Shawn C Burdette

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3437310/publications.pdf

Version: 2024-02-01

66 papers

5,580 citations

304743 22 h-index 63 g-index

76 all docs

76 docs citations

76 times ranked 6937 citing authors

#	Article	IF	CITATIONS
1	Photoisomerization in different classes of azobenzene. Chemical Society Reviews, 2012, 41, 1809-1825.	38.1	2,270
2	Fluorescent Sensors for Zn2+Based on a Fluorescein Platform:Â Synthesis, Properties and Intracellular Distribution. Journal of the American Chemical Society, 2001, 123, 7831-7841.	13.7	689
3	A New Cell-Permeable Fluorescent Probe for Zn2+. Journal of the American Chemical Society, 2000, 122, 5644-5645.	13.7	560
4	ZP4, an Improved Neuronal Zn2+Sensor of the Zinpyr Family. Journal of the American Chemical Society, 2003, 125, 1778-1787.	13.7	359
5	Meeting of the minds: Metalloneurochemistry. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 3605-3610.	7.1	255
6	Bright Fluorescent Chemosensor Platforms for Imaging Endogenous Pools of Neuronal Zinc. Chemistry and Biology, 2004, 11, 203-210.	6.0	142
7	Synthesis and Characterization of Zinc Sensors Based on a Monosubstituted Fluorescein Platform. Inorganic Chemistry, 2004, 43, 2624-2635.	4.0	132
8	The Rhodafluor Family. An Initial Study of Potential Ratiometric Fluorescent Sensors for Zn2+. Inorganic Chemistry, 2002, 41, 6816-6823.	4.0	121
9	FerriBRIGHT: A Rationally Designed Fluorescent Probe for Redox Active Metals. Journal of the American Chemical Society, 2009, 131, 8578-8586.	13.7	108
10	Proof for the Concerted Inversion Mechanism in the <i>trans</i> â†' <i>cis</i> Isomerization of Azobenzene Using Hydrogen Bonding To Induce Isomer Locking. Journal of Organic Chemistry, 2010, 75, 4817-4827.	3.2	79
11	Alkali Metal Induced Rupture of a Phosphorusâ^'Phosphorus Double Bond. Electrochemical and EPR Investigations of New Sterically Protected Diphosphenes and Radical Anions [ArPPAr]• Organometallics, 1997, 16, 3395-3400.	2.3	63
12	Method for identifying neuronal cells suffering zinc toxicity by use of a novel fluorescent sensor. Journal of Neuroscience Methods, 2004, 139, 79-89.	2.5	52
13	FerriCast: A Macrocyclic Photocage for Fe ³⁺ . Inorganic Chemistry, 2010, 49, 916-923.	4.0	52
14	Photoinduced Release of $Zn < sup > 2 + < / sup > with ZinCleav-1: a Nitrobenzyl-Based Caged Complex. Inorganic Chemistry, 2009, 48, 8445-8455.$	4.0	45
15	Photochemical Tools for Studying Metal Ion Signaling and Homeostasis. Biochemistry, 2012, 51, 7212-7224.	2,5	44
16	Isoquinoline-derivatized tris(2-pyridylmethyl)amines as fluorescent zinc sensors with strict Zn2+/Cd2+ selectivity. Dalton Transactions, 2014, 43, 10751.	3.3	32
17	Zn2+ at a cellular crossroads. Current Opinion in Chemical Biology, 2016, 31, 120-125.	6.1	29
18	A Secondâ€Generation Photocage for Zn ²⁺ Inspired by TPEN: Characterization and Insight into the Uncaging Quantum Yields of ZinCleav Chelators. Chemistry - A European Journal, 2011, 17, 3932-3941.	3.3	28

#	Article	IF	CITATIONS
19	A Zinc(II) Photocage Based on a Decarboxylation Metal Ion Release Mechanism for Investigating Homeostasis and Biological Signaling. Angewandte Chemie - International Edition, 2015, 54, 13027-13031.	13.8	27
20	ZinCast-1: a photochemically active chelator for Zn2+. Chemical Communications, 2009, , 6967.	4.1	25
21	Probing Nitrobenzhydrol Uncaging Mechanisms Using FerriCast. Organic Letters, 2010, 12, 4486-4489.	4.6	25
22	Methods for Preparing Metal Ion Photocages: Application to the Synthesis of CrownCast. Organic Letters, 2009, 11, 2587-2590.	4.6	23
23	Quantifying factors that influence metal ion release in photocaged complexes using ZinCast derivatives. Dalton Transactions, 2012, 41, 8162.	3.3	23
24	CuproCleav-1, a first generation photocage for Cu+. Chemical Communications, 2012, 48, 5331.	4.1	23
25	Hydrazones double down on zinc. Nature Chemistry, 2012, 4, 695-696.	13.6	23
26	A ratiometric fluorescent metal ion indicator based on dansyl labeled poly(N-isopropylacrylamide) responds to a quenching metal ion. Analyst, The, 2011, 136, 5006.	3.5	22
27	Bis(2-quinolylmethyl)ethylenediaminediacetic acids (BQENDAs), TQEN–EDTA hybrid molecules as fluorescent zinc sensors. Dalton Transactions, 2014, 43, 10013.	3.3	20
28	8-TQEN (N,N,N′,N′-tetrakis(8-quinolylmethyl)ethylenediamine) analogs as fluorescent cadmium sensors: strategies to enhance Cd2+-induced fluorescence and Cd2+/Zn2+ selectivity. RSC Advances, 2014, 4, 12849.	3.6	19
29	Zinc Photocages with Improved Photophysical Properties and Cell Permeability Imparted by Ternary Complex Formation. Journal of the American Chemical Society, 2019, 141, 12100-12108.	13.7	19
30	Detection and Quantification of Tightly Bound Zn ²⁺ in Blood Serum Using a Photocaged Chelator and a DNAzyme Fluorescent Sensor. Analytical Chemistry, 2021, 93, 5856-5861.	6.5	19
31	Buffering Heavy Metal Ions with Photoactive CrownCast Cages. European Journal of Inorganic Chemistry, 2010, 2010, 5069-5078.	2.0	18
32	The zinc paradigm for metalloneurochemistry. Essays in Biochemistry, 2017, 61, 225-235.	4.7	18
33	Intermolecular approach to metal ion indicators based on polymer phase transitions coupled to fluorescence resonance energy transfer. Analyst, The, 2012, 137, 4734.	3.5	15
34	Emissive Azobenzenes Delivered on a Silver Coordination Polymer. Inorganic Chemistry, 2018, 57, 15009-15022.	4.0	14
35	Following the Ca2+ roadmap to photocaged complexes for Zn2+ and beyond. Current Opinion in Chemical Biology, 2013, 17, 137-142.	6.1	13
36	Detection of adsorbates on emissive MOF surfaces with X-ray photoelectron spectroscopy. Dalton Transactions, 2019, 48, 4520-4529.	3.3	13

#	Article	IF	CITATIONS
37	Increasing the Dynamic Range of Metal Ion Affinity Changes in Zn ²⁺ Photocages Using Multiple Nitrobenzyl Groups. Inorganic Chemistry, 2013, 52, 8483-8494.	4.0	12
38	The ends of elements. Nature Chemistry, 2013, 5, 350-352.	13.6	11
39	Shortâ€Circuiting Azobenzene Photoisomerization with Electronâ€Donating Substituents and Reactivating the Photochemistry with Chemical Modification. European Journal of Organic Chemistry, 2011, 2011, 2916-2919.	2.4	10
40	Fluorescent Ratiometric Indicators Based on Cu(II)-Induced Changes in Poly(NIPAM) Microparticle Volume. Sensors, 2013, 13, 1341-1352.	3.8	10
41	Systematic Modulation of Hydrogen Bond Donors in Aminoazobenzene Derivatives Provides Further Evidence for the Concerted Inversion Photoisomerization Pathway. European Journal of Organic Chemistry, 2013, 2013, 4794-4803.	2.4	9
42	Key Considerations for Sensing Felland Felllin Aqueous Media. European Journal of Inorganic Chemistry, 2015, 2015, 5728-5729.	2.0	8
43	Understanding the Relationship Between Photolysis Efficiency and Metal Binding Using ArgenCast Photocages. Photochemistry and Photobiology, 2012, 88, 844-850.	2.5	7
44	MOF Decomposition and Introduction of Repairable Defects Using a Photodegradable Strut. Chemistry - A European Journal, 2019, 25, 8393-8400.	3.3	7
45	Neutron stardust and the elements of Earth. Nature Chemistry, 2019, 11, 4-10.	13.6	7
46	lodination of anilines and phenols with 18-crown-6 supported ICl2â°. Organic and Biomolecular Chemistry, 2011, 9, 2987.	2.8	6
47	Recalling radon's recognition. Nature Chemistry, 2013, 5, 804-804.	13.6	6
48	A Strategy for Trapping Molecular Guests in MOF-5 Utilizing Surface-Capping Groups. Crystal Growth and Design, 2019, 19, 6331-6338.	3.0	6
49	The straight dope on isotopes. Nature Chemistry, 2013, 5, 979-981.	13.6	5
50	Nobelium non-believers. Nature Chemistry, 2014, 6, 652-652.	13.6	5
51	Another four bricks in the wall. Nature Chemistry, 2016, 8, 283-288.	13.6	5
52	The neodymium neologism. Nature Chemistry, 2017, 9, 194-194.	13.6	5
53	Lighting Up Protons with MorphFl, a Fluorescein–Morpholine Dyad: An Experiment for the Organic Laboratory. Journal of Chemical Education, 2011, 88, 1569-1573.	2.3	4
54	N,N,N′,N′ â€Tetrakis(3â€isoquinolylmethyl)â€2,6â€lutidylenediamine (3â€isoTQLN): A Fluorescent Zn 2+ /C Sensor as a Hybrid of 2â€Quinolyl/1â€isoquionolyl Counterparts TQLN/1â€isoTQLN. European Journal of Inorganic Chemistry, 2021, 2021, 1287-1296.	d 2+ Dual 2.0	4

#	Article	IF	CITATIONS
55	The germination of germanium. Nature Chemistry, 2018, 10, 244-244.	13.6	3
56	On-demand guest release from MOF-5 sealed with nitrophenylacetic acid photocapping groups. Photochemical and Photobiological Sciences, 2019, 18, 2849-2853.	2.9	3
57	Probing the Ni ²⁺ â€selective Response of Fluorescent Probe NiSensorâ€↓ with the NiCast Photocaged Complex ^{â€} [‡] . Photochemistry and Photobiology, 2022, 98, 362-370.	2.5	3
58	Seekers of the lost lanthanum. Nature Chemistry, 2019, 11, 188-188.	13.6	2
59	Coordination Chemistry of a Controlled Burst of Zn ² ⁺ in Bulk Aqueous and Nanosized Water Droplets with a Zincon Chelator. Inorganic Chemistry, 2020, 59, 184-188.	4.0	2
60	Improved Photodecarboxylation Properties in Zinc Photocages Constructed Using ⟨i⟩mâ€Nitrophenylacetic Acid Variants**. ChemPhotoChem, 2022, 6, .	3.0	2
61	Homely holmium. Nature Chemistry, 2015, 7, 532-532.	13.6	1
62	Hafnium the lutécium I used to be. Nature Chemistry, 2018, 10, 1074-1074.	13.6	1
63	trans-Platinum Reporting for Duty. Chemistry and Biology, 2006, 13, 465-467.	6.0	0
64	Crystal structure of (pyridine-lºN)bis(quinolin-2-olato-lº2N,O)copper(II) monohydrate. Acta Crystallographica Section E: Crystallographic Communications, 2015, 71, m38-m39.	0.5	0
65	Frantically forging fermium. Nature Chemistry, 2017, 9, 724-724.	13.6	0
66	Tritium trinkets. Nature Chemistry, 2018, 10, 686-686.	13.6	0