scp>SCID</scp>) associated with a novel missense mutation in <scp>DCLRE</scp> 1C. Pediatric Allergy and Immunology, 2018, 29, 108-111.	2.6	7
28	Assessment of TREC, KREC and telomere length in long-term survivors after allogeneic HSCT: the role of GvHD and graft source and evidence for telomere homeostasis in young recipients. Bone Marrow Transplantation, 2018, 53, 69-77.	2.4	13
29	Ex Vivo Generation of Donor Antigen-Specific Immunomodulatory Cells. Cell Transplantation, 2018, 27, 1692-1704.	2.5	5
30	Optimized processing for pathogen inactivation of doubleâ€dose buffyâ€coat platelet concentrates: maintained inÂvitro quality over 7â€day storage. Vox Sanguinis, 2018, 113, 611-621.	1.5	13
31	Media evaluation for production and expansion of anti-CD19 chimeric antigen receptor T cells. Cytotherapy, 2018, 20, 941-951.	0.7	16
32	Expansion of Gammadelta T Cells from Cord Blood: A Therapeutical Possibility. Stem Cells International, 2018, 2018, 1-15.	2.5	22
33	Therapeutic Use of Extraembryonic-Derived Tissues. Stem Cells International, 2018, 2018, 1-2.	2.5	0
34	Targeting SAMHD1 with the Vpx protein to improve cytarabine therapy for hematological malignancies. Nature Medicine, 2017, 23, 256-263.	30.7	102
35	Functionality testing of stem cell grafts to predict infectious complications after allogeneic hematopoietic stem cell transplantation. Vox Sanguinis, 2017, 112, 459-468.	1.5	7
36	No effect of <scp>HLA</scp> â€C mismatch after allogeneic hematopoietic stem cell transplantation with unrelated donors and Tâ€cell depletion in patients with hematological malignancies. Clinical Transplantation, 2017, 31, e13012.	1.6	0

#	Article	IF	CITATIONS
37	Advances in umbilical cord blood cell therapy: the present and the future. Expert Opinion on Biological Therapy, 2017, 17, 691-699.	3.1	50
38	Sometimes less might be more, or at least equal. Blood, 2017, 130, 565-566.	1.4	7
39	Lymphocytes in Placental Tissues: Immune Regulation and Translational Possibilities for Immunotherapy. Stem Cells International, 2017, 2017, 1-17.	2.5	19
40	Combining Flow and Mass Cytometry in the Search for Biomarkers in Chronic Graft-versus-Host Disease. Frontiers in Immunology, 2017, 8, 717.	4.8	37
41	Characterization of infiltrating lymphocytes in human benign and malignant prostate tissue. Oncotarget, 2017, 8, 60257-60269.	1.8	12
42	Donor Cell Composition and Reactivity Predict Risk of Acute Graft-versus-Host Disease after Allogeneic Hematopoietic Stem Cell Transplantation. Journal of Immunology Research, 2016, 2016, 1-11.	2.2	13
43	Microchip Screening Platform for Single Cell Assessment of NK Cell Cytotoxicity. Frontiers in Immunology, 2016, 7, 119.	4.8	46
44	T Cell Receptor Excision Circle (TREC) Monitoring after Allogeneic Stem Cell Transplantation; a Predictive Marker for Complications and Clinical Outcome. International Journal of Molecular Sciences, 2016, 17, 1705.	4.1	24
45	Long-Term Stable Mixed Chimerism after Hematopoietic Stem Cell Transplantation in Patients with Non-Malignant Disease, Shall We Be Tolerant?. PLoS ONE, 2016, 11, e0154737.	2.5	23
46	High incidence of severe chronic GvHD after HSCT with sibling donors. A single center analysis. Bone Marrow Transplantation, 2016, 51, 1518-1521.	2.4	10
47	Progression of benign prostatic hyperplasia is associated with pro-inflammatory mediators and chronic activation of prostate-infiltrating lymphocytes. Oncotarget, 2016, 7, 23581-23593.	1.8	35
48	Quality of the hematopoietic stem cell graft affects the clinical outcome of allogeneic stem cell transplantation. Transfusion, 2015, 55, 2339-2350.	1.6	23
49	Single-Cell Characterization of in vitro Migration and Interaction Dynamics of T Cells Expanded with IL-2 and IL-7. Frontiers in Immunology, 2015, 6, 196.	4.8	8
50	Effect of Total Nucleated and CD34+ Cell Dose on Outcome after Allogeneic Hematopoietic Stem Cell Transplantation. Biology of Blood and Marrow Transplantation, 2015, 21, 889-893.	2.0	106
51	Splenectomy prior to allogeneic hematopoietic SCT increases the risk of post-transplant lymphoproliferative disease. Bone Marrow Transplantation, 2014, 49, 463-464.	2.4	2
52	Alpha/Beta T-Cell Depleted Grafts as an Immunological Booster to Treat Graft Failure after Hematopoietic Stem Cell Transplantation with HLA-Matched Related and Unrelated Donors. Journal of Immunology Research, 2014, 2014, 1-14.	2.2	35
53	Cord blood graft composition impacts the clinical outcome of allogeneic stem cell transplantation. Transplant Infectious Disease, 2014, 16, 203-212.	1.7	13
54	T-Cell Receptor Excision Circle Levels After Allogeneic Stem Cell Transplantation Are Predictive of Relapse in Patients with Acute Myeloid Leukemia and Myelodysplastic Syndrome. Stem Cells and Development, 2014, 23, 1559-1567.	2.1	8

#	Article	IF	CITATIONS
55	Analysis of Donor and Recipient ABO Incompatibility and Antibody-Associated Complications after Allogeneic Stem Cell Transplantation with Reduced-Intensity Conditioning. Biology of Blood and Marrow Transplantation, 2014, 20, 264-271.	2.0	41
56	Expanded umbilical cord blood T cells used as donor lymphocyte infusions after umbilical cord blood transplantation. Cytotherapy, 2014, 16, 1528-1536.	0.7	15
57	Risk factors for Epstein-Barr virus-related post-transplant lymphoproliferative disease after allogeneic hematopoietic stem cell transplantation. Haematologica, 2014, 99, 346-352.	3.5	153
58	Chimerism Patterns of Long-Term Stable Mixed Chimeras Posthematopoietic Stem Cell Transplantation in Patients with Nonmalignant Diseases: Follow-Up of Long-Term Stable Mixed Chimerism Patients. Biology of Blood and Marrow Transplantation, 2013, 19, 838-844.	2.0	34
59	Cord Blood T Cells Cultured With IL-7 in Addition to IL-2 Exhibit a Higher Degree of Polyfunctionality and Superior Proliferation Potential. Journal of Immunotherapy, 2013, 36, 432-441.	2.4	12
60	Chimerism and use of mesenchymal stem cells in umbilical cord blood transplantation. Chimerism, 2013, 4, 34-35.	0.7	1
61	Rapid Salvage Treatment With Virus-Specific T Cells for Therapy-Resistant Disease. Clinical Infectious Diseases, 2012, 55, 1064-1073.	5.8	116
62	Update on viral infections in lung transplantation. Current Opinion in Pulmonary Medicine, 2012, 18, 264-270.	2.6	22
63	Factors With an Impact on Chimerism Development and Long-Term Survival After Umbilical Cord Blood Transplantation. Transplantation, 2012, 94, 1066-1074.	1.0	20
64	Mesenchymal Stem Cells Inhibit Thymic Reconstitution After Allogeneic Cord Blood Transplantation. Stem Cells and Development, 2012, 21, 1409-1417.	2.1	26
65	Thymic function after allogeneic stem cell transplantation is dependent on graft source and predictive of long term survival. Clinical Immunology, 2012, 142, 343-350.	3.2	35
66	Expansion of T-cells from the cord blood graft as a predictive tool for complications and outcome of cord blood transplantation. Clinical Immunology, 2012, 143, 134-144.	3.2	3
67	Improved Survival after Allogeneic Hematopoietic Stem Cell Transplantation in Recent Years. A Single-Center Study. Biology of Blood and Marrow Transplantation, 2011, 17, 1688-1697.	2.0	131
68	Immune modulation to prevent antibody-mediated rejection after allogeneic hematopoietic stem cell transplantation. Transplant Immunology, 2011, 25, 153-158.	1.2	22
69	In vitroorin vivoexpansion before adoptive T-cell therapy?. Immunotherapy, 2011, 3, 131-133.	2.0	0
70	Clinical Expansion of Cord Blood-derived T Cells for Use as Donor Lymphocyte Infusion After Cord Blood Transplantation. Journal of Immunotherapy, 2010, 33, 96-105.	2.4	29
71	A novel haplo-identical adoptive CTL therapy as a treatment for EBV-associated lymphoma after stem cell transplantation. Cancer Immunology, Immunotherapy, 2010, 59, 473-477.	4.2	74
72	Characterization of long-term mixed donor–donor chimerism after double cord blood transplantation. Clinical and Experimental Immunology, 2010, 162, 146-155.	2.6	17

#	Article	IF	CITATIONS
73	Stable mixed double donor chimerism - Absence of war doesn't necessarily mean peace. Chimerism, 2010, 1, 64-65.	0.7	3
74	Leukemia Lineage-Specific Chimerism Analysis andÂMolecular Monitoring Improve Outcome of Donor Lymphocyte Infusions. Biology of Blood and Marrow Transplantation, 2010, 16, 1728-1737.	2.0	25
75	Stable mixed donor–donor chimerism after double cord blood transplantation. International Journal of Hematology, 2009, 90, 526-531.	1.6	15
76	The allogeneic graftâ€ <i>versus</i> ancer effect. British Journal of Haematology, 2009, 147, 614-633.	2.5	132
77	Increased Frequency and Responsiveness of PSA-Specific T Cells After Allogeneic Hematopoetic Stem-Cell Transplantation. Transplantation, 2009, 87, 467-472.	1.0	2
78	Unrelated cord blood and mismatched unrelated volunteer donor transplants, two alternatives in patients who lack an HLA-identical donor. Bone Marrow Transplantation, 2008, 42, 643-648.	2.4	37
79	Mesenchymal stem cells fail to trigger effector functions of cytotoxic T lymphocytes. Journal of Leukocyte Biology, 2007, 82, 887-893.	3.3	126
80	Is the Activity of Partially Agonistic MHC:Peptide Ligands Dependent on the Quality of Immunological Help?. Scandinavian Journal of Immunology, 2006, 64, 581-587.	2.7	8
81	Help signals provided by lymphokines modulate the activation and apoptotic programs induced by partially agonistic peptides in specific cytotoxic T lymphocytes. European Journal of Immunology, 2005, 35, 2929-2939.	2.9	7
82	Regulation of lck degradation and refractory state in CD8+ cytotoxic T lymphocytes. Proceedings of the United States of America, 2005, 102, 9264-9269.	7.1	17
83	Pharmacological Disintegration of Lipid Rafts Decreases Specific Tetramer Binding and Disrupts the CD3 Complex and CD8 Heterodimer in Human Cytotoxic T Lymphocytes. Scandinavian Journal of Immunology, 2003, 57, 99-106.	2.7	15