Eiji Nambara

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3435881/publications.pdf

Version: 2024-02-01

88	14,235	56	87
papers	citations	h-index	g-index
89	89	89	11598
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	The Arabidopsis cytochrome P450 CYP707A encodes ABA 8′-hydroxylases: key enzymes in ABA catabolism. EMBO Journal, 2004, 23, 1647-1656.	7.8	872
2	A Unique Short-Chain Dehydrogenase/Reductase in Arabidopsis Glucose Signaling and Abscisic Acid Biosynthesis and Functions. Plant Cell, 2002, 14, 2723-2743.	6.6	764
3	Global Analysis of DELLA Direct Targets in Early Gibberellin Signaling in <i>Arabidopsis</i> . Plant Cell, 2007, 19, 3037-3057.	6.6	572
4	Genome-wide profiling of stored mRNA in Arabidopsis thaliana seed germination: epigenetic and genetic regulation of transcription in seed. Plant Journal, 2005, 41, 697-709.	5.7	528
5	Regulation of Abscisic Acid Signaling by the Ethylene Response Pathway in Arabidopsis. Plant Cell, 2000, 12, 1117-1126.	6.6	507
6	Arabidopsis Transcriptome Analysis under Drought, Cold, High-Salinity and ABA Treatment Conditions using a Tiling Array. Plant and Cell Physiology, 2008, 49, 1135-1149.	3.1	475
7	CYP707A1 and CYP707A2, Which Encode Abscisic Acid 8′-Hydroxylases, Are Indispensable for Proper Control of Seed Dormancy and Germination in Arabidopsis. Plant Physiology, 2006, 141, 97-107.	4.8	473
8	The AtGenExpress hormone and chemical treatment data set: experimental design, data evaluation, model data analysis and data access. Plant Journal, 2008, 55, 526-542.	5.7	467
9	The Gibberellic Acid Signaling Repressor RGL2 Inhibits <i>Arabidopsis</i> Seed Germination by Stimulating Abscisic Acid Synthesis and ABI5 Activity. Plant Cell, 2008, 20, 2729-2745.	6.6	444
10	Functional analysis of ArabidopsisNCED6andNCED9genes indicates that ABA synthesized in the endosperm is involved in the induction of seed dormancy. Plant Journal, 2006, 45, 309-319.	5.7	434
11	Regulation of hormone metabolism in Arabidopsis seeds: phytochrome regulation of abscisic acid metabolism and abscisic acid regulation of gibberellin metabolism. Plant Journal, 2006, 48, 354-366.	5.7	403
12	High Temperature-Induced Abscisic Acid Biosynthesis and Its Role in the Inhibition of Gibberellin Action in Arabidopsis Seeds Â. Plant Physiology, 2008, 146, 1368-1385.	4.8	379
13	Abscisic acid and the control of seed dormancy and germination. Seed Science Research, 2010, 20, 55-67.	1.7	369
14	Drought Induction of Arabidopsis 9-cis-Epoxycarotenoid Dioxygenase Occurs in Vascular Parenchyma Cells À Â. Plant Physiology, 2008, 147, 1984-1993.	4.8	310
15	The AtGenExpress hormone- and chemical-treatment data set: Experimental design, data evaluation, model data analysis, and data access. Plant Journal, 2008, 55, 080414150319983.	5.7	307
16	CYP707A3, a major ABA 8′-hydroxylase involved in dehydration and rehydration response inArabidopsis thaliana. Plant Journal, 2006, 46, 171-182.	5.7	294
17	Interaction of light and hormone signals in germinating seeds. Plant Molecular Biology, 2009, 69, 463-472.	3.9	290
18	Activation of dimeric ABA receptors elicits guard cell closure, ABA-regulated gene expression, and drought tolerance. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 12132-12137.	7.1	262

#	Article	IF	CITATIONS
19	S-nitrosylation triggers ABI5 degradation to promote seed germination and seedling growth. Nature Communications, 2015, 6, 8669.	12.8	251
20	Ethylene Promotes Submergence-Induced Expression of OsABA80x1, a Gene that Encodes ABA 8'-Hydroxylase in Rice. Plant and Cell Physiology, 2006, 48, 287-298.	3.1	223
21	ABA action and interactions in seeds. Trends in Plant Science, 2003, 8, 213-217.	8.8	221
22	High Humidity Induces Abscisic Acid 8′-Hydroxylase in Stomata and Vasculature to Regulate Local and Systemic Abscisic Acid Responses in Arabidopsis. Plant Physiology, 2009, 149, 825-834.	4.8	216
23	A mutant of Arabidopsis which is defective in seed development and storage protein accumulation is a new abi3 allele. Plant Journal, 1992, 2, 435-441.	5.7	212
24	A small-molecule screen identifies new functions for the plant hormone strigolactone. Nature Chemical Biology, 2010, 6, 741-749.	8.0	207
25	Comprehensive Hormone Profiling in Developing Arabidopsis Seeds: Examination of the Site of ABA Biosynthesis, ABA Transport and Hormone Interactions. Plant and Cell Physiology, 2010, 51, 1988-2001.	3.1	207
26	Thermoinhibition Uncovers a Role for Strigolactones in Arabidopsis Seed Germination. Plant and Cell Physiology, 2012, 53, 107-117.	3.1	193
27	The Arabidopsis Abscisic Acid Catabolic Gene <i>CYP707A2</i> Plays a Key Role in Nitrate Control of Seed Dormancy Â. Plant Physiology, 2009, 149, 949-960.	4.8	186
28	Evidence for Autoregulation of Cystathionine -Synthase mRNA Stability in Arabidopsis. Science, 1999, 286, 1371-1374.	12.6	181
29	The Functions of the Endosperm During Seed Germination. Plant and Cell Physiology, 2014, 55, 1521-1533.	3.1	179
30	Characterization of the gene family for alternative oxidase from Arabidopsis thaliana. Plant Molecular Biology, 1997, 35, 585-596.	3.9	177
31	Comparative Studies on the Arabidopsis Aldehyde Oxidase (AAO) Gene Family Revealed a Major Role of AAO3 in ABA Biosynthesis in Seeds. Plant and Cell Physiology, 2004, 45, 1694-1703.	3.1	175
32	The Role of ABI3 and FUS3 Loci in Arabidopsis thaliana on Phase Transition from Late Embryo Development to Germination. Developmental Biology, 2000, 220, 412-423.	2.0	170
33	Identification of cis-Elements That Regulate Gene Expression during Initiation of Axillary Bud Outgrowth in Arabidopsis. Plant Physiology, 2005, 138, 757-766.	4.8	163
34	A Screen for Genes That Function in Abscisic Acid Signaling in <i>Arabidopsis thaliana</i> . Genetics, 2002, 161, 1247-1255.	2.9	163
35	Transcription factor AtTCP14 regulates embryonic growth potential during seed germination in <i>Arabidopsis thaliana</i> . Plant Journal, 2008, 53, 42-52.	5.7	157
36	Temporal Expression Patterns of Hormone Metabolism Genes during Imbibition of Arabidopsis thaliana Seeds: A Comparative Study on Dormant and Non-Dormant Accessions. Plant and Cell Physiology, 2009, 50, 1786-1800.	3.1	148

#	Article	IF	Citations
37	NIN-like protein 8 is a master regulator of nitrate-promoted seed germination in Arabidopsis. Nature Communications, 2016, 7, 13179.	12.8	147
38	Mutation in the Threonine Synthase Gene Results in an Over-Accumulation of Soluble Methionine in Arabidopsis. Plant Physiology, 2000, 123, 101-110.	4.8	122
39	Seed Biology in the 21st Century: Perspectives and New Directions. Plant and Cell Physiology, 2012, 53, 1-4.	3.1	118
40	The Lesion-Mimic Mutant <i>cpr22</i> Shows Alterations in Abscisic Acid Signaling and Abscisic Acid Insensitivity in a Salicylic Acid-Dependent Manner. Plant Physiology, 2010, 152, 1901-1913.	4.8	117
41	<i>OsPIN5b</i> modulates rice (<i>Oryza sativa</i>) plant architecture and yield by changing auxin homeostasis, transport and distribution. Plant Journal, 2015, 83, 913-925.	5.7	117
42	A Plant Growth Retardant, Uniconazole, Is a Potent Inhibitor of ABA Catabolism inArabidopsis. Bioscience, Biotechnology and Biochemistry, 2006, 70, 1731-1739.	1.3	109
43	Genome-wide analysis of endogenous abscisic acid-mediated transcription in dry and imbibed seeds of Arabidopsis using tiling arrays. Plant Journal, 2010, 62, 39-51.	5.7	109
44	Effects of the Gibberellin Biosynthetic Inhibitor Uniconazol on Mutants of <i>Arabidopsis</i> Plant Physiology, 1991, 97, 736-738.	4.8	99
45	TheFUS3transcription factor functions through the epidermal regulatorTTG1during embryogenesis inArabidopsis. Plant Journal, 2004, 37, 73-81.	5.7	99
46	Designed abscisic acid analogs as antagonists of PYL-PP2C receptor interactions. Nature Chemical Biology, 2014, 10, 477-482.	8.0	98
47	CHOTTO1, a Putative Double APETALA2 Repeat Transcription Factor, Is Involved in Abscisic Acid-Mediated Repression of Gibberellin Biosynthesis during Seed Germination in Arabidopsis Â. Plant Physiology, 2009, 151, 641-654.	4.8	93
48	Field studies on the regulation of abscisic acid content and germinability during grain development of barley: molecular and chemical analysis of pre-harvest sprouting. Journal of Experimental Botany, 2006, 57, 2421-2434.	4.8	90
49	Stored and neosynthesized mRNA in Arabidopsis seeds: effects of cycloheximide and controlled deterioration treatment on the resumption of transcription during imbibition. Plant Molecular Biology, 2010, 73, 119-129.	3.9	89
50	Temperature variability is integrated by a spatially embedded decision-making center to break dormancy in <i>Arabidopsis</i> seeds. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 6629-6634.	7.1	81
51	Phytochrome- and Gibberellin-Mediated Regulation of Abscisic Acid Metabolism during Germination of Photoblastic Lettuce Seeds. Plant Physiology, 2008, 146, 1386-1396.	4.8	79
52	Interplay between Sucrose and Folate Modulates Auxin Signaling in Arabidopsis. Plant Physiology, 2013, 162, 1552-1565.	4.8	71
53	ANAC032 Positively Regulates Age-Dependent and Stress-Induced Senescence in <i>Arabidopsis thaliana</i> . Plant and Cell Physiology, 2016, 57, 2029-2046.	3.1	70
54	Role of Basal ABA in Plant Growth and Development. Genes, 2021, 12, 1936.	2.4	69

#	Article	IF	Citations
55	Combining association mapping and transcriptomics identify <i><scp>HD2B</scp></i> histone deacetylase as a genetic factor associated with seed dormancy in <i>Arabidopsis thaliana</i> Plant Journal, 2013, 74, 815-828.	5.7	64
56	Amplification of <scp>ABA</scp> biosynthesis and signaling through a positive feedback mechanism in seeds. Plant Journal, 2014, 78, 527-539.	5.7	61
57	Regulation of seed dormancy and germination by nitrate. Seed Science Research, 2018, 28, 150-157.	1.7	61
58	CHOTTO1, a Double AP2 Domain Protein of Arabidopsis thaliana, Regulates Germination and Seedling Growth Under Excess Supply of Glucose and Nitrate. Plant and Cell Physiology, 2009, 50, 330-340.	3.1	60
59	Tissue-Specific Transcriptome Analysis Reveals Cell Wall Metabolism, Flavonol Biosynthesis and Defense Responses are Activated in the Endosperm of Germinating Arabidopsis thaliana Seeds. Plant and Cell Physiology, 2012, 53, 16-27.	3.1	58
60	ABA 9′-hydroxylation is catalyzed by CYP707A in Arabidopsis. Phytochemistry, 2011, 72, 717-722.	2.9	52
61	A Quick Release Mechanism for Abscisic Acid. Cell, 2006, 126, 1023-1025.	28.9	51
62	Overexpression of the CC-type glutaredoxin, OsGRX6 affects hormone and nitrogen status in rice plants. Frontiers in Plant Science, 2015, 6, 934.	3.6	44
63	Transient expression of AtNCED3 and AAO3 genes in guard cells causes stomatal closure in Vicia faba. Journal of Plant Research, 2008, 121, 125-131.	2.4	43
64	Functional characterization of xanthoxin dehydrogenase in rice. Journal of Plant Physiology, 2014, 171, 1231-1240.	3. 5	40
65	Highly Sprouting-Tolerant Wheat Grain Exhibits Extreme Dormancy and Cold Imbibition-Resistant Accumulation of Abscisic Acid. Plant and Cell Physiology, 2016, 57, 715-732.	3.1	40
66	Protein farnesylation in plants: a greasy tale. Current Opinion in Plant Biology, 1999, 2, 388-392.	7.1	39
67	Hormone evolution: The key to signalling. Nature, 2003, 422, 122-122.	27.8	39
68	The Arabidopsis SAL1-PAP Pathway: A Case Study for Integrating Chloroplast Retrograde, Light and Hormonal Signaling in Modulating Plant Growth and Development?. Frontiers in Plant Science, 2018, 9, 1171.	3.6	20
69	Hormone balance in a climacteric plum fruit and its non-climacteric bud mutant during ripening. Plant Science, 2019, 280, 51-65.	3.6	20
70	Redox feedback regulation of ANAC089 signaling alters seed germination and stress response. Cell Reports, 2021, 35, 109263.	6.4	20
71	Vascular system is a node of systemic stress responses. Plant Signaling and Behavior, 2008, 3, 1138-1140.	2.4	19
72	CYCLIC NUCLEOTIDE-GATED ION CHANNEL 2 modulates auxin homeostasis and signaling. Plant Physiology, 2021, 187, 1690-1703.	4.8	18

#	Article	IF	CITATIONS
73	Co-regulation of ribosomal protein genes as an indicator of growth status. Plant Signaling and Behavior, 2008, 3, 450-452.	2.4	15
74	Re-localization of hormone effectors is associated with dormancy alleviation by temperature and after-ripening in sunflower seeds. Scientific Reports, 2019, 9, 4861.	3.3	14
75	Plant hormone functions and interactions in biological systems. Plant Journal, 2021, 105, 287-289.	5.7	14
76	Expression of Soybean Seed Storage Protein Genes in Transgenic Plants and Their Response to Sulfur Nutritional Conditions. Journal of Plant Physiology, 1995, 145, 614-619.	3.5	13
77	Opening a new era of ABA research. Journal of Plant Research, 2011, 124, 431-435.	2.4	13
78	A novel Filamentous Flower mutant suppresses brevipedicellus developmental defects and modulates glucosinolate and auxin levels. PLoS ONE, 2017, 12, e0177045.	2.5	12
79	Interactions between abscisic acid and other hormones. Advances in Botanical Research, 2019, 92, 255-280.	1.1	9
80	Auxin Homeostasis and Distribution of the Auxin Efflux Carrier PIN2 Require Vacuolar NHX-Type Cation/H+ Antiporter Activity. Plants, 2020, 9, 1311.	3.5	7
81	Role of ethylene and proteolytic Nâ€degron pathway in the regulation of <i>Arabidopsis</i> seed dormancy. Journal of Integrative Plant Biology, 2021, 63, 2110-2122.	8.5	7
82	Metabolic Balance and its Outcome: Deficiency of Vitamin B9 and Sucrose Supply Ectopically Induces Starch Synthesis in Etioplasts. Plant and Cell Physiology, 2017, 58, 1284-1285.	3.1	6
83	Hydrolysis of abscisic acid glucose ester occurs locally and quickly in response to dehydration. Journal of Experimental Botany, 2020, 71, 1753-1756.	4.8	6
84	flasher, a novel mutation in a glucosinolate modifying enzyme, conditions changes in plant architecture and hormone homeostasis. Plant Journal, 2020, 103, 1989-2006.	5.7	5
85	3′-(Phenyl alkynyl) analogs of abscisic acid: synthesis and biological activity of potent ABA antagonists. Organic and Biomolecular Chemistry, 2021, 19, 2978-2985.	2.8	5
86	CATchUP: A Web Database for Spatiotemporally Regulated Genes. Plant and Cell Physiology, 2016, 58, pcw199.	3.1	3
87	Nitrate responses of Arabidopsischo1mutants. Plant Signaling and Behavior, 2009, 4, 1166-1168.	2.4	1
88	Family Members and Their Individual Roles: An Arabidopsis Arogenate Dehydratase ADT2 and its Role in Seed Development. Plant and Cell Physiology, 2018, 59, 2395-2397.	3.1	0