Philip Lf Liu

List of Publications by Year

 in descending orderSource: https:/|exaly.com/author-pdf/3434701/publications.pdf
Version: 2024-02-01

$\begin{gathered} 247 \\ \text { papers } \end{gathered}$	$\begin{array}{r} 10,523 \\ \text { citations } \end{array}$	30551 56 h-index	$\begin{array}{cc} 98101 \\ & 92 \\ \text { g-index } \end{array}$
253 all docs	253 docs citations	253 times ranked	4291 citing authors

1 A numerical study of breaking waves in the surf zone. Journal of Fluid Mechanics, 1998, 359, 239-264.

Coastal Engineering, 2002, 46, 25-50.

8 Runup and rundown generated by three-dimensional sliding masses. Journal of Fluid Mechanics, 2005, 536, 107-144.
82

12 Vortex generation and evolution in water waves propagating over a submerged rectangular obstacle.
19 Nonlinear refractionâ€"diffraction of waves in shallow water. Journal of Fluid Mechanics, 1985, 153,
185 .

Boundary layer flow and bed shear stress under a solitary wave. Journal of Fluid Mechanics, 2007, 574,
1.4

108
449-463.

Particle Image Velocimetry Measurements within a Laboratory-Generated Swash Zone. Journal of
Engineering Mechanics - ASCE, 2003, 129, 1119-1129.
1.6

Optimal time-varying pumping rates for groundwater remediation: Application of a constrained
1.7

106
23 Optimal time-varying pumping rates for groundwater remediation: Application

24 Velocity, acceleration and vorticity under a breaking wave. Physics of Fluids, 1998, 10, 327-329.
1.6

105

```
25 Report on the International Workshop on Long-Wave Run-up. Journal of Fluid Mechanics, 1991, 229,
675.
```

On two-phase sediment transport: Dilute flow. Journal of Geophysical Research, 2003, 108, .
3.3

10127 Tsunami hazard and early warning system in South China Sea. Journal of Asian Earth Sciences, 2009, 36,2-12.
28 Linear analysis of the multi-layer model. Coastal Engineering, 2004, 51, 439-454.
29 A finite element model for wave refraction and diffraction. Applied Ocean Research, 1983, 5, 30-37.1.8
NUMERICAL SIMULATIONS OF THE 2004 INDIAN OCEAN TSUNAMIS â€" COASTAL EFFECTS. Journal of
Earthquake and Tsunami, 2007, 01, 273-297.

38 Coherent structures in wave boundary layers. Part 2. Solitary motion. Journal of Fluid Mechanics,
Interactions of currents and weakly nonlinear water waves in shallow water. Journal of Fluid
Mechanics, 1989, 205,397.

40 Long waves through emergent coastal vegetation. Journal of Fluid Mechanics, 2011, 687, 461-491.
1.4

76
Wave-Induced Pore Water Pressure Accumulation in Marine Soils. Journal of Offshore Mechanics and
Arctic Engineering, 1989, 111, 1-11.

42 Sri Lanka Field Survey after the December 2004 Indian Ocean Tsunami. Earthquake Spectra, 2006, 22, 155-172.

43 Harbour excitations by incident wave groups. Journal of Fluid Mechanics, 1990, 217, 595-613.
1.4

69

44 Vortex generation and evolution in water waves propagating over a submerged rectangular obstacle.
Coastal Engineering, 2005, 52, 257-283.
1.7

6945 Wave propagation modeling in coastal engineering. Journal of Hydraulic Research/De RecherchesHydrauliques, 2002, 40, 229-240.

Insights on the 2009 South Pacific tsunami in Samoa and Tonga from field surveys and numerical
51 SEISMOLOGY: Enhanced: Tsunamigenic Sea-Floor Deformations. Science, 1997, 278, 598-600. 6.0 63

$$
\begin{aligned}
& 55 \quad \begin{array}{l}
\text { Plunging solitary wave and its interaction with a slender cylinder on a sloping beach. Ocean } \\
\text { Engineering, 2013, } 74,48-60 \text {. }
\end{array} \text {. }
\end{aligned}
$$

Toward modeling turbulent suspension of sand in the nearshore. Journal of Geophysical Research, 2004, 109, .
57 Nonlinear water waves propagating over a permeable bed. Proceedings of the Royal Society A:

55

58 On the runup of long waves on a plane beach. Journal of Geophysical Research, 2012, 117, .Breaking waves over a mild gravel slope: Experimental and numerical analysis. Journal of Geophysical
Research, 2006, 111..3.353
Finite-Element Model for Modified Boussinesq Equations. I: Model Development. Journal of Waterway, Port, Coastal and Ocean Engineering, 2004, 130, 1-16.

$0.5 \quad 52$63 Periodic water waves through an aquatic forest. Coastal Engineering, 2015, 96, 100-117.1.752
MODEL EQUATIONS FOR WAVE PROPAGATIONS FROM DEEP TO SHALLOW WATER. Series on Quality,
$1.4 \quad 49$
65 Refractionâ€ "diffraction model for linear surface water waves. Journal of Fluid Mechanics, 1980, 101, 705-720.3.3approximation. Journal of Geophysical Research, 1982, 87, 7932-7940.Refraction-diffraction model for weakly nonlinear water waves. Journal of Fluid Mechanics, 1984, 141,1.447
265-274.1.746
68 The damping of gravity water-waves due to percolation. Coastal Engineering, 1984, 8, 33-49.
2.7 46Coastal landslides in Palu Bay during 2018 Sulawesi earthquake and tsunami. Landslides, 2020, 17,
2085-2098.$1.7 \quad 45$
Solitary Waves Incident on a Submerged Horizontal Plate. Journal of Waterway, Port, Coastal and 0.5 45
73 Solitary wave runup and force on a vertical barrier. Journal of Fluid Mechanics, 2004, 505, 225-233. 44

74 Laboratory-scale swash flows generated by a non-breaking solitary wave on a steep slope. Journal of Fluid Mechanics, 2018, 847, 186-227.
1.4

42

75 Waveâ€current interactions on a slowly varying topography. Journal of Geophysical Research, 1983, 88,
3.3

4421-4426.
41

76 Hydrodynamic pressures on rigid dams during earthquakes. Journal of Fluid Mechanics, 1986, 165, 131.
1.4

41

77	Numerical Simulations of Nonlinear Short Waves Using a Multilayer Model. Journal of Engineering Mechanics - ASCE, 2005, 131, 231-243.	1.6	41
78	Tsunami hazard assessments with consideration of uncertain earthquake slip distribution and location. Journal of Geophysical Research: Solid Earth, 2017, 122, 7252-7271.	1.4	41
79	On the run-up and back-wash processes of single and double solitary waves â€" An experimental study. Coastal Engineering, 2013, 80, 1-14.	1.7	40
80	The swash of solitary waves on a plane beach: flow evolution, bed shear stress and run-up. Journal of Fluid Mechanics, 2015, 779, 556-597.	1.4	40
81	BIEM solutions to combinations of leaky, layered, confined, unconfined, nonisotropic aquifers. Water Resources Research, 1981, 17, 1431-1444.	1.7	39
82	Finite-Element Model for Modified Boussinesq Equations. II: Applications to Nonlinear Harbor Oscillations. Journal of Waterway, Port, Coastal and Ocean Engineering, 2004, 130, 17-28.	0.5	39

83 On long-wave propagation over a fluid-mud seabed. Journal of Fluid Mechanics, 2007, 579, 467-480.

1.4

39

84 Boundary integral solutions to threeâ€dimensional unconfined Darcy's Flow. Water Resources
Research, 1980, 16, 651-658.
1.7

38

85 Evolution of the turbulence structure in the surf and swash zones. Journal of Fluid Mechanics, 2010,
644, 193-216.

An integral equation method for the diffraction of oblique waves by an infinite cylinder. International Journal for Numerical Methods in Engineering, 1982, 18, 1497-1504.
1.5

35

87 On weak reflection of water waves. Journal of Fluid Mechanics, 1983, 131, 59.
1.4

35
A new interface tracking method: The polygonal area mapping method. Journal of Computationa
Physics, 2008, 227, 4063-4088.

Identification of aquifer dispersivities in twoâ€dimensional transient groundwater Contaminant transport: An optimization approach. Water Resources Research, 1979, 15, 815-831.
1.7

34
92 transport: An optimization approach. Water Resources Research, 1979, 15, 815-831.

93 Coupling between two inlets: Observation and modeling. Journal of Geophysical Research, 2003, 108, . 3.3

94 Derivation of the third-order evolution equations for weakly nonlinear water waves propagating
1.0

33 over uneven bottoms. Wave Motion, 1989, 11, 41-64.
$95 \quad$ A note on long waves induced by short-wave groups over a shelf. Journal of Fluid Mechanics, 1989
$205,163$.
1.4

33

Numerical Simulations of Wave Generation by a Vertical Plunger Using RANS and SPH Models. Journal of Waterway, Port, Coastal and Ocean Engineering, 2008, 134, 143-159.

97	Discussion of â€œVertical variation of the flow across the surf zoneâ€•[Coast. Eng. 45 (2002) 169â€ Coastal Engineering, 2004, 50, 161-164.
98	Long-wave-induced flows in an unsaturated permeable seabed. Journal of Fluid Mechanics, 2007, 586 323-345.
99	Turbulent boundary-layer effects on transient wave propagation in shallow water. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2006, 462, 3481-3491.
100	Long-Wave Runup Models. , 1997, , .
101	Responses of Bingham-plastic muddy seabed to a surface solitary wave. Journal of Fluid Mechanics, 2009, 618, 155-180.

Theoretical Solution and Applications of Ocean Bottom Pressure Induced by Seismic Seafloor Motion. Geophysical Research Letters, 2017, 44, 10,272.
1.5

29

$$
\begin{aligned}
& 103 \text { Singularities in Darcy Flow Through Porous Media. Journal of Hydraulic Engineering, 1980, 106, } \\
& \text { 977-997. }
\end{aligned}
$$

28

Resonant reflection of water waves in a long channel with corrugated boundaries. Journal of Fluid

109	An efficient numerical method of twoâ€dimensional steady groundwater problems. Water Resources Research, 1978, 14, 385-390.	1.7	25
110	Pseudo turbulence in PIV breaking-wave measurements. Experiments in Fluids, 2000, 29, 331-338.	1.1	25
111	A Petrov-Galerkin finite element model for one-dimensional fully non-linear and weakly dispersive wave propagation. International Journal for Numerical Methods in Fluids, 2001, 37, 541-575.	0.9	25
112	On the analytical solutions for water waves generated by a prescribed landslide. Journal of Fluid Mechanics, 2017, 821, 85-116.	1.4	25
113	Boundary integral equation solution to axisymmetric potential flows: 1. Basic formulation. Water Resources Research, 1979, 15, 1102-1106.	1.7	24
114	Wave-induced boundary layer flows above and in a permeable bed. Journal of Fluid Mechanics, 1996, 325, 195-218.	1.4	24
115	An ISPH with kâe‘‘ी μ closure for simulating turbulence under solitary waves. Coastal Engineering, 2020, 157, 103657.	1.7	24
116	Resonant reflection of shallow-water waves due to corrugated boundaries. Journal of Fluid Mechanics, 1987, 180, 451.	1.4	23
117	The unified Kadomtsevâ€ "Petviashvili equation for interfacial waves. Journal of Fluid Mechanics, 1995, 288, 383-408.	1.4	22
118	Oscillatory pipe flows of a yield-stress fluid. Journal of Fluid Mechanics, 2010, 658, 211-228.	1.4	22
119	Edge waves generated by the landslide on a sloping beach. Coastal Engineering, 2013, 73, 133-150.	1.7	22
120	An operator-splitting algorithm for two-dimensional convection-dispersion-reaction problems. International Journal for Numerical Methods in Engineering, 1989, 28, 1023-1040.	1.5	20
121	Mass transport in two-dimensional water waves. Journal of Fluid Mechanics, 1991, 231, 395-415.	1.4	20

A note on the effects of a thin visco-elastic mud layer on small amplitude water-wave propagation.
127

Parameterization of near-bed processes under collinear wave and current flows from a two-phase
0.9

19 sheet flow model. Continental Shelf Research, 2010, 30, 1403-1416.
.
19

Characteristics of Leading Tsunami Waves Generated in Three Recent Tsunami Events. Journal of Earthquake and Tsunami, 2014, 08, 1440001.
0.7

19

131	Applications of boundary integral equation methods for two-dimensional non-linear water wave problems. International Journal for Numerical Methods in Fluids, 1992, 15, 1119-1141.	18 132

134 Direct measurements of local bed shear stress in the presence of pressure gradients. Experiments inFluids, 2014, 55, 1.
135 Integral Equation Method for linear Water Waves. Journal of Hydraulic Engineering, 1980, 106, 0.2 18
136 Validation and inter-comparison of models for landslide tsunami generation. Ocean Modelling, 2022, 170, 101943.
137 Fully Nonlinear Model for Water Wave Propagation from Deep to Shallow
0.5
0.5 17 17
Predictions of vertical sediment flux in oscillatory flows using a two-phase, sheet-flow model. 1.7 17
Advances in Water Resources, 2012, 48, 2-17.A model for obliquely incident wave interacting with a multi-layered object. Applied Ocean Research,2019, 87, 211-222.An operator splitting algorithm for coupled one-dimensional advection-diffusion-reaction equations.3.416Computer Methods in Applied Mechanics and Engineering, 1995, 127, 181-201.
Viscous flows in a muddy seabed induced by a solitary wave. Journal of Fluid Mechanics, 2008, 598, 1.4 16
141 383-392.
Edge waves generated by atmospheric pressure disturbances moving along a shoreline on a sloping 1.7 16
142 beach. Coastal Engineering, 2014, 85, 43-59.Physical and numerical modelling of tsunami generation by a moving obstacle at the bottomboundary. Environmental Fluid Mechanics, 2017, 17, 929-958.

Numerical modeling of the initial stages of dam-break waves. Journal of Hydraulic Research/De
 Recherches Hydrauliques, 2004, 42, 183-195.

$0.7 \quad 16$

Propagation and trapping of obliquely incident wave groups over a trench with currents. Applied
1.8

Ocean Research, 1992, 14, 201-213.

Numerical analyses of operator-splitting algorithms for the two-dimensional advection-diffusion
147 $\begin{aligned} & \text { Numerical analyses of operator-splitting algorithms for the two-dimensional advection-diffu } \\ & \text { equation. Computer Methods in Applied Mechanics and Engineering, 1998, 152, 337-359. }\end{aligned}$
3.4

15

Large-scale edge waves generated by a moving atmospheric pressure. Theoretical and Applied
$148 \quad \begin{aligned} & \text { Large-scale edge waves generated by } \\ & \text { Mechanics Letters, 2012, 2, } 042001 .\end{aligned}$
1.3

15
A multi-layer model for nonlinear internal wave propagation in shallow water. Journal of Fluid
Mechanics, 2012, 695, 341-365.
$1.4 \quad 15$

150 On the evolution and runup of a train of solitary waves on a uniform beach. Coastal Engineering,
2021, 170, 104015.
1.7

15

Bragg reflection of infragravity waves by sandbars. Journal of Ceophysical Research, 1993, 98,
$22733-22741$.
$3.3 \quad 14$

152 A note on Hamiltonian for long water waves in varying depth. Wave Motion, 1994, 20, 359-370.
1.0

14

> | 153 | $\begin{array}{l}\text { Mass transport of interfacial waves in a two-layer fluid system. Journal of Fluid Mechanics, 1995, 297, } \\ 231-254 .\end{array}$ |
| :--- | :--- |
| 154 | $\begin{array}{l}\text { FREE SURFACE TRACKING METHODS AND THEIR APPLICATIONS TO WAVE HYDRODYNAMICS. Series on } \\ \text { Quality, Reliability and Engineering Statistics, 1999, , 213-240. }\end{array}$ | $\begin{aligned} & \text { Modeling transient long waves propagating through a heterogeneous coastal forest of arbitrary } \\ & \text { shape. Coastal Engineering, 2017, 122, 124-140. }\end{aligned}$

1.4

14
0.2

14

$1.7 \quad 14$

Boundary Integral Solutions of Water Wave Problems. Journal of Hydraulic Engineering, 1982, 108,
156 921-931.
0.2

14
$\begin{array}{llll}157 & \text { Transmission of oblique waves through submerged apertures. Applied Ocean Research, 1986, 8, 144-150. } & 1.8 & 13\end{array}$

Numerical modelling of wave propagation using parabolic approximation with a boundary-fitted
co-ordinate system. International Journal for Numerical Methods in Engineering, 1989, 27, 37-55.
1.5

13

Long-Wave Generation Due to the Refraction of Short-Wave Groups over a Shear Current. Journal of
0.7

13
159 Physical Oceanography, 1990, 20, 53-59.
1.9

13

HyPAM: A hybrid continuum-particle model for incompressible free-surface flows. Journal of
 HyPAM: A hybrid continuum-particle model for incompressible free-surface flows. Journal of Computational Physics, 2009, 228, 1312-1342.

[^0]| \# | Article | IF | |
| :---: | :---: | :---: | :---: |
| 163 | A unified coupled-mode method for wave scattering by rectangular-shaped objects. Applied Ocean Research, 2018, 79, 88-100. | 1.8 | 13 |
| 164 | Interactions of obliquely incident water waves with two vertical obstacles. Applied Ocean Research, 1988, 10, 66-73. | 1.8 | 12 |
| 165 | Intermediate dirichlet boundary conditions for operator splitting algorithms for the advection-diffusion equation. Computers and Fluids, 1995, 24, 447-458. | 1.3 | 12 |
| 166 | Analytical simulation of edge waves observed around the Balearic Islands. Geophysical Research Letters, 2002, 29, 28-1-28-4. | 1.5 | 12 |
| 167 | Three dimensional numerical simulations for non-breaking solitary wave interacting with a group of slender vertical cylinders. International Journal of Naval Architecture and Ocean Engineering, 2009, 1, 20-28. | 1.0 | 12 |
| 168 | An asymptotic theory of combined wave refraction and diffraction. Applied Ocean Research, 1979, 1, 137-146. | 1.8 | 11 |
| 169 | Second-order low-frequency wave forces on a vertical circular cylinder. Journal of Fluid Mechanics, 1987, 175, 143. | 1.4 | 11 |
| 170 | Solid landslide generated waves. Journal of Fluid Mechanics, 2011, 675, 529-539. | 1.4 | 11 |
| 171 | Surface water waves propagating over a submerged forest. Coastal Engineering, 2019, 152, 103510. | 1.7 | 11 |
| 172 | A perturbation solution for a nonlinear diffusion equation. Water Resources Research, 1976, 12, 1235-1240. | 1.7 | 10 |
| 173 | Stem waves along a depth discontinuity. Journal of Geophysical Research, 1986, 91, 3979-3982. | 3.3 | 10 |
| 174 | Mass transport under partially reflected waves in a rectangular channel. Journal of Fluid Mechanics, 1994, 266, 121-145. | 1.4 | 10 |
| 175 | Long waves in a straight channel with non-uniform cross-section. Journal of Fluid Mechanics, 2015, 770, 156-188. | 1.4 | 10 |
| 176 | Depth-integrated waveâ€"current models. Part 1. Two-dimensional formulation and applications. Journal of Fluid Mechanics, 2020, 883, . | 1.4 | 10 |
| 177 | Transient wave-induced pore-water-pressure and soil responses in a shallow unsaturated poroelastic seabed. Journal of Fluid Mechanics, 2022, 938, . | 1.4 | 10 |
| 178 | Unsteady interzonal free surface flow in porous media. Water Resources Research, 1979, 15, 240-246. | 1.7 | 9 |
| 179 | An operator splitting algorithm for the three-dimensional advection-diffusion equation. International Journal for Numerical Methods in Fluids, 1998, 28, 461-476. | 0.9 | 9 |
| 180 | A generalized modified Kadomtsev-Petviashvili equation for interfacial wave propagation near the critical depth level. Wave Motion, 1998, 27, 321-339. | 1.0 | 9 |

```
181 Field Survey and Numerical Simulations: A Review of the 1998 Papua New Guinea Tsunami. , 2003,
2119-2146.
```

Waves generated by moving pressure disturbances in rectangular and trapezoidal channels. Journal	
of Hydraulic Research/De Recherches Hydrauliques, 2004, 42, 163-171.	0.7

Sediment Dynamics Observed in the Jhoushuei River and Adjacent Coastal Zone in Taiwan Strait.
Oceanography, 2011, 24, 122-131.
184 Contact line dynamics and boundary layer flow during reflection of a solitary wave. Journal of Fluid
187 Mass transport in the free-surface boundary layers. Coastal Engineering, 1977, 1, 207-219. 1.7 8
Handling solidâ€"fluid interfaces for viscous flows: Explicit jump approximation vs. ghost cell

1.98approaches. Journal of Computational Physics, 2010, 229, 4225-4246.
188
Run-up and inundation generated by non-decaying dam-break bores on a planar beach. Journal of Fluid
189 Mechanics, 2021, 915,. 1.48On water waves generated by a bottom obstacle translating at a subcritical speed. Journal of Fluid
1.4 8
190 Mechanics, 2021, 923, .
1.7 8
$\begin{array}{ll} & \\ \text { Effect of flexible coast } \\ \text { 2021, 168, } 103937 .\end{array}$
1.7 7192 Effects of depth discontinuity on harbor oscillations. Coastal Engineering, 1986, 10, 395-404.
193
An operator-splitting algorithm for the three-dimensional diffusion equation. Numerical Methods
for Partial Differential Equations, 1995, 11, 617-624.2.0
194 Nonlinear resonant coupling between two adjacent bays. Journal of Geophysical Research, 2004, 109, .3.37
195 An efficient method for the numerical calculation of viscous effects on transient long waves.
Coastal Engineering, 2007, 54, 263-269. 1.7Two-dimensional instability of the bottom boundary layer under a solitary wave. Physics of Fluids,2015, 27, 044101.
197 Modeling Uncertainties of Bathymetry Predicted With Satellite Altimetry Data and Application to
Tsunami Hazard Assessments. Journal of Geophysical Research: Solid Earth, 2020, 125, e2020JB019735.1.47
199 Depth-integrated waveâ€"current models. Part 2. Current with an arbitrary profile. Journal of Fluid Mechanics, 2022, 936, .

200 Effects of nonlinear inertial forces on nearshore currents. Coastal Engineering, 1984, 8, 15-32.
1.7

Bed-Shear Stress in Turbulent Wave-Current Boundary Layers. Journal of Hydraulic Engineering, 2008, 134, 225-230.

Advective Diffusion of Contaminants in the Surf Zone. Journal of Waterway, Port, Coastal and Ocean Engineering, 2013, 139, 437-454.

203 Estimating tsunami runup with fault plane parameters. Coastal Engineering, 2016, 112, 57-68.
1.7

A sensitivity analysis of tsunami inversions on the number of stations. Geophysical Journal International, 2018, 214, 1313-1323.

Three dimensional numerical simulations for non-breaking solitary wave interacting with a group of
205 slender vertical cylinders. International Journal of Naval Architecture and Ocean Engineering, 2009, 1, 20-28.

206 Combined refraction and diffraction: Comparison between theory and experiments. Journal of Geophysical Research, 1982, 87, 5723-5730.

207 Nonlinear Water Waves Over a Three-Dimensional Porous Bottom Using Boussinesq-Type Model. Coastal Engineering Journal, 2005, 47, 231-253.

208 BENCHMARK PROBLEMS. Series on Quality, Reliability and Engineering Statistics, 2008, , 223-230.

Boundary-layer flow and bed shear stress under a solitary wave: revision. Journal of Fluid Mechanics,
$209 \begin{aligned} & \text { Boundary-layer flow } \\ & 2014,753,554-559 .\end{aligned}$

210 An integral treatment of friction during a swash uprush. Coastal Engineering, 2016, 114, 295-300.
1.7
0.2

5
210. An

Parameterization of intrawave rippleâ€averaged sediment pickup above steep ripples. Journal of Geophysical Research: Oceans, 2016, 121, 658-673.

Waves generated by moving pressure disturbances in rectangular and trapezoidal channels. Journal of Hydraulic Research/De Recherches Hydrauliques, 2004, 42, 163-171.

Scattering of Water Waves by a Pair of Semi-Infinite Barriers. Journal of Applied Mechanics,
Transactions ASME, 1975, 42, 777-779.

A LARGE EDDY SIMULATION MODEL FOR TSUNAMI AND RUNUP GENERATED BY LANDSLIDES. Series on Quality, Reliability and Engineering Statistics, 2008, , 101-162.
On Stokes wave solutions. Proceedings of the Royal Society A: Mathematical, Physical and Engineering

Sciences, 2022, 478, \quad| Numerical stability and accuracy of implicit integration of free surface groundwater equations. |
| :--- |
| $220 \quad$ Water Resources Research, 1980, 16, 897-900. |

223 Stability of the solitary wave boundary layer subject to finite-amplitude disturbances. Journal of Fluid Mechanics, 2020, 896, .$1.4 \quad 2$
224 Solitary Wave Interacting with a Submerged Circular Plate. Journal of Waterway, Port, Coastal and Ocean Engineering, 2021, 147, .
0.5 2
225 Applications of Boundary Element Methods to Fluid Mechanics. , 1984, , 78-96. 2Hydrodynamic pressures acting on rigid gravity dams during earthquakes. Journal of HydraulicResearch/De Recherches Hydrauliques, 2002, 40, 175-181.
0.7 1
227 Boundary layer flows under solitary wave. Journal of Hydrodynamics, 2006, 18, 9-12. 1.3 1
228 A 2 PHASE NUMERICAL MODEL FOR INCOMPRESSIBLE FLUIDS: AIR INFLUENCE IN WAVE PROPAGATION AND APPLICATIONS. , 2009, , 1
Receptivity and transition in a solitary wave boundary layer over random bottom topography. Journal of Fluid Mechanics, 2021, 912, .
231 THREE-DIMENSIONAL RUNUP DUE TO SUBMERGED AND SUBAERIAL LANDSLIDES. , 2006, , 1

Reply [to â€œComment on â ϵ^{\sim} A perturbation solution for a nonlinear diffusion equationâ ${ }^{\text {TM }}$ by Philip L.â $€ \mp$. Liuâ $\varliminf_{1.7}$

```
243 Measurements of high concentration sediment plume in the estuary with strong tidal currents. , 2009,

Boundary layer flow and bed shear stress under a solitary wave â€" CORRIGENDUM. Journal of Fluid Mechanics, 2014, 753, 553-553.```


[^0]:    Periodic water waves through a heterogeneous coastal forest of arbitrary shape. Coastal
    $161 \begin{aligned} & \text { Periodic water waves through a heter } \\ & \text { Engineering, 2017, 122, 141-157. }\end{aligned}$

