Robert E Hynds

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3434866/publications.pdf

Version: 2024-02-01

218677 214800 6,121 61 26 47 citations h-index g-index papers 77 77 77 11878 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Use of Simulation to Visualize Healthcare Worker Exposure to Aerosol in the Operating Room. Simulation in Healthcare, 2022, 17, 66-67.	1.2	O
2	Postnatal Lung Epithelial Stem Cells. , 2022, , 67-72.		O
3	Transcriptome analysis of IPF fibroblastic foci identifies key pathways involved in fibrogenesis. Thorax, 2021, 76, 73-82.	5.6	25
4	Higher throughput drug screening for rare respiratory diseases: Readthrough therapy in primary ciliary dyskinesia. European Respiratory Journal, 2021, 58, 2000455.	6.7	13
5	Stem cells and lung cancer., 2021,, 340-352.		1
6	AMBRA1 regulates cyclin D to guard S-phase entry and genomic integrity. Nature, 2021, 592, 799-803.	27.8	78
7	Induction of APOBEC3 Exacerbates DNA Replication Stress and Chromosomal Instability in Early Breast and Lung Cancer Evolution. Cancer Discovery, 2021, 11, 2456-2473.	9.4	74
8	Stem Cell–derived Respiratory Epithelial Cell Cultures as Human Disease Models. American Journal of Respiratory Cell and Molecular Biology, 2021, 64, 657-668.	2.9	7
9	National Heart, Lung, and Blood Institute and Building Respiratory Epithelium and Tissue for Health (BREATH) Consortium Workshop Report: Moving Forward in Lung Regeneration. American Journal of Respiratory Cell and Molecular Biology, 2021, 65, 22-29.	2.9	2
10	Progress towards non-small-cell lung cancer models that represent clinical evolutionary trajectories. Open Biology, 2021, 11, 200247.	3 . 6	28
11	LSC - 2021 - Effect of mTOR inhibition in a 3D in vitro model of alveolar epithelium and epithelial regeneration. , 2021, , .		O
12	Immune Surveillance in Clinical Regression of Preinvasive Squamous Cell Lung Cancer. Cancer Discovery, 2020, 10, 1489-1499.	9.4	60
13	Tobacco Exposure and Somatic Mutations in Normal Human Bronchial Epithelium., 2020,,.		O
14	Geospatial immune variability illuminates differential evolution of lung adenocarcinoma. Nature Medicine, 2020, 26, 1054-1062.	30.7	181
15	Representative Sequencing: Unbiased Sampling of Solid Tumor Tissue. Cell Reports, 2020, 31, 107550.	6.4	51
16	Interplay between whole-genome doubling and the accumulation of deleterious alterations in cancer evolution. Nature Genetics, 2020, 52, 283-293.	21.4	168
17	Tobacco smoking and somatic mutations in human bronchial epithelium. Nature, 2020, 578, 266-272.	27.8	336
18	Bioengineered airway epithelial grafts with mucociliary function based on collagen IV- and laminin-containing extracellular matrix scaffolds. European Respiratory Journal, 2020, 55, 1901200.	6.7	28

#	Article	IF	CITATIONS
19	Abstract 2342: Tobacco exposure and somatic mutations in normal bronchial epithelia. , 2020, , .		O
20	Preserved Ciliary Defects in Airway Epithelia Derived from Primary Ciliary Dyskinesia Basal Cells Expanded in 3T3-J2 Co-Culture. , 2019, , .		0
21	Ciliated Epithelial Cell Differentiation at Air-Liquid Interface Using Commercially Available Culture Media. Methods in Molecular Biology, 2019, 2109, 275-291.	0.9	24
22	Deciphering the genomic, epigenomic, and transcriptomic landscapes of pre-invasive lung cancer lesions. Nature Medicine, 2019, 25, 517-525.	30.7	178
23	SHOC2 phosphatase-dependent RAF dimerization mediates resistance to MEK inhibition in RAS-mutant cancers. Nature Communications, 2019, 10, 2532.	12.8	53
24	Neoantigen-directed immune escape in lung cancer evolution. Nature, 2019, 567, 479-485.	27.8	639
25	In Vitro Analysis of Genomic Heterogeneity in Pre-Invasive Lung Cancer. , 2019, , .		0
26	The mTORC1/4E-BP1 axis represents a critical signaling node during fibrogenesis. Nature Communications, 2019, 10, 6.	12.8	159
27	Using a Three-Dimensional Collagen Matrix to Deliver Respiratory Progenitor Cells to Decellularized Trachea <i>In Vivo</i> . Tissue Engineering - Part C: Methods, 2019, 25, 93-102.	2.1	18
28	Non-Invasive Longitudinal Bioluminescence Imaging of Human Mesoangioblasts in Bioengineered Esophagi. Tissue Engineering - Part C: Methods, 2019, 25, 103-113.	2.1	6
29	Monitoring neovascularization and integration of decellularized human scaffolds using photoacoustic imaging. Photoacoustics, 2019, 13, 76-84.	7.8	21
30	Role of the TGFß1-mTOR axis in fibroblast-directed alveolar epithelial regeneration in IPF. , 2019, , .		0
31	Expansion of airway basal epithelial cells from primary human nonâ€small cell lung cancer tumors. International Journal of Cancer, 2018, 143, 160-166.	5.1	18
32	Regenerating human epithelia with cultured stem cells: feeder cells, organoids and beyond. EMBO Molecular Medicine, 2018, 10, 139-150.	6.9	58
33	Fc Effector Function Contributes to the Activity of Human Anti-CTLA-4 Antibodies. Cancer Cell, 2018, 33, 649-663.e4.	16.8	448
34	Optimized isolation and expansion of human airway epithelial basal cells from endobronchial biopsy samples. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, e313-e317.	2.7	25
35	The secret lives of cancer cell lines. DMM Disease Models and Mechanisms, 2018, 11, .	2.4	46
36	Cross-talk between human airway epithelial cells and 3T3-J2 feeder cells involves partial activation of human MET by murine HGF. PLoS ONE, 2018, 13, e0197129.	2.5	11

#	Article	IF	CITATIONS
37	Vacuum-assisted decellularization: an accelerated protocol to generate tissue-engineered human tracheal scaffolds. Biomaterials, 2017, 124, 95-105.	11.4	70
38	Fc-Optimized Anti-CD25 Depletes Tumor-Infiltrating Regulatory T Cells and Synergizes with PD-1 Blockade to Eradicate Established Tumors. Immunity, 2017, 46, 577-586.	14.3	323
39	Phylogenetic ctDNA analysis depicts early-stage lung cancer evolution. Nature, 2017, 545, 446-451.	27.8	1,287
40	Tracheal Replacement Therapy with a Stem Cell-Seeded Graft: Lessons from Compassionate Use Application of a GMP-Compliant Tissue-Engineered Medicine. Stem Cells Translational Medicine, 2017, 6, 1458-1464.	3.3	81
41	Use of a decellularised dermis scaffold and human bronchial epithelial cells to tissue engineer airway mucosa suitable for tracheal transplantation. Lancet, The, 2017, 389, S43.	13.7	2
42	Allele-Specific HLA Loss and Immune Escape in Lung Cancer Evolution. Cell, 2017, 171, 1259-1271.e11.	28.9	968
43	Airway Basal Cell Heterogeneity and Lung Squamous Cell Carcinoma. Cancer Prevention Research, 2017, 10, 491-493.	1.5	16
44	A comparison of tracheal scaffold strategies for pediatric transplantation in a rabbit model. Laryngoscope, 2017, 127, E449-E457.	2.0	31
45	Autologous Cell Seeding in Tracheal Tissue Engineering. Current Stem Cell Reports, 2017, 3, 279-289.	1.6	30
46	S9â€The role of LRIG1-dependent EGFR signalling in airway homoeostasis and squamous cell lung cancer development. Thorax, 2016, 71, A7.3-A8.	5.6	0
47	Co-culture-expanded human basal epithelial stem cells for application in tracheal tissue engineering. Lancet, The, 2016, 387, S23.	13.7	5
48	Airway tissue engineering for congenital laryngotracheal disease. Seminars in Pediatric Surgery, 2016, 25, 186-190.	1.1	10
49	Use of a collagen I scaffold with embedded respiratory fibroblasts and Rho kinase inhibitor to tissue-engineer airway mucosa. Lancet, The, 2016, 387, S49.	13.7	0
50	Expansion of Human Airway Basal Stem Cells and Their Differentiation as 3D Tracheospheres. Methods in Molecular Biology, 2016, 1576, 43-53.	0.9	34
51	Surface modification of a POSS-nanocomposite material to enhance cellular integration of a synthetic bioscaffold. Biomaterials, 2016, 83, 283-293.	11.4	54
52	Role of LRIG1-dependent EGFR signalling on pathway inhibition in airway homoeostasis and lung cancer development. Lancet, The, 2016, 387, S95.	13.7	0
53	Rapid Expansion of Human Epithelial Stem Cells Suitable for Airway Tissue Engineering. American Journal of Respiratory and Critical Care Medicine, 2016, 194, 156-168.	5.6	169
54	LSC Abstract – Human bronchial epithelial cell migration is dependent on the RhoA effector protein Rho-associated kinase. , 2016, , .		0

#	Article	IF	CITATIONS
55	Cell intrinsic and environmental factors influencing human bronchial epithelial cell migration. , 2016, , .		0
56	Stem Cells of the Distal Bronchiolar Airways. Pancreatic Islet Biology, 2015, , 113-126.	0.3	0
57	Lung Regeneration. , 2014, , 707-717.		0
58	Targeting EGFR signalling in chronic lung disease: therapeutic challenges and opportunities. European Respiratory Journal, 2014, 44, 513-522.	6.7	99
59	S111 Methods To Isolate Basal Cells From The Respiratory Epithelium. Thorax, 2014, 69, A59-A59.	5.6	0
60	Divergent cellular pathways of hippocampal memory consolidation and reconsolidation. Hippocampus, 2013, 23, 233-244.	1.9	61
61	Concise Review: The Relevance of Human Stem Cell-Derived Organoid Models for Epithelial Translational Medicine. Stem Cells, 2013, 31, 417-422.	3.2	111