Nades Palaniyar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3434851/publications.pdf

Version: 2024-02-01

			81900	9	1884
1	.01	5,368	39		69
pa	pers	citations	h-index		g-index
	102	102	102		7084
all	docs	docs citations	times ranked		citing authors

#	Article	IF	CITATIONS
1	Lâ€Citrulline Modulates Macrophage Polarization to an M2 Phenotype in a Model of Lipopolysaccharideâ€Induced Lung Injury in Neonatal Rats. FASEB Journal, 2022, 36, .	0.5	O
2	Lâ€Citrulline Attenuates Effects of Serotonin Signalling During Proliferation of Pulmonary Artery Smooth Muscle Cells in Pulmonary Hypertension. FASEB Journal, 2022, 36, .	0.5	0
3	Machine Learning Identifies Complicated Sepsis Course and Subsequent Mortality Based on 20 Genes in Peripheral Blood Immune Cells at 24 H Post-ICU Admission. Frontiers in Immunology, 2021, 12, 592303.	4.8	42
4	Lâ€Citrulline Decreases LPSâ€Induced Inflammation and Oxidative Stress in Newborn Rat Lungs. FASEB Journal, 2021, 35, .	0.5	0
5	ROS induces NETosis by oxidizing DNA and initiating DNA repair. Cell Death Discovery, 2021, 7, 113.	4.7	54
6	Shiga Toxin 2a Induces NETosis via NOX-Dependent Pathway. Biomedicines, 2021, 9, 1807.	3.2	4
7	Comparing and Contrasting MERS, SARS-CoV, and SARS-CoV-2: Prevention, Transmission, Management, and Vaccine Development. Pathogens, 2020, 9, 985.	2.8	1
8	Potential Mechanism of Dermal Wound Treatment With Preparations From the Skin Gel of Arabian Gulf Catfish: A Unique Furan Fatty Acid (F6) and Cholesta-3,5-Diene (S5) Recruit Neutrophils and Fibroblasts to Promote Wound Healing. Frontiers in Pharmacology, 2020, 11, 899.	3 . 5	7
9	43 Activation of CCL2/CCR2 Signaling Axis Is Responsible for Spinal Cord Inflammation and Loss of Muscle Mass in Mice After Burn Injury. Journal of Burn Care and Research, 2020, 41, S28-S29.	0.4	0
10	Post-Translational Modifications in NETosis and NETs-Mediated Diseases. Biomolecules, 2019, 9, 369.	4.0	67
11	Neutrophil Extracellular Trap Formation: Physiology, Pathology, and Pharmacology. Biomolecules, 2019, 9, 365.	4.0	151
12	Furanoic Lipid F-6, A Novel Anti-Cancer Compound that Kills Cancer Cells by Suppressing Proliferation and Inducing Apoptosis. Cancers, 2019, 11, 960.	3.7	9
13	Anthracyclines Suppress Both NADPH Oxidase- Dependent and -Independent NETosis in Human Neutrophils. Cancers, 2019, 11, 1328.	3.7	20
14	Mechanism of pulmonary immunosuppression: extrapulmonary burn injury suppresses bacterial endotoxin–induced pulmonary neutrophil recruitment and neutrophil extracellular trap (NET) formation. FASEB Journal, 2019, 33, 13602-13616.	0.5	14
15	Histone Acetylation Promotes Neutrophil Extracellular Trap Formation. Biomolecules, 2019, 9, 32.	4.0	71
16	Neutrophil extracellular traps in ex vivo lung perfusion perfusate predict the clinical outcome of lung transplant recipients. European Respiratory Journal, 2019, 53, 1801736.	6.7	23
17	Histone Deacetylase Inhibitors Dose-Dependently Switch Neutrophil Death from NETosis to Apoptosis. Biomolecules, 2019, 9, 184.	4.0	26
18	Progression of Cystic Fibrosis Lung Disease from Childhood to Adulthood: Neutrophils, Neutrophil Extracellular Trap (NET) Formation, and NET Degradation. Genes, 2019, 10, 183.	2.4	65

#	Article	IF	Citations
19	A dual neutrophil-T cell purification procedure and methodological considerations in studying the effects of estrogen on human Th17 cell differentiation. Journal of Immunological Methods, 2019, 467, 1-11.	1.4	1
20	SP-D attenuates LPS-induced formation of human neutrophil extracellular traps (NETs), protecting pulmonary surfactant inactivation by NETs. Communications Biology, 2019, 2, 470.	4.4	33
21	Two-in-one: UV radiation simultaneously induces apoptosis and NETosis. Cell Death Discovery, 2018, 4, 51.	4.7	50
22	Relative antibacterial functions of complement and NETs: NETs trap and complement effectively kills bacteria. Molecular Immunology, 2018, 97, 71-81.	2.2	33
23	Furanoid F-Acid F6 Uniquely Induces NETosis Compared to C16 and C18 Fatty Acids in Human Neutrophils. Biomolecules, 2018, 8, 144.	4.0	22
24	Surfactant Protein D Deficiency Aggravates Cigarette Smoke-Induced Lung Inflammation by Upregulation of Ceramide Synthesis. Frontiers in Immunology, 2018, 9, 3013.	4.8	17
25	Alkaline pH Promotes NADPH Oxidase-Independent Neutrophil Extracellular Trap Formation: A Matter of Mitochondrial Reactive Oxygen Species Generation and Citrullination and Cleavage of Histone. Frontiers in Immunology, 2018, 8, 1849.	4.8	90
26	Regulating NETosis: Increasing pH Promotes NADPH Oxidase-Dependent NETosis. Frontiers in Medicine, 2018, 5, 19.	2.6	48
27	ApoNETosis: discovery of a novel form of neutrophil death with concomitant apoptosis and NETosis. Cell Death and Disease, 2018, 9, 839.	6.3	19
28	Transcriptional firing helps to drive NETosis. Scientific Reports, 2017, 7, 41749.	3.3	163
29	Surfactant protein D delays Fas- and TRAIL-mediated extrinsic pathway of apoptosis in T cells. Apoptosis: an International Journal on Programmed Cell Death, 2017, 22, 730-740.	4.9	16
30	JNK Activation Turns on LPS- and Gram-Negative Bacteria-Induced NADPH Oxidase-Dependent Suicidal NETosis. Scientific Reports, 2017, 7, 3409.	3.3	130
31	Ultraviolet irradiation increases green fluorescence of dihydrorhodamine (DHR) 123: false-positive results for reactive oxygen species generation. Pharmacology Research and Perspectives, 2017, 5, e00303.	2.4	31
32	Surfactant protein D regulates caspase-8-mediated cascade of the intrinsic pathway of apoptosis while promoting bleb formation. Molecular Immunology, 2017, 92, 190-198.	2.2	18
33	Complement Activation Induces Neutrophil Adhesion and Neutrophil-Platelet Aggregate Formation on Vascular Endothelial Cells. Kidney International Reports, 2017, 2, 66-75.	0.8	29
34	NETosing Neutrophils Activate Complement Both on Their Own NETs and Bacteria via Alternative and Non-alternative Pathways. Frontiers in Immunology, 2016, 7, 137.	4.8	123
35	Infections and neutrophils in the pathogenesis of bronchiolitis obliterans syndrome in children after allogeneic stem cell transplantation. Pediatric Transplantation, 2016, 20, 303-306.	1.0	2
36	Von Willebrand factor regulates complement on endothelial cells. Kidney International, 2016, 90, 123-134.	5.2	53

#	Article	IF	Citations
37	Mechanical Ventilation Induces Neutrophil Extracellular Trap Formation. Anesthesiology, 2015, 122, 864-875.	2.5	72
38	A Lipid Mediator Hepoxilin A3 Is a Natural Inducer of Neutrophil Extracellular Traps in Human Neutrophils. Mediators of Inflammation, 2015, 2015, 1-7.	3.0	19
39	New Developments in Cystic Fibrosis Airway Inflammation. Mediators of Inflammation, 2015, 2015, 1-2.	3.0	6
40	Short-chain fatty acids affect cystic fibrosis airway inflammation and bacterial growth. European Respiratory Journal, 2015, 46, 1033-1045.	6.7	120
41	Serum Krebs Von Den Lungen-6 as a Biomarker for Early Detection of Bronchiolitis Obliterans Syndrome in Children Undergoing Allogeneic Stem Cell Transplantation. Biology of Blood and Marrow Transplantation, 2015, 21, 1524-1528.	2.0	11
42	SK3 channel and mitochondrial ROS mediate NADPH oxidase-independent NETosis induced by calcium influx. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 2817-2822.	7.1	558
43	Serum cytokine profiling and enrichment analysis reveal the involvement of immunological and inflammatory pathways in stable patients with chronic obstructive pulmonary disease. International Journal of COPD, 2014, 9, 759.	2.3	25
44	Secretoglobin 1A1 and 1A1A Differentially Regulate Neutrophil Reactive Oxygen Species Production, Phagocytosis and Extracellular Trap Formation. PLoS ONE, 2014, 9, e96217.	2.5	40
45	CXCL1 Contributes to Host Defense in Polymicrobial Sepsis via Modulating T Cell and Neutrophil Functions. Journal of Immunology, 2014, 193, 3549-3558.	0.8	90
46	Impaired Resolution of Inflammation in the <i>Endoglin</i> Heterozygous Mouse Model of Chronic Colitis. Mediators of Inflammation, 2014, 2014, 1-13.	3.0	28
47	Pulmonary alveolar proteinosis in adenosine deaminase–deficient mice. Journal of Allergy and Clinical Immunology, 2014, 133, 1467-1471.e4.	2.9	12
48	Akt is essential to induce NADPH-dependent NETosis and to switch the neutrophil death to apoptosis. Blood, 2014, 123, 597-600.	1.4	133
49	Severe respiratory insufficiency during pandemic H1N1 infection: prognostic value and therapeutic potential of pulmonary surfactant protein A. Critical Care, 2014, 18, 479.	5.8	2
50	Effect of Arginase Inhibition on Pulmonary L-Arginine Metabolism in Murine Pseudomonas Pneumonia. PLoS ONE, 2014, 9, e90232.	2.5	19
51	Severe lung injury and lung biopsy in children postâ€hematopoietic stem cell transplantation: <scp>T</scp> he differences between allogeneic and autologous transplantation. Pediatric Transplantation, 2013, 17, 278-284.	1.0	7
52	Chest health surveillance utility in the early detection of bronchiolitis obliterans syndrome in children after allo-SCT. Bone Marrow Transplantation, 2013, 48, 814-818.	2.4	10
53	NET balancing: a problem in inflammatory lung diseases. Frontiers in Immunology, 2013, 4, 1.	4.8	597
54	Surfactant Protein D Modulates HIV Infection of Both T-Cells and Dendritic Cells. PLoS ONE, 2013, 8, e59047.	2.5	39

#	Article	IF	CITATIONS
55	Response to Comment on "Innate Immune Collectin Surfactant Protein D Simultaneously Binds Both Neutrophil Extracellular Traps and Carbohydrate Ligands and Promotes Bacterial Trapping― Journal of Immunology, 2012, 188, 3.2-4.	0.8	0
56	Activation of P2X7 Receptor by ATP Plays an Important Role in Regulating Inflammatory Responses during Acute Viral Infection. PLoS ONE, 2012, 7, e35812.	2.5	81
57	Innate Immune Collectin Surfactant Protein D Simultaneously Binds Both Neutrophil Extracellular Traps and Carbohydrate Ligands and Promotes Bacterial Trapping. Journal of Immunology, 2011, 187, 1856-1865.	0.8	117
58	IgM Promotes the Clearance of Small Particles and Apoptotic Microparticles by Macrophages. PLoS ONE, 2011, 6, e17223.	2.5	71
59	A simple two-step purification procedure for the iC3b binding collectin conglutinin. Journal of Immunological Methods, 2010, 362, 204-208.	1.4	5
60	Natural IgM and innate immune collectin SP-D bind to late apoptotic cells and enhance their clearance by alveolar macrophages in vivo. Molecular Immunology, 2010, 48, 37-47.	2.2	19
61	Adenoviral vectors stimulate innate immune responses in macrophages through cross-talk with epithelial cells. Immunology Letters, 2010, 134, 93-102.	2.5	15
62	Antibody equivalent molecules of the innate immune system: parallels between innate and adaptive immune proteins. Innate Immunity, 2010, 16, 131-137.	2.4	25
63	Collectin 11 (CL-11, CL-K1) Is a MASP-1/3–Associated Plasma Collectin with Microbial-Binding Activity. Journal of Immunology, 2010, 185, 6096-6104.	0.8	184
64	Surfactant Protein D Interacts with $\hat{l}\pm 2$ -Macroglobulin and Increases Its Innate Immune Potential. Journal of Biological Chemistry, 2010, 285, 13461-13470.	3.4	25
65	The Recognition Unit of FIBCD1 Organizes into a Noncovalently Linked Tetrameric Structure and Uses a Hydrophobic Funnel (S1) for Acetyl Group Recognition. Journal of Biological Chemistry, 2010, 285, 1229-1238.	3.4	37
66	Secreted surfactant protein A from fetal membranes induces stress fibers in cultured human myometrial cells. American Journal of Physiology - Endocrinology and Metabolism, 2010, 298, E1188-E1197.	3.5	15
67	Review: Soluble innate immune pattern-recognition proteins for clearing dying cells and cellular components: implications on exacerbating or resolving inflammation. Innate Immunity, 2010, 16, 191-200.	2.4	82
68	SP-D counteracts GM-CSF-mediated increase of granuloma formation by alveolar macrophages in lysinuric protein intolerance. Orphanet Journal of Rare Diseases, 2009, 4, 29.	2.7	26
69	Surfactant Protein A Binds to HIV and Inhibits Direct Infection of CD4+ Cells, but Enhances Dendritic Cell-Mediated Viral Transfer. Journal of Immunology, 2008, 181, 601-609.	0.8	50
70	Immunoregulatory Roles of Lung Surfactant Proteins A and D., 2008,,.		3
71	Microfibril-associated Protein 4 Binds to Surfactant Protein A (SP-A) and Colocalizes with SP-A in the Extracellular Matrix of the Lung. Scandinavian Journal of Immunology, 2006, 64, 104-116.	2.7	53
72	Identification and characterization of porcine mannan-binding lectin A (pMBL-A), and determination of serum concentration heritability. Immunogenetics, 2006, 58, 129-137.	2.4	21

#	Article	IF	CITATIONS
73	Innate Immune Collectin Surfactant Protein D Enhances the Clearance of DNA by Macrophages and Minimizes Anti-DNA Antibody Generation. Journal of Immunology, 2005, 174, 7352-7358.	0.8	51
74	Surfactant and lung inflammation. Thorax, 2005, 60, 620-622.	5.6	17
75	Mannose-Binding Lectin Recognizes Peptidoglycan via the <i>N</i> -Acetyl Glucosamine Moiety, and Inhibits Ligand-Induced Proinflammatory Effect and Promotes Chemokine Production by Macrophages. Journal of Immunology, 2005, 175, 1785-1794.	0.8	88
76	Collectin surfactant protein D binds antibodies and interlinks innate and adaptive immune systems. FEBS Letters, 2005, 579, 4449-4453.	2.8	42
77	Nucleic Acid Is a Novel Ligand for Innate, Immune Pattern Recognition Collectins Surfactant Proteins A and D and Mannose-binding Lectin. Journal of Biological Chemistry, 2004, 279, 32728-32736.	3.4	145
78	A Recombinant Fragment of Human Surfactant Protein D Reduces Alveolar Macrophage Apoptosis and Proâ€Inflammatory Cytokines in Mice Developing Pulmonary Emphysema. Annals of the New York Academy of Sciences, 2003, 1010, 113-116.	3.8	50
79	Innate Immune Collectins Bind Nucleic Acids and Enhance DNA Clearance <i>in Vitro</i> . Annals of the New York Academy of Sciences, 2003, 1010, 467-470.	3.8	38
80	Surfactant Protein D Binds Genomic DNA and Apoptotic Cells, and Enhances Their Clearance, in Vivo. Annals of the New York Academy of Sciences, 2003, 1010, 471-475.	3.8	52
81	Identification and Characterization of a Novel Interaction between Pulmonary Surfactant Protein D and Decorin. Journal of Biological Chemistry, 2003, 278, 25678-25687.	3.4	51
82	Surfactant Protein D Reduces Alveolar Macrophage Apoptosis In Vivo. Journal of Immunology, 2002, 169, 2892-2899.	0.8	151
83	The Role of Pulmonary Collectin N-terminal Domains in Surfactant Structure, Function, and Homeostasis in Vivo. Journal of Biological Chemistry, 2002, 277, 26971-26979.	3.4	42
84	Pulmonary Innate Immune Proteins and Receptors that Interact with Gram-positive Bacterial Ligands. Immunobiology, 2002, 205, 575-594.	1.9	62
85	Alveolar macrophage deficiency in osteopetrotic mice deficient in macrophage colony-stimulating factor is spontaneously corrected with age and associated with matrix metalloproteinase expression and emphysema. Blood, 2001, 98, 2845-2852.	1.4	71
86	Formation of Folds and Vesicles by Dipalmitoylphosphatidylcholine Monolayers Spread in Excess. Journal of Membrane Biology, 2001, 180, 21-32.	2.1	33
87	Domains of surfactant protein A that affect protein oligomerization, lipid structure and surface tension. Comparative Biochemistry and Physiology Part A, Molecular & Emp; Integrative Physiology, 2001, 129, 109-127.	1.8	52
88	The Collagen-like Region of Surfactant Protein A (SP-A) Is Required for Correction of Surfactant Structural and Functional Defects in the SP-A Null Mouse. Journal of Biological Chemistry, 2001, 276, 38542-38548.	3.4	42
89	Cryoelectron Microscopy of Protein–Lipid Complexes of Human Myelin Basic Protein Charge Isomers Differing in Degree of Citrullination. Journal of Structural Biology, 2000, 129, 80-95.	2.8	72
90	Three-Dimensional Structure of Rat Surfactant Protein A Trimers in Association with Phospholipid Monolayersâ€,‡. Biochemistry, 2000, 39, 6310-6316.	2.5	26

#	Article	IF	CITATION
91	Myelin basic protein component C1 in increasing concentrations can elicit fusion, aggregation, and fragmentation of myelin-like membranes. European Journal of Cell Biology, 2000, 79, 327-335.	3.6	12
92	Filaments of surfactant protein A specifically interact with corrugated surfaces of phospholipid membranes. American Journal of Physiology - Lung Cellular and Molecular Physiology, 1999, 276, L631-L641.	2.9	5
93	Formation of membrane lattice structures and their specific interactions with surfactant protein A. American Journal of Physiology - Lung Cellular and Molecular Physiology, 1999, 276, L642-L649.	2.9	12
94	DNA Binding and Aggregation Properties of the Vaccinia Virus I3L Gene Product. Journal of Biological Chemistry, 1999, 274, 21637-21644.	3.4	33
95	Cation-mediated conformational variants of surfactant protein A. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 1999, 1453, 23-34.	3.8	15
96	Shope fibroma virus DNA topoisomerase catalyses holliday junction resolution and hairpin formation in Vitro 1 1Edited by J. Karn. Journal of Molecular Biology, 1999, 287, 9-20.	4.2	23
97	Marburg's Variant of Multiple Sclerosis Correlates with a Less Compact Structure of Myelin Basic Protein. Molecular Cell Biology Research Communications: MCBRC: Part B of Biochemical and Biophysical Research Communications, 1999, 1, 48-51.	1.6	37
98	Human proteolipid protein (PLP) mediates winding and adhesion of phospholipid membranes but prevents their fusion. Biochimica Et Biophysica Acta - Biomembranes, 1998, 1415, 85-100.	2.6	14
99	Surfactant Protein A (SP-A) Forms a Novel Supraquaternary Structure in the Form of Fibers. Biochemical and Biophysical Research Communications, 1998, 250, 131-136.	2.1	20
100	Structural Changes of Surfactant Protein A Induced by Cations Reorient the Protein on Lipid Bilayers. Journal of Structural Biology, 1998, 122, 297-310.	2.8	44
101	SFV Topoisomerase: Sequence Specificity in a Genetically Mapped Interval. Virology, 1996, 221, 351-354.	2.4	17