List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3434701/publications.pdf Version: 2024-02-01

		26630	42399
247	10,523	56	92
papers	citations	h-index	g-index
253	253	253	3822
all docs	docs citations	times ranked	citing authors

Ринојејин

#	Article	IF	CITATIONS
1	A numerical study of breaking waves in the surf zone. Journal of Fluid Mechanics, 1998, 359, 239-264.	3.4	710
2	Modeling wave runup with depth-integrated equations. Coastal Engineering, 2002, 46, 89-107.	4.0	334
3	Numerical Modeling of Wave Interaction with Porous Structures. Journal of Waterway, Port, Coastal and Ocean Engineering, 1999, 125, 322-330.	1.2	318
4	Internal Wave-Maker for Navier-Stokes Equations Models. Journal of Waterway, Port, Coastal and Ocean Engineering, 1999, 125, 207-215.	1.2	243
5	A numerical model for wave motions and turbulence flows in front of a composite breakwater. Coastal Engineering, 2002, 46, 25-50.	4.0	243
6	Observations by the International Tsunami Survey Team in Sri Lanka. Science, 2005, 308, 1595-1595.	12.6	236
7	Waves over Soft Muds: A Two-Layer Fluid Model. Journal of Physical Oceanography, 1978, 8, 1121-1131.	1.7	227
8	Runup and rundown generated by three-dimensional sliding masses. Journal of Fluid Mechanics, 2005, 536, 107-144.	3.4	225
9	An analysis of 2004 Sumatra earthquake fault plane mechanisms and Indian Ocean tsunami. Journal of Hydraulic Research/De Recherches Hydrauliques, 2006, 44, 147-154.	1.7	206
10	On two-phase sediment transport: sheet flow of massive particles. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2004, 460, 2223-2250.	2.1	183
11	Numerical Modeling of Wave Interaction with Porous Structures. Journal of Waterway, Port, Coastal and Ocean Engineering, 2001, 127, 123-124.	1.2	182
12	Vortex generation and evolution in water waves propagating over a submerged rectangular obstacle. Coastal Engineering, 2001, 44, 13-36.	4.0	153
13	Turbulence transport, vorticity dynamics, and solute mixing under plunging breaking waves in surf zone. Journal of Geophysical Research, 1998, 103, 15677-15694.	3.3	146
14	Modified Boussinesq equations and associated parabolic models for water wave propagation. Journal of Fluid Mechanics, 1995, 288, 351-381.	3.4	120
15	A numerical study of the run-up generated by three-dimensional landslides. Journal of Geophysical Research, 2005, 110, .	3.3	116
16	Propagation and amplification of tsunamis at coastal boundaries. Nature, 1994, 372, 353-355.	27.8	114
17	Seepage force on a pipeline buried in a poroelastic seabed under wave loadings. Applied Ocean Research, 1986, 8, 22-32.	4.1	113
18	The Flores Island tsunamis. Eos, 1993, 74, 369.	0.1	113

#	Article	IF	CITATIONS
19	Nonlinear refraction–diffraction of waves in shallow water. Journal of Fluid Mechanics, 1985, 153, 185.	3.4	112
20	Runup and Rundown of Solitary Waves on Sloping Beaches. Journal of Waterway, Port, Coastal and Ocean Engineering, 1999, 125, 247-255.	1.2	112
21	Boundary layer flow and bed shear stress under a solitary wave. Journal of Fluid Mechanics, 2007, 574, 449-463.	3.4	108
22	Particle Image Velocimetry Measurements within a Laboratory-Generated Swash Zone. Journal of Engineering Mechanics - ASCE, 2003, 129, 1119-1129.	2.9	107
23	Optimal time-varying pumping rates for groundwater remediation: Application of a constrained optimal control algorithm. Water Resources Research, 1992, 28, 3157-3173.	4.2	106
24	Velocity, acceleration and vorticity under a breaking wave. Physics of Fluids, 1998, 10, 327-329.	4.0	105
25	Report on the International Workshop on Long-Wave Run-up. Journal of Fluid Mechanics, 1991, 229, 675.	3.4	104
26	On two-phase sediment transport: Dilute flow. Journal of Geophysical Research, 2003, 108, .	3.3	101
27	Tsunami hazard and early warning system in South China Sea. Journal of Asian Earth Sciences, 2009, 36, 2-12.	2.3	98
28	Linear analysis of the multi-layer model. Coastal Engineering, 2004, 51, 439-454.	4.0	89
29	A finite element model for wave refraction and diffraction. Applied Ocean Research, 1983, 5, 30-37.	4.1	88
30	Viscous effects on transient long-wave propagation. Journal of Fluid Mechanics, 2004, 520, 83-92.	3.4	88
31	Experimental investigation of turbulence generated by breaking waves in water of intermediate depth. Physics of Fluids, 1999, 11, 3390-3400.	4.0	87
32	Tsunami source and its validation of the 2014 Iquique, Chile, earthquake. Geophysical Research Letters, 2014, 41, 3988-3994.	4.0	85
33	Analytical solutions for forced long waves on a sloping beach. Journal of Fluid Mechanics, 2003, 478, 101-109.	3.4	84
34	Field Survey and Numerical Simulations: A Review of the 1998 Papua New Guinea Tsunami. Pure and Applied Geophysics, 2003, 160, 2119-2146.	1.9	83
35	Damping of Water Waves Over Porous Bed. Journal of Hydraulic Engineering, 1973, 99, 2263-2271.	0.2	83
36	Numerical modeling of the initial stages of dam-break waves. Journal of Hydraulic Research/De Recherches Hydrauliques, 2004, 42, 183-195.	1.7	79

#	Article	IF	CITATIONS
37	NUMERICAL SIMULATIONS OF THE 2004 INDIAN OCEAN TSUNAMIS — COASTAL EFFECTS. Journal of Earthquake and Tsunami, 2007, 01, 273-297.	1.3	77
38	Coherent structures in wave boundary layers. Part 2. Solitary motion. Journal of Fluid Mechanics, 2010, 646, 207-231.	3.4	77
39	Interactions of currents and weakly nonlinear water waves in shallow water. Journal of Fluid Mechanics, 1989, 205, 397.	3.4	76
40	Long waves through emergent coastal vegetation. Journal of Fluid Mechanics, 2011, 687, 461-491.	3.4	76
41	Wave-Induced Pore Water Pressure Accumulation in Marine Soils. Journal of Offshore Mechanics and Arctic Engineering, 1989, 111, 1-11.	1.2	74
42	Sri Lanka Field Survey after the December 2004 Indian Ocean Tsunami. Earthquake Spectra, 2006, 22, 155-172.	3.1	71
43	Harbour excitations by incident wave groups. Journal of Fluid Mechanics, 1990, 217, 595-613.	3.4	69
44	Vortex generation and evolution in water waves propagating over a submerged rectangular obstacle. Coastal Engineering, 2005, 52, 257-283.	4.0	69
45	Wave propagation modeling in coastal engineering. Journal of Hydraulic Research/De Recherches Hydrauliques, 2002, 40, 229-240.	1.7	68
46	Unsteady flow in confined aquifers: A comparison of two boundary integral methods. Water Resources Research, 1979, 15, 861-866.	4.2	67
47	Nonlinear diffusive surface waves in porous media. Journal of Fluid Mechanics, 1997, 347, 119-139.	3.4	67
48	A two-dimensional, depth-integrated model for internal wave propagation over variable bathymetry. Wave Motion, 2002, 36, 221-240.	2.0	67
49	Boundary integral equation solutions to moving interface between two fluids in porous media. Water Resources Research, 1981, 17, 1445-1452.	4.2	64
50	Insights on the 2009 South Pacific tsunami in Samoa and Tonga from field surveys and numerical simulations. Earth-Science Reviews, 2011, 107, 66-75.	9.1	64
51	SEISMOLOGY: Enhanced: Tsunamigenic Sea-Floor Deformations. Science, 1997, 278, 598-600.	12.6	63
52	Boundary integral equation solutions for solitary wave generation, propagation and run-up. Coastal Engineering, 1983, 7, 299-317.	4.0	62
53	Solitary Wave Interaction with Porous Breakwaters. Journal of Waterway, Port, Coastal and Ocean Engineering, 2000, 126, 314-322.	1.2	61
54	A numerical study of swash flows generated by bores. Coastal Engineering, 2008, 55, 1113-1134.	4.0	60

#	Article	IF	CITATIONS
55	Plunging solitary wave and its interaction with a slender cylinder on a sloping beach. Ocean Engineering, 2013, 74, 48-60.	4.3	60
56	Toward modeling turbulent suspension of sand in the nearshore. Journal of Geophysical Research, 2004, 109, .	3.3	59
57	Nonlinear water waves propagating over a permeable bed. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2002, 458, 1291-1322.	2.1	55
58	On the runup of long waves on a plane beach. Journal of Geophysical Research, 2012, 117, .	3.3	55
59	A numerical study of the evolution of a solitary wave over a shelf. Physics of Fluids, 2001, 13, 1660-1667.	4.0	54
60	Twoâ€phase model for sand transport in sheet flow regime. Journal of Geophysical Research, 2008, 113, .	3.3	54
61	Breaking waves over a mild gravel slope: Experimental and numerical analysis. Journal of Geophysical Research, 2006, 111, .	3.3	53
62	Finite-Element Model for Modified Boussinesq Equations. I: Model Development. Journal of Waterway, Port, Coastal and Ocean Engineering, 2004, 130, 1-16.	1.2	52
63	Periodic water waves through an aquatic forest. Coastal Engineering, 2015, 96, 100-117.	4.0	52
64	MODEL EQUATIONS FOR WAVE PROPAGATIONS FROM DEEP TO SHALLOW WATER. Series on Quality, Reliability and Engineering Statistics, 1995, , 125-157.	0.2	51
65	Refraction–diffraction model for linear surface water waves. Journal of Fluid Mechanics, 1980, 101, 705-720.	3.4	49
66	Numerical solution of waterâ€wave refraction and diffraction problems in the parabolic approximation. Journal of Geophysical Research, 1982, 87, 7932-7940.	3.3	47
67	Refraction-diffraction model for weakly nonlinear water waves. Journal of Fluid Mechanics, 1984, 141, 265-274.	3.4	47
68	The damping of gravity water-waves due to percolation. Coastal Engineering, 1984, 8, 33-49.	4.0	46
69	Coastal landslides in Palu Bay during 2018 Sulawesi earthquake and tsunami. Landslides, 2020, 17, 2085-2098.	5.4	46
70	Modification of edge waves by barred-beach topography. Coastal Engineering, 1981, 5, 35-49.	4.0	45
71	Solitary Waves Incident on a Submerged Horizontal Plate. Journal of Waterway, Port, Coastal and Ocean Engineering, 2014, 140, .	1.2	45
72	Probabilistic Tsunami Hazard Assessment in South China Sea With Consideration of Uncertain Earthquake Characteristics. Journal of Geophysical Research: Solid Earth, 2019, 124, 658-688.	3.4	45

#	Article	IF	CITATIONS
73	Solitary wave runup and force on a vertical barrier. Journal of Fluid Mechanics, 2004, 505, 225-233.	3.4	44
74	Laboratory-scale swash flows generated by a non-breaking solitary wave on a steep slope. Journal of Fluid Mechanics, 2018, 847, 186-227.	3.4	42
75	Waveâ€current interactions on a slowly varying topography. Journal of Geophysical Research, 1983, 88, 4421-4426.	3.3	41
76	Hydrodynamic pressures on rigid dams during earthquakes. Journal of Fluid Mechanics, 1986, 165, 131.	3.4	41
77	Numerical Simulations of Nonlinear Short Waves Using a Multilayer Model. Journal of Engineering Mechanics - ASCE, 2005, 131, 231-243.	2.9	41
78	Tsunami hazard assessments with consideration of uncertain earthquake slip distribution and location. Journal of Geophysical Research: Solid Earth, 2017, 122, 7252-7271.	3.4	41
79	On the run-up and back-wash processes of single and double solitary waves — An experimental study. Coastal Engineering, 2013, 80, 1-14.	4.0	40
80	The swash of solitary waves on a plane beach: flow evolution, bed shear stress and run-up. Journal of Fluid Mechanics, 2015, 779, 556-597.	3.4	40
81	BIEM solutions to combinations of leaky, layered, confined, unconfined, nonisotropic aquifers. Water Resources Research, 1981, 17, 1431-1444.	4.2	39
82	Finite-Element Model for Modified Boussinesq Equations. II: Applications to Nonlinear Harbor Oscillations. Journal of Waterway, Port, Coastal and Ocean Engineering, 2004, 130, 17-28.	1.2	39
83	On long-wave propagation over a fluid-mud seabed. Journal of Fluid Mechanics, 2007, 579, 467-480.	3.4	39
84	Boundary integral solutions to threeâ€dimensional unconfined Darcy's Flow. Water Resources Research, 1980, 16, 651-658.	4.2	38
85	Evolution of the turbulence structure in the surf and swash zones. Journal of Fluid Mechanics, 2010, 644, 193-216.	3.4	36
86	An integral equation method for the diffraction of oblique waves by an infinite cylinder. International Journal for Numerical Methods in Engineering, 1982, 18, 1497-1504.	2.8	35
87	On weak reflection of water waves. Journal of Fluid Mechanics, 1983, 131, 59.	3.4	35
88	Optimization Model for Groundâ€Water Planning. Journal of Water Resources Planning and Management - ASCE, 1984, 110, 333-347.	2.6	35
89	Mass transport in three-dimensional water waves. Journal of Fluid Mechanics, 1991, 231, 417-437.	3.4	35
90	Generation and evolution of edge-wave packets. Physics of Fluids, 1998, 10, 1635-1657.	4.0	35

#	Article	IF	CITATIONS
91	A new interface tracking method: The polygonal area mapping method. Journal of Computational Physics, 2008, 227, 4063-4088.	3.8	35
92	Identification of aquifer dispersivities in twoâ€dimensional transient groundwater Contaminant transport: An optimization approach. Water Resources Research, 1979, 15, 815-831.	4.2	34
93	Coupling between two inlets: Observation and modeling. Journal of Geophysical Research, 2003, 108, .	3.3	34
94	Derivation of the third-order evolution equations for weakly nonlinear water waves propagating over uneven bottoms. Wave Motion, 1989, 11, 41-64.	2.0	33
95	A note on long waves induced by short-wave groups over a shelf. Journal of Fluid Mechanics, 1989, 205, 163.	3.4	33
96	Numerical Simulations of Wave Generation by a Vertical Plunger Using RANS and SPH Models. Journal of Waterway, Port, Coastal and Ocean Engineering, 2008, 134, 143-159.	1.2	33
97	Discussion of "Vertical variation of the flow across the surf zone―[Coast. Eng. 45 (2002) 169–198]. Coastal Engineering, 2004, 50, 161-164.	4.0	32
98	Long-wave-induced flows in an unsaturated permeable seabed. Journal of Fluid Mechanics, 2007, 586, 323-345.	3.4	31
99	Turbulent boundary-layer effects on transient wave propagation in shallow water. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2006, 462, 3481-3491.	2.1	30
100	Long-Wave Runup Models. , 1997, , .		29
101	Responses of Bingham-plastic muddy seabed to a surface solitary wave. Journal of Fluid Mechanics, 2009, 618, 155-180.	3.4	29
102	Theoretical Solution and Applications of Ocean Bottom Pressure Induced by Seismic Seafloor Motion. Geophysical Research Letters, 2017, 44, 10,272.	4.0	29
103	Singularities in Darcy Flow Through Porous Media. Journal of Hydraulic Engineering, 1980, 106, 977-997.	0.2	29
104	Schmidt number and near-bed boundary condition effects on a two-phase dilute sediment transport model. Journal of Geophysical Research, 2005, 110, .	3.3	28
105	INDIAN OCEAN TSUNAMI ON 26 DECEMBER 2004: NUMERICAL MODELING OF INUNDATION IN THREE CITIES ON THE SOUTH COAST OF SRI LANKA. Journal of Earthquake and Tsunami, 2008, 02, 133-155.	1.3	28
106	Resonant reflection of water waves in a long channel with corrugated boundaries. Journal of Fluid Mechanics, 1987, 179, 371-381.	3.4	27
107	Laboratory experiments for wave motions and turbulence flows in front of a breakwater. Coastal Engineering, 2001, 44, 117-139.	4.0	26
108	Sensitivity Analysis of Source Parameters for Earthquake-Generated Distant Tsunamis. Journal of Waterway, Port, Coastal and Ocean Engineering, 2007, 133, 429-441.	1.2	26

#	Article	IF	CITATIONS
109	An efficient numerical method of twoâ€dimensional steady groundwater problems. Water Resources Research, 1978, 14, 385-390.	4.2	25
110	Pseudo turbulence in PIV breaking-wave measurements. Experiments in Fluids, 2000, 29, 331-338.	2.4	25
111	A Petrov-Galerkin finite element model for one-dimensional fully non-linear and weakly dispersive wave propagation. International Journal for Numerical Methods in Fluids, 2001, 37, 541-575.	1.6	25
112	On the analytical solutions for water waves generated by a prescribed landslide. Journal of Fluid Mechanics, 2017, 821, 85-116.	3.4	25
113	Boundary integral equation solution to axisymmetric potential flows: 1. Basic formulation. Water Resources Research, 1979, 15, 1102-1106.	4.2	24
114	Wave-induced boundary layer flows above and in a permeable bed. Journal of Fluid Mechanics, 1996, 325, 195-218.	3.4	24
115	An ISPH with k–ε closure for simulating turbulence under solitary waves. Coastal Engineering, 2020, 157, 103657.	4.0	24
116	Resonant reflection of shallow-water waves due to corrugated boundaries. Journal of Fluid Mechanics, 1987, 180, 451.	3.4	23
117	The unified Kadomtsev–Petviashvili equation for interfacial waves. Journal of Fluid Mechanics, 1995, 288, 383-408.	3.4	22
118	Oscillatory pipe flows of a yield-stress fluid. Journal of Fluid Mechanics, 2010, 658, 211-228.	3.4	22
119	Edge waves generated by the landslide on a sloping beach. Coastal Engineering, 2013, 73, 133-150.	4.0	22
120	An operator-splitting algorithm for two-dimensional convection-dispersion-reaction problems. International Journal for Numerical Methods in Engineering, 1989, 28, 1023-1040.	2.8	20
121	Mass transport in two-dimensional water waves. Journal of Fluid Mechanics, 1991, 231, 395-415.	3.4	20
122	A note on the effects of a thin visco-elastic mud layer on small amplitude water-wave propagation. Coastal Engineering, 2007, 54, 233-247.	4.0	20
123	An insitu borescopic quantitative imaging profiler for the measurement of high concentration sediment velocity. Experiments in Fluids, 2010, 49, 77-88.	2.4	20
124	An experimental study of the interaction of two successive solitary waves in the swash: A strongly interacting case and a weakly interacting case. Coastal Engineering, 2015, 105, 66-74.	4.0	20
125	The 2018 Mw7.5 Palu â€~supershear' earthquake ruptures geological fault's multi-segment separated by large bends: Results from integrating field measurements, LiDAR, swath bathymetry, and seismic-reflection data. Geophysical Journal International, 0, , .	2.4	20
126	Boundary integral equation solution to axisymmetric potential flows: 2. Recharge and well problems in porous media. Water Resources Research, 1979, 15, 1107-1115.	4.2	19

#	Article	IF	CITATIONS
127	Parameterization of near-bed processes under collinear wave and current flows from a two-phase sheet flow model. Continental Shelf Research, 2010, 30, 1403-1416.	1.8	19
128	Characteristics of Leading Tsunami Waves Generated in Three Recent Tsunami Events. Journal of Earthquake and Tsunami, 2014, 08, 1440001.	1.3	19
129	Mass transport in water waves propagated over a permeable bed. Coastal Engineering, 1977, 1, 79-96.	4.0	18
130	On gravity waves propagated over a layered permeable bed. Coastal Engineering, 1977, 1, 135-148.	4.0	18
131	Applications of boundary integral equation methods for two-dimensional non-linear water wave problems. International Journal for Numerical Methods in Fluids, 1992, 15, 1119-1141.	1.6	18
132	On interfacial waves over random topography. Wave Motion, 1996, 24, 169-184.	2.0	18
133	An explicit finite difference model for simulating weakly nonlinear and weakly dispersive waves over slowly varying water depth. Coastal Engineering, 2011, 58, 173-183.	4.0	18
134	Direct measurements of local bed shear stress in the presence of pressure gradients. Experiments in Fluids, 2014, 55, 1.	2.4	18
135	Integral Equation Method for linear Water Waves. Journal of Hydraulic Engineering, 1980, 106, 1995-2010.	0.2	18
136	Validation and inter-comparison of models for landslide tsunami generation. Ocean Modelling, 2022, 170, 101943.	2.4	18
137	Fully Nonlinear Model for Water Wave Propagation from Deep to Shallow Waters. Journal of Waterway, Port, Coastal and Ocean Engineering, 2012, 138, 362-371.	1.2	17
138	Predictions of vertical sediment flux in oscillatory flows using a two-phase, sheet-flow model. Advances in Water Resources, 2012, 48, 2-17.	3.8	17
139	A model for obliquely incident wave interacting with a multi-layered object. Applied Ocean Research, 2019, 87, 211-222.	4.1	17
140	An operator splitting algorithm for coupled one-dimensional advection-diffusion-reaction equations. Computer Methods in Applied Mechanics and Engineering, 1995, 127, 181-201.	6.6	16
141	Viscous flows in a muddy seabed induced by a solitary wave. Journal of Fluid Mechanics, 2008, 598, 383-392.	3.4	16
142	Edge waves generated by atmospheric pressure disturbances moving along a shoreline on a sloping beach. Coastal Engineering, 2014, 85, 43-59.	4.0	16
143	Physical and numerical modelling of tsunami generation by a moving obstacle at the bottom boundary. Environmental Fluid Mechanics, 2017, 17, 929-958.	1.6	16
144	Nonâ€Stationary Probabilistic Tsunami Hazard Assessments Incorporating Climateâ€Changeâ€Driven Sea Level Rise. Earth's Future, 2021, 9, e2021EF002007.	6.3	16

#	Article	IF	CITATIONS
145	Numerical modeling of the initial stages of dam-break waves. Journal of Hydraulic Research/De Recherches Hydrauliques, 2004, 42, 183-195.	1.7	16
146	Propagation and trapping of obliquely incident wave groups over a trench with currents. Applied Ocean Research, 1992, 14, 201-213.	4.1	15
147	Numerical analyses of operator-splitting algorithms for the two-dimensional advection-diffusion equation. Computer Methods in Applied Mechanics and Engineering, 1998, 152, 337-359.	6.6	15
148	Large-scale edge waves generated by a moving atmospheric pressure. Theoretical and Applied Mechanics Letters, 2012, 2, 042001.	2.8	15
149	A multi-layer model for nonlinear internal wave propagation in shallow water. Journal of Fluid Mechanics, 2012, 695, 341-365.	3.4	15
150	On the evolution and runup of a train of solitary waves on a uniform beach. Coastal Engineering, 2021, 170, 104015.	4.0	15
151	Bragg reflection of infragravity waves by sandbars. Journal of Geophysical Research, 1993, 98, 22733-22741.	3.3	14
152	A note on Hamiltonian for long water waves in varying depth. Wave Motion, 1994, 20, 359-370.	2.0	14
153	Mass transport of interfacial waves in a two-layer fluid system. Journal of Fluid Mechanics, 1995, 297, 231-254.	3.4	14
154	FREE SURFACE TRACKING METHODS AND THEIR APPLICATIONS TO WAVE HYDRODYNAMICS. Series on Quality, Reliability and Engineering Statistics, 1999, , 213-240.	0.2	14
155	Modeling transient long waves propagating through a heterogeneous coastal forest of arbitrary shape. Coastal Engineering, 2017, 122, 124-140.	4.0	14
156	Boundary Integral Solutions of Water Wave Problems. Journal of Hydraulic Engineering, 1982, 108, 921-931.	0.2	14
157	Transmission of oblique waves through submerged apertures. Applied Ocean Research, 1986, 8, 144-150.	4.1	13
158	Numerical modelling of wave propagation using parabolic approximation with a boundary-fitted co-ordinate system. International Journal for Numerical Methods in Engineering, 1989, 27, 37-55.	2.8	13
159	Long-Wave Generation Due to the Refraction of Short-Wave Groups over a Shear Current. Journal of Physical Oceanography, 1990, 20, 53-59.	1.7	13
160	HyPAM: A hybrid continuum-particle model for incompressible free-surface flows. Journal of Computational Physics, 2009, 228, 1312-1342.	3.8	13
161	Periodic water waves through a heterogeneous coastal forest of arbitrary shape. Coastal Engineering, 2017, 122, 141-157.	4.0	13
162	Two-level, two-phase model for intense, turbulent sediment transport. Journal of Fluid Mechanics, 2018, 839, 198-238.	3.4	13

#	Article	IF	CITATIONS
163	A unified coupled-mode method for wave scattering by rectangular-shaped objects. Applied Ocean Research, 2018, 79, 88-100.	4.1	13
164	Interactions of obliquely incident water waves with two vertical obstacles. Applied Ocean Research, 1988, 10, 66-73.	4.1	12
165	Intermediate dirichlet boundary conditions for operator splitting algorithms for the advection-diffusion equation. Computers and Fluids, 1995, 24, 447-458.	2.5	12
166	Analytical simulation of edge waves observed around the Balearic Islands. Geophysical Research Letters, 2002, 29, 28-1-28-4.	4.0	12
167	Three dimensional numerical simulations for non-breaking solitary wave interacting with a group of slender vertical cylinders. International Journal of Naval Architecture and Ocean Engineering, 2009, 1, 20-28.	2.3	12
168	An asymptotic theory of combined wave refraction and diffraction. Applied Ocean Research, 1979, 1, 137-146.	4.1	11
169	Second-order low-frequency wave forces on a vertical circular cylinder. Journal of Fluid Mechanics, 1987, 175, 143.	3.4	11
170	Solid landslide generated waves. Journal of Fluid Mechanics, 2011, 675, 529-539.	3.4	11
171	Surface water waves propagating over a submerged forest. Coastal Engineering, 2019, 152, 103510.	4.0	11
172	A perturbation solution for a nonlinear diffusion equation. Water Resources Research, 1976, 12, 1235-1240.	4.2	10
173	Stem waves along a depth discontinuity. Journal of Geophysical Research, 1986, 91, 3979-3982.	3.3	10
174	Mass transport under partially reflected waves in a rectangular channel. Journal of Fluid Mechanics, 1994, 266, 121-145.	3.4	10
175	Long waves in a straight channel with non-uniform cross-section. Journal of Fluid Mechanics, 2015, 770, 156-188.	3.4	10
176	Depth-integrated wave–current models. Part 1. Two-dimensional formulation and applications. Journal of Fluid Mechanics, 2020, 883, .	3.4	10
177	Transient wave-induced pore-water-pressure and soil responses in a shallow unsaturated poroelastic seabed. Journal of Fluid Mechanics, 2022, 938, .	3.4	10
178	Unsteady interzonal free surface flow in porous media. Water Resources Research, 1979, 15, 240-246.	4.2	9
179	An operator splitting algorithm for the three-dimensional advection-diffusion equation. International Journal for Numerical Methods in Fluids, 1998, 28, 461-476.	1.6	9
180	A generalized modified Kadomtsev-Petviashvili equation for interfacial wave propagation near the critical depth level. Wave Motion, 1998, 27, 321-339.	2.0	9

#	Article	IF	CITATIONS
181	Field Survey and Numerical Simulations: A Review of the 1998 Papua New Guinea Tsunami. , 2003, , 2119-2146.		9
182	Waves generated by moving pressure disturbances in rectangular and trapezoidal channels. Journal of Hydraulic Research/De Recherches Hydrauliques, 2004, 42, 163-171.	1.7	9
183	Sediment Dynamics Observed in the Jhoushuei River and Adjacent Coastal Zone in Taiwan Strait. Oceanography, 2011, 24, 122-131.	1.0	9
184	Contact line dynamics and boundary layer flow during reflection of a solitary wave. Journal of Fluid Mechanics, 2012, 707, 307-330.	3.4	9
185	Analytical solutions for estimating tsunami propagation speeds. Coastal Engineering, 2016, 117, 44-56.	4.0	9
186	SPH simulation of the 2007 Chehalis Lake landslide and subsequent tsunami. Journal of Hydraulic Research/De Recherches Hydrauliques, 2021, 59, 863-887.	1.7	9
187	Mass transport in the free-surface boundary layers. Coastal Engineering, 1977, 1, 207-219.	4.0	8
188	Handling solid–fluid interfaces for viscous flows: Explicit jump approximation vs. ghost cell approaches. Journal of Computational Physics, 2010, 229, 4225-4246.	3.8	8
189	Run-up and inundation generated by non-decaying dam-break bores on a planar beach. Journal of Fluid Mechanics, 2021, 915, .	3.4	8
190	On water waves generated by a bottom obstacle translating at a subcritical speed. Journal of Fluid Mechanics, 2021, 923, .	3.4	8
191	Effect of flexible coastal vegetation on waves in water of intermediate depth. Coastal Engineering, 2021, 168, 103937.	4.0	8
192	Effects of depth discontinuity on harbor oscillations. Coastal Engineering, 1986, 10, 395-404.	4.0	7
193	An operator-splitting algorithm for the three-dimensional diffusion equation. Numerical Methods for Partial Differential Equations, 1995, 11, 617-624.	3.6	7
194	Nonlinear resonant coupling between two adjacent bays. Journal of Geophysical Research, 2004, 109, .	3.3	7
195	An efficient method for the numerical calculation of viscous effects on transient long waves. Coastal Engineering, 2007, 54, 263-269.	4.0	7
196	Two-dimensional instability of the bottom boundary layer under a solitary wave. Physics of Fluids, 2015, 27, 044101.	4.0	7
197	Modeling Uncertainties of Bathymetry Predicted With Satellite Altimetry Data and Application to Tsunami Hazard Assessments. Journal of Geophysical Research: Solid Earth, 2020, 125, e2020JB019735.	3.4	7
198	The influence of wave acceleration and volume on the swash flow driven by breaking waves of elevation. Coastal Engineering, 2020, 158, 103697.	4.0	7

#	Article	IF	CITATIONS
199	Depth-integrated wave–current models. Part 2. Current with an arbitrary profile. Journal of Fluid Mechanics, 2022, 936, .	3.4	7
200	Effects of nonlinear inertial forces on nearshore currents. Coastal Engineering, 1984, 8, 15-32.	4.0	6
201	Bed-Shear Stress in Turbulent Wave-Current Boundary Layers. Journal of Hydraulic Engineering, 2008, 134, 225-230.	1.5	6
202	Advective Diffusion of Contaminants in the Surf Zone. Journal of Waterway, Port, Coastal and Ocean Engineering, 2013, 139, 437-454.	1.2	6
203	Estimating tsunami runup with fault plane parameters. Coastal Engineering, 2016, 112, 57-68.	4.0	6
204	A sensitivity analysis of tsunami inversions on the number of stations. Geophysical Journal International, 2018, 214, 1313-1323.	2.4	6
205	Three dimensional numerical simulations for non-breaking solitary wave interacting with a group of slender vertical cylinders. International Journal of Naval Architecture and Ocean Engineering, 2009, 1, 20-28.	2.3	6
206	Combined refraction and diffraction: Comparison between theory and experiments. Journal of Geophysical Research, 1982, 87, 5723-5730.	3.3	5
207	Nonlinear Water Waves Over a Three-Dimensional Porous Bottom Using Boussinesq-Type Model. Coastal Engineering Journal, 2005, 47, 231-253.	1.9	5
208	BENCHMARK PROBLEMS. Series on Quality, Reliability and Engineering Statistics, 2008, , 223-230.	0.2	5
209	Boundary-layer flow and bed shear stress under a solitary wave: revision. Journal of Fluid Mechanics, 2014, 753, 554-559.	3.4	5
210	An integral treatment of friction during a swash uprush. Coastal Engineering, 2016, 114, 295-300.	4.0	5
211	Parameterization of intrawave rippleâ€averaged sediment pickup above steep ripples. Journal of Geophysical Research: Oceans, 2016, 121, 658-673.	2.6	5
212	Waves generated by moving pressure disturbances in rectangular and trapezoidal channels. Journal of Hydraulic Research/De Recherches Hydrauliques, 2004, 42, 163-171.	1.7	5
213	Scattering of Water Waves by a Pair of Semi-Infinite Barriers. Journal of Applied Mechanics, Transactions ASME, 1975, 42, 777-779.	2.2	4
214	A LARGE EDDY SIMULATION MODEL FOR TSUNAMI AND RUNUP GENERATED BY LANDSLIDES. Series on Quality, Reliability and Engineering Statistics, 2008, , 101-162.	0.2	4
215	Periodic water waves through suspended canopy. Coastal Engineering, 2021, 163, 103809.	4.0	4
216	Numerical and experimental studies of turbulence in vegetated open-channel flows. Environmental Fluid Mechanics, 2021, 21, 1137-1163.	1.6	4

#	Article	IF	CITATIONS
217	Numerical study on impacts of a concurrent storm-tide-tsunami event in Macau and Hong Kong. Coastal Engineering, 2021, 170, 104000.	4.0	4
218	Applications of Boundary Element Methods to Fluid Mechanics. , 1984, , 78-96.		4
219	On Stokes wave solutions. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2022, 478, .	2.1	4
220	Numerical stability and accuracy of implicit integration of free surface groundwater equations. Water Resources Research, 1980, 16, 897-900.	4.2	3
221	Modeling of Sediment Transport—A Two-Phase Flow Approach. , 2001, , 578.		3
222	DEVELOPMENT OF A BOUSSINESQ-RANS VOF HYBRID WAVE MODEL. , 2007, , .		2
223	Stability of the solitary wave boundary layer subject to finite-amplitude disturbances. Journal of Fluid Mechanics, 2020, 896, .	3.4	2
224	Solitary Wave Interacting with a Submerged Circular Plate. Journal of Waterway, Port, Coastal and Ocean Engineering, 2021, 147, .	1.2	2
225	Applications of Boundary Element Methods to Fluid Mechanics. , 1984, , 78-96.		2
226	Hydrodynamic pressures acting on rigid gravity dams during earthquakes. Journal of Hydraulic Research/De Recherches Hydrauliques, 2002, 40, 175-181.	1.7	1
227	Boundary layer flows under solitary wave. Journal of Hydrodynamics, 2006, 18, 9-12.	3.2	1
228	A 2 PHASE NUMERICAL MODEL FOR INCOMPRESSIBLE FLUIDS: AIR INFLUENCE IN WAVE PROPAGATION AND APPLICATIONS. , 2009, , .		1
229	Receptivity and transition in a solitary wave boundary layer over random bottom topography. Journal of Fluid Mechanics, 2021, 912, .	3.4	1
230	WAVE GENERATION, RUNUP AND RUNDOWN FROM THREE-DIMENSIONAL SLIDING MASSES. , 2006, , .		1
231	THREE-DIMENSIONAL RUNUP DUE TO SUBMERGED AND SUBAERIAL LANDSLIDES. , 2006, , .		1
232	Entrainment and adaptation processes in the evolution of collisional bedload layers. European Journal of Mechanics, B/Fluids, 2022, 92, 132-142.	2.5	1
233	Interactions Between Dongsha Atoll and Mw 9 Tsunamis and their Impacts in South China Sea Region. Journal of Earthquake and Tsunami, 0, , .	1.3	1
234	An empirical model for predicting wave attenuation inside vegetation domain. Ocean Engineering, 2022, 257, 111636.	4.3	1

#	Article	IF	CITATIONS
235	Comment on â€~Infiltration analysis and perturbation methods, 1, Absorption with exponential diffusivity' by D. K. Babu. Water Resources Research, 1977, 13, 215-216.	4.2	0
236	Reply [to "Comment on â€~A perturbation solution for a nonlinear diffusion equation' by Philip Lâ€F. Liuâ Water Resources Research, 1978, 14, 157-157.	€] _{4.2}	0
237	Waves trapped along a breakwater. Wave Motion, 1991, 13, 253-260.	2.0	0
238	A Nonlinear Model for Wave Propagation. , 1997, , 589.		0
239	Simulation of Sediment Suspension Using Two-Phase Approach. , 2002, , 1386.		0
240	Numerical Modeling of Breaking Waves in Nearshore Environment. , 2002, , 1.		0
241	A MULTI-LAYER APPROACH TO BOUSSINESQ-TYPE MODELING. , 2005, , .		0
242	Boundary layer flows under solitary wave. Journal of Hydrodynamics, 2006, 18, 9-12.	3.2	0
243	Measurements of high concentration sediment plume in the estuary with strong tidal currents. , 2009, , .		0
244	Boundary layer flow and bed shear stress under a solitary wave – CORRIGENDUM. Journal of Fluid Mechanics, 2014, 753, 553-553.	3.4	0
245	El modelado matemÃ _i tico de la propagación del oleaje en ingenierÃa de costas. IngenierÃa Del Agua, 2000, 7, 37.	0.4	0
246	Multi-Layer Modeling of Wave Groups From Deep to Shallow Water. , 2003, , .		0
247	Filling inÂtheÂGaps ofÂtheÂTsunamigenic Sources inÂ2018 Palu Bay Tsunami. Springer Tracts in Civil Engineering, 2022, , 439-459.	0.5	0