List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3434400/publications.pdf Version: 2024-02-01

Еленло Расніої

#	Article	IF	CITATIONS
1	Influence of a lossy ground on lightning-induced voltages on overhead lines. IEEE Transactions on Electromagnetic Compatibility, 1996, 38, 250-264.	1.4	361
2	Lightning-induced voltages on overhead lines. IEEE Transactions on Electromagnetic Compatibility, 1993, 35, 75-86.	1.4	309
3	Lightning return stroke current models with specified channelâ€base current: A review and comparison. Journal of Geophysical Research, 1990, 95, 20395-20408.	3.3	304
4	Current and electromagnetic field associated with lightning-return strokes to tall towers. IEEE Transactions on Electromagnetic Compatibility, 2001, 43, 356-367.	1.4	277
5	Formulation of the field-to-transmission line coupling equations in terms of magnetic excitation field. IEEE Transactions on Electromagnetic Compatibility, 1993, 35, 404-407.	1.4	230
6	Overview of Recent Progress in Lightning Research and Lightning Protection. IEEE Transactions on Electromagnetic Compatibility, 2009, 51, 428-442.	1.4	189
7	A Review of Field-to-Transmission Line Coupling Models With Special Emphasis to Lightning-Induced Voltages on Overhead Lines. IEEE Transactions on Electromagnetic Compatibility, 2012, 54, 898-911.	1.4	186
8	Transient analysis of multiconductor lines above a lossy ground. IEEE Transactions on Power Delivery, 1999, 14, 294-302.	2.9	168
9	A Review of Current Issues in Lightning Protection of New-Generation Wind-Turbine Blades. IEEE Transactions on Industrial Electronics, 2008, 55, 2489-2496.	5.2	161
10	An Efficient Method Based on the Electromagnetic Time Reversal to Locate Faults in Power Networks. IEEE Transactions on Power Delivery, 2013, 28, 1663-1673.	2.9	160
11	Mitigation of Lightning-Induced Overvoltages in Medium Voltage Distribution Lines by Means of Periodical Grounding of Shielding Wires and of Surge Arresters: Modeling and Experimental Validation. IEEE Transactions on Power Delivery, 2004, 19, 423-431.	2.9	157
12	On the Master, Uman, Lin, Standler and the Modified Transmission Line Lightning return stroke current models. Journal of Geophysical Research, 1990, 95, 20389-20393.	3.3	154
13	A Comparison of Frequency-Dependent Soil Models: Application to the Analysis of Grounding Systems. IEEE Transactions on Electromagnetic Compatibility, 2014, 56, 177-187.	1.4	145
14	Lightning Induced Disturbances in Buried Cables—Part I: Theory. IEEE Transactions on Electromagnetic Compatibility, 2005, 47, 498-508.	1.4	123
15	Electromagnetic field coupling to a line of finite length: theory and fast iterative solutions in frequency and time domains. IEEE Transactions on Electromagnetic Compatibility, 1995, 37, 509-518.	1.4	120
16	Effect of vertically extended strike object on the distribution of current along the lightning channel. Journal of Geophysical Research, 2002, 107, ACL 16-1-ACL 16-6.	3.3	117
17	Lightning Electromagnetic Field Coupling to Overhead Lines: Theory, Numerical Simulations, and Experimental Validation. IEEE Transactions on Electromagnetic Compatibility, 2009, 51, 532-547.	1.4	99
18	Lightning-induced voltages on complex distribution systems: models, advanced software tools and experimental validation. Journal of Electrostatics, 2004, 60, 163-174.	1.0	92

#	Article	IF	CITATIONS
19	External impedance and admittance of buried horizontal wires for transient studies using transmission line analysis. IEEE Transactions on Dielectrics and Electrical Insulation, 2007, 14, 751-761.	1.8	91
20	Evaluation of Lightning Electromagnetic Fields and Their Induced Voltages on Overhead Lines Considering the Frequency Dependence of Soil Electrical Parameters. IEEE Transactions on Electromagnetic Compatibility, 2013, 55, 1210-1219.	1.4	86
21	Comparison of two coupling models for lightning-induced overvoltage calculations. IEEE Transactions on Power Delivery, 1995, 10, 330-339.	2.9	84
22	On the contribution of the electromagnetic field components in field-to-transmission line interaction. IEEE Transactions on Electromagnetic Compatibility, 1995, 37, 505-508.	1.4	79
23	Lightning Induced Disturbances in Buried Cables—Part II: Experiment and Model Validation. IEEE Transactions on Electromagnetic Compatibility, 2005, 47, 509-520.	1.4	78
24	Lightning return stroke current radiation in presence of a conducting ground: 2. Validity assessment of simplified approaches. Journal of Geophysical Research, 2008, 113, .	3.3	77
25	Far-Field–Current Relationship Based on the TL Model for Lightning Return Strokes to Elevated Strike Objects. IEEE Transactions on Electromagnetic Compatibility, 2005, 47, 146-159.	1.4	76
26	Response of multiconductor power lines to nearby lightning return stroke electromagnetic fields. IEEE Transactions on Power Delivery, 1997, 12, 1404-1411.	2.9	69
27	On the influence of elevated strike objects on directly measured and indirectly estimated lightning currents. IEEE Transactions on Power Delivery, 1998, 13, 1543-1555.	2.9	66
28	Evaluation of Power System Lightning Performance, Part I: Model and Numerical Solution Using the PSCAD-EMTDC Platform. IEEE Transactions on Electromagnetic Compatibility, 2017, 59, 137-145.	1.4	66
29	Characterization of vertical electric fields 500 m and 30 m from triggered lightning. Journal of Geophysical Research, 1995, 100, 8863.	3.3	63
30	On the Choice Between Transmission Line Equations and Full-Wave Maxwell's Equations for Transient Analysis of Buried Wires. IEEE Transactions on Electromagnetic Compatibility, 2008, 50, 347-357.	1.4	63
31	Nowcasting lightning occurrence from commonly available meteorological parameters using machine learning techniques. Npj Climate and Atmospheric Science, 2019, 2, .	2.6	63
32	High-frequency electromagnetic field coupling to long terminated lines. IEEE Transactions on Electromagnetic Compatibility, 2001, 43, 117-129.	1.4	62
33	On the estimation of lightning peak currents from measured fields using lightning location systems. Journal of Electrostatics, 2004, 60, 121-129.	1.0	59
34	A system for the measurements of lightning currents at the Sätis Tower. Electric Power Systems Research, 2012, 82, 34-43.	2.1	59
35	An Alternative Method for Locating Faults in Transmission Line Networks Based on Time Reversal. IEEE Transactions on Electromagnetic Compatibility, 2017, 59, 1601-1612.	1.4	59
36	On the Location of Lightning Discharges Using Time Reversal of Electromagnetic Fields. IEEE Transactions on Electromagnetic Compatibility, 2014, 56, 149-158.	1.4	58

#	Article	IF	CITATIONS
37	An Algorithm for the Exact Evaluation of the Underground Lightning Electromagnetic Fields. IEEE Transactions on Electromagnetic Compatibility, 2007, 49, 401-411.	1.4	57
38	Statistical Distributions of Lightning Currents Associated With Upward Negative Flashes Based on the Data Collected at the Sätis (EMC) Tower in 2010 and 2011. IEEE Transactions on Power Delivery, 2013, 28, 1804-1812.	2.9	56
39	On Lightning Electromagnetic Field Propagation Along an Irregular Terrain. IEEE Transactions on Electromagnetic Compatibility, 2016, 58, 161-171.	1.4	56
40	Nonuniform Transmission Tower Model for Lightning Transient Studies. IEEE Transactions on Power Delivery, 2004, 19, 490-496.	2.9	55
41	Validity of Simplified Approaches for the Evaluation of Lightning Electromagnetic Fields Above a Horizontally Stratified Ground. IEEE Transactions on Electromagnetic Compatibility, 2010, 52, 657-663.	1.4	54
42	Interaction of electromagnetic fields generated by lightning with overhead electrical networks. , 2003, , 425-478.		54
43	Determination of lightning currents from far electromagnetic fields. Journal of Geophysical Research, 1993, 98, 18315-18321.	3.3	52
44	Lightning Potential Index performances in multimicrophysical cloudâ€resolving simulations of a backâ€building mesoscale convective system: The Genoa 2014 event. Journal of Geophysical Research D: Atmospheres, 2017, 122, 4238-4257.	1.2	48
45	Evaluation of Power System Lightning Performance—Part II: Application to an Overhead Distribution Network. IEEE Transactions on Electromagnetic Compatibility, 2017, 59, 146-153.	1.4	47
46	Interaction of electromagnetic fields generated by lightning with overhead electrical networks. , 2014, , 559-609.		47
47	A new expression for the ground transient resistance matrix elements of multiconductor overhead transmission lines. Electric Power Systems Research, 2003, 65, 41-46.	2.1	45
48	Influence of frequencyâ€dependent soil electrical parameters on the evaluation of lightning electromagnetic fields in air and underground. Journal of Geophysical Research, 2009, 114, .	3.3	45
49	On Tower Impedances for Transient Analysis. IEEE Transactions on Power Delivery, 2004, 19, 1238-1244.	2.9	44
50	A finite-difference time-domain approach for the evaluation of electromagnetic fields radiated by lightning strikes to tall structures. Journal of Electrostatics, 2008, 66, 504-513.	1.0	43
51	Assessment of the Influence of Losses on the Performance of the Electromagnetic Time Reversal Fault Location Method. IEEE Transactions on Power Delivery, 2017, 32, 2303-2312.	2.9	43
52	Generalized Form of Telegrapher's Equations for the Electromagnetic Field Coupling to Buried Wires of Finite Length. IEEE Transactions on Electromagnetic Compatibility, 2009, 51, 331-337.	1.4	42
53	Application of the time reversal of electromagnetic fields to locate lightning discharges. Atmospheric Research, 2012, 117, 78-85.	1.8	42
54	Time-Domain Analysis of Building Shielding Against Lightning Electromagnetic Fields. IEEE Transactions on Electromagnetic Compatibility, 2015, 57, 397-404.	1.4	42

#	Article	lF	CITATIONS
55	A Full-Scale Experimental Validation of Electromagnetic Time Reversal Applied to Locate Disturbances in Overhead Power Distribution Lines. IEEE Transactions on Electromagnetic Compatibility, 2018, 60, 1562-1570.	1.4	42
56	Electromagnetic Fields of a Lightning Return Stroke in Presence of a Stratified Ground. IEEE Transactions on Electromagnetic Compatibility, 2014, 56, 413-418.	1.4	41
57	Determination of reflection coefficients at the top and bottom of elevated strike objects struck by lightning. Journal of Geophysical Research, 2003, 108, .	3.3	40
58	Application of the Matrix Pencil Method to Rational Fitting of Frequency-Domain Responses. IEEE Transactions on Power Delivery, 2012, 27, 2399-2408.	2.9	40
59	Generalized Form of Telegrapher's Equations for the Electromagnetic Field Coupling to Finite-Length Lines Above a Lossy Ground. IEEE Transactions on Electromagnetic Compatibility, 2007, 49, 689-697.	1.4	39
60	Lightning electromagnetic radiation over a stratified conducting ground: 2. Validity of simplified approaches. Journal of Geophysical Research, 2011, 116, .	3.3	39
61	Analysis of Electromagnetic Fields Inside a Reinforced Concrete Building With Layered Reinforcing Bar due to Direct and Indirect Lightning Strikes Using the FDTD Method. IEEE Transactions on Electromagnetic Compatibility, 2015, 57, 405-417.	1.4	39
62	On return stroke currents and remote electromagnetic fields associated with lightning strikes to tall structures: 2. Experiment and model validation. Journal of Geophysical Research, 2007, 112, .	3.3	38
63	Time-Domain Implementation of Cooray–Rubinstein Formula via Convolution Integral and Rational Approximation. IEEE Transactions on Electromagnetic Compatibility, 2011, 53, 755-763.	1.4	38
64	Voltages induced on overhead lines by dart leaders and subsequent return strokes in natural and rocket-triggered lightning. IEEE Transactions on Electromagnetic Compatibility, 1997, 39, 160-166.	1.4	37
65	Influence of corona on the voltages induced by nearby lightning on overhead distribution lines. IEEE Transactions on Power Delivery, 2000, 15, 1265-1273.	2.9	37
66	Evaluation of the performance characteristics of the European Lightning Detection Network EUCLID in the Alps region for upward negative flashes using direct measurements at the instrumented Sätis Tower. Journal of Geophysical Research D: Atmospheres, 2016, 121, 595-606.	1.2	37
67	On the accuracy of approximate techniques for the evaluation of lightning electromagnetic fields along a mixed propagation path. Radio Science, 2011, 46, .	0.8	36
68	Use of the full-wave Finite Element Method for the numerical electromagnetic analysis of LEMP and its coupling to overhead lines. Electric Power Systems Research, 2013, 94, 24-29.	2.1	36
69	Lightning Electromagnetic Fields and Their Induced Currents on Buried Cables. Part II: The Effect of a Horizontally Stratified Ground. IEEE Transactions on Electromagnetic Compatibility, 2014, 56, 1146-1154.	1.4	36
70	Evaluation of the Mitigation Effect of the Shield Wires on Lightning Induced Overvoltages in MV Distribution Systems Using Statistical Analysis. IEEE Transactions on Electromagnetic Compatibility, 2018, 60, 1400-1408.	1.4	36
71	Lightning electromagnetic radiation over a stratified conducting ground: Formulation and numerical evaluation of the electromagnetic fields. Journal of Geophysical Research, 2011, 116, .	3.3	35
72	Partial Discharge Localization Using Time Reversal: Application to Power Transformers. Sensors, 2020, 20, 1419.	2.1	35

#	Article	IF	CITATIONS
73	On the Evaluation of Antenna-Mode Currents Along Transmission Lines. IEEE Transactions on Electromagnetic Compatibility, 2006, 48, 693-700.	1.4	34
74	Positive lightning flashes recorded on the SÃ ¤ tis tower from May 2010 to January 2012. Journal of Geophysical Research D: Atmospheres, 2013, 118, 12,879.	1.2	34
75	Application of the Cascaded Transmission Line Theory of Paul and McKnight to the Evaluation of NEXT and FEXT in Twisted Wire Pair Bundles. IEEE Transactions on Electromagnetic Compatibility, 2013, 55, 648-656.	1.4	33
76	Norm Criteria in the Electromagnetic Time Reversal Technique for Fault Location in Transmission Lines. IEEE Transactions on Electromagnetic Compatibility, 2018, 60, 1240-1248.	1.4	33
77	Prony Series Representation for the Lightning Channel Base Current. IEEE Transactions on Electromagnetic Compatibility, 2012, 54, 308-315.	1.4	32
78	Location Accuracy Evaluation of ToAâ€Based Lightning Location Systems Over Mountainous Terrain. Journal of Geophysical Research D: Atmospheres, 2017, 122, 11,760.	1.2	32
79	On the Current Peak Estimates Provided by Lightning Detection Networks for Lightning Return Strokes to Tall Towers. IEEE Transactions on Electromagnetic Compatibility, 2009, 51, 453-458.	1.4	31
80	Fault location in multi-terminal HVDC networks based on Electromagnetic Time Reversal with limited time reversal window. , 2014, , .		31
81	A New Formulation of the Cooray–Rubinstein Expression in Time Domain. IEEE Transactions on Electromagnetic Compatibility, 2015, 57, 391-396.	1.4	31
82	Impact of Frequency-Dependent Soil Models on Grounding System Performance for Direct and Indirect Lightning Strikes. IEEE Transactions on Electromagnetic Compatibility, 2021, 63, 134-144.	1.4	31
83	Indoor radiated emission associated with power line communication systems. , 0, , .		30
84	Radiated Fields From Lightning Strikes to Tall Structures: Effect of Upward-Connecting Leader and Reflections at the Return Stroke Wavefront. IEEE Transactions on Electromagnetic Compatibility, 2011, 53, 437-445.	1.4	30
85	CICRE technical brochure on lightning parameters for engineering applications. , 2013, , .		30
86	Lightning Electromagnetic Fields and Their Induced Currents on Buried Cables. Part I: The Effect of an Ocean–Land Mixed Propagation Path. IEEE Transactions on Electromagnetic Compatibility, 2014, 56, 1137-1145.	1.4	30
87	Return stroke current profiles and electromagnetic fields associated with lightning strikes to tall towers: Comparison of engineering models. Journal of Electrostatics, 2007, 65, 316-321.	1.0	29
88	An antenna-theory approach for modeling inclined lightning return stroke channels. Electric Power Systems Research, 2006, 76, 945-952.	2.1	28
89	High-Frequency Electromagnetic Coupling to Multiconductor Transmission Lines of Finite Length. IEEE Transactions on Electromagnetic Compatibility, 2015, 57, 1714-1723.	1.4	28
90	Graded-permittivity polymer nanocomposites as superior dielectrics. Composites Science and Technology, 2016, 129, 1-9.	3.8	28

#	Article	IF	CITATIONS
91	Mixed-Potential Integral Equation for Full-Wave Modeling of Grounding Systems Buried in a Lossy Multilayer Stratified Ground. IEEE Transactions on Electromagnetic Compatibility, 2017, 59, 1505-1513.	1.4	28
92	On the Transmission-Line Approach for the Evaluation of LEMP Coupling to Multiconductor Lines. IEEE Transactions on Power Delivery, 2015, 30, 861-869.	2.9	27
93	A Semi-Analytical Method to Evaluate Lightning-Induced Overvoltages on Overhead Lines Using the Matrix Pencil Method. IEEE Transactions on Power Delivery, 2018, 33, 2837-2848.	2.9	27
94	Lightning Currents Flowing in the Soil and Entering a Test Power Distribution Line Via Its Grounding. IEEE Transactions on Power Delivery, 2009, 24, 1095-1103.	2.9	26
95	On the possible variation of the lightning striking distance as assumed in the IEC lightning protection standard as a function of structure height. Electric Power Systems Research, 2014, 113, 79-87.	2.1	26
96	The laser lightning rod project. EPJ Applied Physics, 2021, 93, 10504.	0.3	26
97	Evaluation of Lightning-Induced Currents on Cables Buried in a Lossy Dispersive Ground. IEEE Transactions on Electromagnetic Compatibility, 2014, 56, 1522-1529.	1.4	25
98	Analysis of lightning electromagnetic field propagation in mountainous terrain and its effects on ToAâ€based lightning location systems. Journal of Geophysical Research D: Atmospheres, 2016, 121, 895-911.	1.2	25
99	Using electromagnetic time reversal to locate faults in transmission lines: Definition and application of the "Mirrored Minimum Energy―property. , 2017, , .		25
100	Transient Responses of Overhead Cables Due to Mode Transition in High Frequencies. IEEE Transactions on Electromagnetic Compatibility, 2018, 60, 785-794.	1.4	25
101	Application of a partial element equivalent circuit method to lightning surge analyses. Electric Power Systems Research, 2013, 94, 30-37.	2.1	24
102	A Technique for Calculating Voltages Induced on Twisted-Wire Pairs Using the FDTD Method. IEEE Transactions on Electromagnetic Compatibility, 2017, 59, 301-304.	1.4	24
103	Partial Discharge Localization Using Electromagnetic Time Reversal: A Performance Analysis. IEEE Access, 2020, 8, 147507-147515.	2.6	24
104	Electromagnetic field radiated by lightning to tall towers: Treatment of the discontinuity at the return stroke wave front. Journal of Geophysical Research, 2004, 109, n/a-n/a.	3.3	23
105	Lightning electromagnetic fields at very close distances associated with lightning strikes to the Gaisberg tower. Journal of Geophysical Research, 2010, 115, .	3.3	23
106	An Analysis of Current and Electric Field Pulses Associated With Upward Negative Lightning Flashes Initiated from the Sätis Tower. Journal of Geophysical Research D: Atmospheres, 2018, 123, 4045-4059.	1.2	23
107	An Effective EMTR-Based High-Impedance Fault Location Method for Transmission Lines. IEEE Transactions on Electromagnetic Compatibility, 2021, 63, 268-276.	1.4	23
108	Localization of Electromagnetic Interference Sources Using a Time-Reversal Cavity. IEEE Transactions on Industrial Electronics, 2021, 68, 654-662.	5.2	23

#	Article	IF	CITATIONS
109	Lightning strikes to elevated structures: influence of grounding conditions on currents and electromagnetic fields. , 0, , .		22
110	On the Measurement and Calculation of Horizontal Electric Fields From Lightning. IEEE Transactions on Electromagnetic Compatibility, 2011, 53, 792-801.	1.4	22
111	On the use of electromagnetic time reversal to locate faults in series-compensated transmission lines. , 2013, , .		22
112	An automated FPGA real-time simulator for power electronics and power systems electromagnetic transient applications. Electric Power Systems Research, 2016, 141, 147-156.	2.1	22
113	Time reversal applied to fault location in power networks: Pilot test results and analyses. International Journal of Electrical Power and Energy Systems, 2020, 114, 105382.	3.3	22
114	Compensation of the Instrumental Decay in Measured Lightning Electric Field Waveforms. IEEE Transactions on Electromagnetic Compatibility, 2012, 54, 685-688.	1.4	21
115	Time-Domain Generalized Telegrapher's Equations for the Electromagnetic Field Coupling to Finite Length Wires Above a Lossy Ground. IEEE Transactions on Electromagnetic Compatibility, 2012, 54, 218-224.	1.4	21
116	On the proportion of upward flashes to lightning research towers. Atmospheric Research, 2013, 129-130, 110-116.	1.8	21
117	An analysis of the initiation of upward flashes from tall towers with particular reference to Gaisberg and S¤tis Towers. Journal of Atmospheric and Solar-Terrestrial Physics, 2015, 136, 46-51.	0.6	21
118	On the mechanisms of differential-mode to common-mode conversion in the broadband over power line (BPL) frequency band. , 2006, , .		20
119	An Effective Approach for High-Frequency Electromagnetic Field-to-Line Coupling Analysis Based on Regularization Techniques. IEEE Transactions on Electromagnetic Compatibility, 2012, 54, 1289-1297.	1.4	20
120	On the Validity of Approximate Formulas for the Evaluation of the Lightning Electromagnetic Fields in the Presence of a Lossy Ground. IEEE Transactions on Electromagnetic Compatibility, 2012, , 1-9.	1.4	20
121	Lightning electromagnetic fields and their induced voltages on overhead lines: the effect of a non-flat lossy ground. , 2014, , .		20
122	Formulation of the Field-to-Transmission Line Coupling Equations in Terms of Scalar and Vector Potentials. IEEE Transactions on Electromagnetic Compatibility, 2017, 59, 1586-1591.	1.4	20
123	Analysis of lightning-ionosphere interaction using simultaneous records of source current and 380Åkm distant electric field. Journal of Atmospheric and Solar-Terrestrial Physics, 2017, 159, 48-56.	0.6	20
124	An experimental field study of the grounding system response of tall wind turbines to impulse surges. Electric Power Systems Research, 2018, 160, 219-225.	2.1	20
125	Single-Sensor Source Localization Using Electromagnetic Time Reversal and Deep Transfer Learning: Application to Lightning. Scientific Reports, 2019, 9, 17372.	1.6	20
126	Effect of Nearby Buildings on Electromagnetic Fields from Lightning. Journal of Lightning Research, 2009, 1, 52-60.	0.3	20

#	Article	IF	CITATIONS
127	On the inversion of polarity of the electric field at very close range from a tower struck by lightning. Journal of Geophysical Research, 2007, 112, .	3.3	19
128	A new method to locate faults in power networks based on Electromagnetic Time Reversal. , 2012, , .		19
129	On the Mechanism of Current Pulse Propagation Along Conical Structures: Application to Tall Towers Struck by Lightning. IEEE Transactions on Electromagnetic Compatibility, 2012, 54, 332-342.	1.4	19
130	Fast initial continuous current pulses versus return stroke pulses in towerâ€initiated lightning. Journal of Geophysical Research D: Atmospheres, 2016, 121, 6425-6434.	1.2	19
131	Some Developments of the Cooray–Rubinstein Formula in the Time Domain. IEEE Transactions on Electromagnetic Compatibility, 2015, 57, 1079-1085.	1.4	18
132	Locating lightning strikes and flashovers along overhead power transmission lines using electromagnetic time reversal. Electric Power Systems Research, 2018, 160, 282-291.	2.1	18
133	On the Stability of FDTD-Based Numerical Codes to Evaluate Lightning-Induced Overvoltages in Overhead Transmission Lines. IEEE Transactions on Electromagnetic Compatibility, 2020, 62, 108-115.	1.4	17
134	A parallel implementation of nec for the analysis of large structures. IEEE Transactions on Electromagnetic Compatibility, 2003, 45, 177-188.	1.4	16
135	Determination of lightning currents from far electromagnetic fields: Effect of a strike object. Journal of Electrostatics, 2007, 65, 289-295.	1.0	16
136	Lightning-induced currents in buried coaxial cables: A frequency-domain approach and its validation using rocket-triggered lightning. Journal of Electrostatics, 2007, 65, 322-328.	1.0	16
137	Lightning Return Strokes to Tall Towers: Ability of Engineering and Electromagnetic Models to Reproduce Nearby Electromagnetic Fields. IEEE Transactions on Electromagnetic Compatibility, 2012, 54, 889-897.	1.4	16
138	Calculation of High-Frequency Electromagnetic Field Coupling to Overhead Transmission Line Above a Lossy Ground and Terminated With a Nonlinear Load. IEEE Transactions on Antennas and Propagation, 2019, 67, 4119-4132.	3.1	16
139	Electromagnetic Time Reversal Similarity Characteristics and Its Application to Locating Faults in Power Networks. IEEE Transactions on Power Delivery, 2020, 35, 1735-1748.	2.9	16
140	An Acoustic Time Reversal Technique to Locate a Partial Discharge Source: Two-Dimensional Numerical Validation. IEEE Transactions on Dielectrics and Electrical Insulation, 2020, 27, 2203-2205.	1.8	16
141	Mitigation of electromagnetic field radiated by PLC systems in indoor environment. International Journal of Communication Systems, 2003, 16, 417-426.	1.6	15
142	On Wire-Grid Representation of Solid Metallic Surfaces. IEEE Transactions on Electromagnetic Compatibility, 2005, 47, 192-195.	1.4	15
143	Frequency-domain analysis of ground electrodes buried in an ionized soil when subjected to surge currents: A MoM–AOM approach. Electric Power Systems Research, 2011, 81, 290-296.	2.1	15
144	On the Electromagnetic Susceptibility of Hot Wire-Based Electroexplosive Devices to RF Sources. IEEE Transactions on Electromagnetic Compatibility, 2013, 55, 754-763.	1.4	15

FARHAD RACHIDI

#	Article	IF	CITATIONS
145	Are Standardized Lightning Current Waveforms Suitable for Aircraft and Wind Turbine Blades Made of Composite Materials?. IEEE Transactions on Electromagnetic Compatibility, 2017, 59, 1320-1328.	1.4	15
146	Numerical and Experimental Validation of Electromagnetic Time Reversal for Geolocation of Lightning Strikes. IEEE Transactions on Electromagnetic Compatibility, 2020, 62, 2156-2163.	1.4	15
147	On return stroke currents and remote electromagnetic fields associated with lightning strikes to tall structures: 1. Computational models. Journal of Geophysical Research, 2007, 112, .	3.3	14
148	Tower and Path-Dependent Voltage Effects on the Measurement of Grounding Impedance for Lightning Studies. IEEE Transactions on Electromagnetic Compatibility, 2019, 61, 409-418.	1.4	14
149	Comparison of current characteristics of lightning strokes measured at the CN Tower and at other elevated objects. , 0, , .		13
150	On the Computation of underground Electromagnetic Fields Generated by Lightning: A Comparison between Different Approaches. , 2007, , .		13
151	Why do some lightning return stroke models not reproduce the farâ€field zero crossing?. Journal of Geophysical Research, 2009, 114, .	3.3	13
152	An Improved Formula for the Transfer Impedance of Two-Layer Braided Cable Shields. IEEE Transactions on Electromagnetic Compatibility, 2015, 57, 607-610.	1.4	13
153	Experimental Characterization of the Response of an Electrical and Communication Raceway to IEMI. IEEE Transactions on Electromagnetic Compatibility, 2016, 58, 494-505.	1.4	13
154	Extrapolation of a Truncated Spectrum With Hilbert Transform for Obtaining Causal Impulse Responses. IEEE Transactions on Electromagnetic Compatibility, 2017, 59, 454-460.	1.4	13
155	A New Solution for the Evaluation of the Horizontal Electric Fields From Lightning in Presence of a Finitely Conducting Ground. IEEE Transactions on Electromagnetic Compatibility, 2018, 60, 674-678.	1.4	13
156	Extension of the Unmatched-Media Time Reversal Method to Locate Soft Faults in Transmission Lines. IEEE Transactions on Electromagnetic Compatibility, 2018, 60, 1539-1545.	1.4	13
157	Electromagnetic Time Reversal Applied to Fault Location: On the Properties of Back-Injected Signals. , 2018, , .		13
158	Meteorological Aspects of Selfâ€Initiated Upward Lightning at the Sätis Tower (Switzerland). Journal of Geophysical Research D: Atmospheres, 2019, 124, 14162-14183.	1.2	13
159	Calculation of the Grounding Resistance of Structures Located on Elevated Terrain. IEEE Transactions on Electromagnetic Compatibility, 2019, 61, 1891-1895.	1.4	13
160	Modeling Compact Intracloud Discharge (CID) as a Streamer Burst. Atmosphere, 2020, 11, 549.	1.0	13
161	Energy balance comparison of sorghum and sunflower. Theoretical and Applied Climatology, 1993, 48, 29-39.	1.3	12
162	On the Relationship Between the Signature of Close Electric Field and the Equivalent Corona Current in Lightning Return Stroke Models. IEEE Transactions on Electromagnetic Compatibility, 2008, 50, 921-927.	1.4	12

#	Article	IF	CITATIONS
163	Analytical Expressions for Zero-Crossing Times in Lightning Return-Stroke Engineering Models. IEEE Transactions on Electromagnetic Compatibility, 2009, 51, 963-974.	1.4	12
164	A general purpose FPGA-based real-time simulator for power systems applications. , 2013, , .		12
165	From the Incoming Editor-in-Chief. IEEE Transactions on Electromagnetic Compatibility, 2013, 55, 2-2.	1.4	12
166	Characterization, Modeling, and Statistical Analysis of the Electromagnetic Response of Inert Improvised Explosive Devices. IEEE Transactions on Electromagnetic Compatibility, 2014, 56, 393-403.	1.4	12
167	The Influence of the Slope Angle of the Ocean–Land Mixed Propagation Path on the Lightning Electromagnetic Fields. IEEE Transactions on Electromagnetic Compatibility, 2015, 57, 1086-1095.	1.4	12
168	An Improved Approach for the Calculation of the Transient Ground Resistance Matrix of Multiconductor Lines. IEEE Transactions on Power Delivery, 2016, 31, 1142-1149.	2.9	12
169	Isolated vs. Interconnected Wind Turbine Grounding Systems: Effect on the Harmonic Grounding Impedance, Ground Potential Rise and Step Voltage. Electric Power Systems Research, 2019, 173, 230-239.	2.1	12
170	A New Engineering Model of Lightning M Component That Reproduces Its Electric Field Waveforms at Both Close and Far Distances. Journal of Geophysical Research D: Atmospheres, 2019, 124, 14008-14023.	1.2	12
171	Analysis of Transmission Lines With Arrester Termination, Considering the Frequency-Dependence of Grounding Systems. IEEE Transactions on Electromagnetic Compatibility, 2009, 51, 986-994.	1.4	11
172	Some characteristics of positive and bipolar lightning flashes recorded on the Säntis tower in 2010 and 2011. , 2012, , .		11
173	Lightning Protection of Large Wind-Turbine Blades. Green Energy and Technology, 2012, , 227-241.	0.4	11
174	Time reversal of electromagnetic fields and its application to lightning location. , 2013, , .		11
175	Numerical Simulation of the Overall Transfer Impedance of Shielded Spacecraft Harness Cable Assemblies. IEEE Transactions on Electromagnetic Compatibility, 2015, 57, 894-902.	1.4	11
176	On Practical Implementation of Electromagnetic Models of Lightning Return-Strokes. Atmosphere, 2016, 7, 135.	1.0	11
177	Bipolar lightning flashes observed at the SÃ ¤ tis Tower: Do we need to modify the traditional classification?. Journal of Geophysical Research D: Atmospheres, 2016, 121, 14,117.	1.2	11
178	Evaluation of lightning-induced overvoltages on a distribution system: Validation of a dedicated code using experimental results on a reduced-scale model. , 2017, , .		11
179	On Nonuniform Transient Electromagnetic Field Coupling to Overhead Transmission Lines. IEEE Transactions on Antennas and Propagation, 2018, 66, 3087-3096.	3.1	11
180	Analytical Expressions for Lightning Electromagnetic Fields With Arbitrary Channel-Base Current—Part I: Theory. IEEE Transactions on Electromagnetic Compatibility, 2021, 63, 525-533.	1.4	11

FARHAD RACHIDI

#	Article	IF	CITATIONS
181	An Efficient Methodology for the Evaluation of the Lightning Performance of Overhead Lines. IEEE Transactions on Electromagnetic Compatibility, 2021, 63, 1137-1145.	1.4	11
182	Preliminary comparison of data from the Säntis Tower and the EUCLID lightning location system. , 2011, , .		10
183	Singularity expansion method (SEM) for long terminated transmission lines. , 2013, , .		10
184	Influence of ground wire on the initiation of upward leader from 110 to 1000 kV AC phase line. Electric Power Systems Research, 2016, 130, 103-112.	2.1	10
185	Polarimetric radar characteristics of lightning initiation and propagating channels. Atmospheric Measurement Techniques, 2019, 12, 2881-2911.	1.2	10
186	EM Fields Generated by a Scale Model Helical Antenna and Its Use in Validating a Code for Lightning-Induced Voltage Calculation. IEEE Transactions on Electromagnetic Compatibility, 2019, 61, 778-787.	1.4	10
187	The Propagation Effects of Lightning Electromagnetic Fields Over Mountainous Terrain in the Earthâ€ionosphere Waveguide. Journal of Geophysical Research D: Atmospheres, 2019, 124, 14198-14219.	1.2	10
188	Impedance and Admittance Formulas for a Multistair Model of Transmission Towers. IEEE Transactions on Electromagnetic Compatibility, 2020, 62, 2491-2502.	1.4	10
189	Machine Learning-Based Lightning Localization Algorithm Using Lightning-Induced Voltages on Transmission Lines. IEEE Transactions on Electromagnetic Compatibility, 2020, 62, 2512-2519.	1.4	10
190	Measurement of lightning currents using a combination of Rogowski coils and B-dot sensors. , 2010, ,		9
191	The effect of a horizontally stratified ground on lightning electromagnetic fields. , 2010, , .		9
192	Mitigation of Lightning-Induced Overvoltages Using Shield Wires: Application of the Response Surface Method. , 2018, , .		9
193	Analysis of the lightning production of convective cells. Atmospheric Measurement Techniques, 2019, 12, 5573-5591.	1.2	9
194	LMA observations of upward lightning flashes at the Sätis Tower initiated by nearby lightning activity. Electric Power Systems Research, 2020, 181, 106067.	2.1	9
195	Electromagnetic Time Reversal Method to Locate Partial Discharges in Power Networks Using 1D TLM Modelling. IEEE Letters on EMC Practice and Applications, 2021, 3, 24-28.	0.7	9
196	Three-Dimensional FDTD-Based Simulation of Induced Surges in Secondary Circuits Owing to Primary-Circuit Surges in Substations. IEEE Transactions on Electromagnetic Compatibility, 2021, 63, 1078-1089.	1.4	9
197	A Correlation-Based Electromagnetic Time Reversal Technique to Locate Indoor Transient Radiation Sources. IEEE Transactions on Microwave Theory and Techniques, 2021, 69, 3945-3957.	2.9	9
198	Propagation effects on electromagnetic fields generated by lightning return strokes: Review of simplified formulas and their validity assessment. , 2012, , 485-513.		9

12

#	Article	IF	CITATIONS
199	Susceptibility of Electro-explosive Devices to Microwave Interference. Defence Science Journal, 2013, 63, 386-392.	0.5	9
200	Analysis of power line communication networks using a new approach based on scattering parameters matrix. , 0, , .		8
201	On the use of transmission line theory to represent a nonuniform vertically-extended object struck by lightning. , 0, , .		8
202	Lightning horizontal electric fields above a two-layer ground. , 2010, , .		8
203	On the relation between lightning flash density and terrain elevation. , 2013, , .		8
204	Design, Realization, and Experimental Test of a Coaxial Exponential Transmission Line Adaptor for a Half-Impulse Radiating Antenna. IEEE Transactions on Plasma Science, 2013, 41, 173-181.	0.6	8
205	Lightning currents measured on the Säntis Tower: A summary of the results obtained in 2010 and 2011. , 2013, , .		8
206	Analysis of lightning events preceding upward flashes from Gaisberg and Säntis Towers. , 2014, , ,		8
207	A method for the assessment of the optimal parameter of discrete-time switch model. Electric Power Systems Research, 2014, 115, 80-86.	2.1	8
208	Propagation effects on lightning magnetic fields over hilly and mountainous terrain. , 2015, , .		8
209	Electromagnetic time reversal applied to fault detection: The issue of losses. , 2015, , .		8
210	On the Kernel of the Cooray–Rubinstein Formula in the Time Domain. IEEE Transactions on Electromagnetic Compatibility, 2016, 58, 927-930.	1.4	8
211	Frequency Response of Electric and Magnetic Fields of Overhead Conductors With Particular Reference to Axial Electric Field. IEEE Transactions on Electromagnetic Compatibility, 2018, 60, 2029-2032.	1.4	8
212	Modeling of different charge transfer modes in upward flashes constrained by simultaneously measured currents and fields. , 2018, , .		8
213	Estimation of the expected annual number of flashovers in power distribution lines due to negative and positive lightning. Electric Power Systems Research, 2019, 176, 105956.	2.1	8
214	Locating Lightning Using Electromagnetic Time Reversal: Application of the Minimum Entropy Criterion. , 2019, , .		8
215	Measurement and Modeling of Both Distant and Close Electric Fields of an M omponent in Rocketâ€Triggered Lightning. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD032300.	1.2	8
216	On the Efficiency of OpenACC-aided GPU-Based FDTD Approach: Application to Lightning Electromagnetic Fields. Applied Sciences (Switzerland), 2020, 10, 2359.	1.3	8

#	Article	IF	CITATIONS
217	A Closed Time-Reversal Cavity for Electromagnetic Waves in Transmission Line Networks. IEEE Transactions on Antennas and Propagation, 2021, 69, 1621-1630.	3.1	8
218	An experimental validation of partial discharge localization using electromagnetic time reversal. Scientific Reports, 2021, 11, 220.	1.6	8
219	Derivation of telegrapher's equations and field-to-transmission line interaction. WIT Transactions on State-of-the-art in Science and Engineering, 2008, , 3-22.	0.0	8
220	Distortion of Electric and Magnetic Fields from Lightning Due to Close-By Metallic Structures. , 2007, , .		7
221	Analysis of wavelet based denoising methods applied to measured lightning electric fields. , 2010, , .		7
222	Locating lightning using time reversal of electromagnetic fields. , 2010, , .		7
223	Relativistic Doppler effect in an extending transmission line: Application to lightning. Journal of Geophysical Research, 2011, 116, .	3.3	7
224	Interaction between grounding systems and nearby lightning for the calculation of overvoltages in overhead distribution lines. , 2011, , .		7
225	Analysis of lightning detection network data for selected areas in Canada. , 2012, , .		7
226	Correction to "Relativistic Doppler effect in an extending transmission line: Application to lightning― Journal of Geophysical Research, 2012, 117, .	3.3	7
227	Modeling of the propagation along low voltage power networks for IEMI studies. , 2013, , .		7
228	An update on the charaterictics of positive flashes recorded on the Säntis Tower. , 2014, , .		7
229	Study of the Propagation of Common Mode IEMI Signals Through Concrete Walls. IEEE Transactions on Electromagnetic Compatibility, 2018, 60, 385-393.	1.4	7
230	Importance of Taking Into Account the Soil Stratification in Reproducing the Late-Time Features of Distant Fields Radiated by Lightning. IEEE Transactions on Electromagnetic Compatibility, 2019, 61, 935-944.	1.4	7
231	Generalized Electric Field Equations of a Time-Varying Current Distribution Based on the Electromagnetic Fields of Moving and Accelerating Charges. Atmosphere, 2019, 10, 367.	1.0	7
232	A Study of a Large Bipolar Lightning Event Observed at the Sätis Tower. IEEE Transactions on Electromagnetic Compatibility, 2019, 61, 796-806.	1.4	7
233	Localization of Electromagnetic Interference Source Using a Time Reversal Cavity: Application of the Maximum Power Criterion. , 2020, , .		7
234	Latitude and Topographical Dependence of Lightning Return Stroke Peak Current in Natural and Tower-Initiated Negative Ground Flashes. Atmosphere, 2020, 11, 560.	1.0	7

#	Article	IF	CITATIONS
235	Revisiting the Calculation of the Early Time HEMP Conducted Environment. IEEE Transactions on Electromagnetic Compatibility, 2021, 63, 111-124.	1.4	7
236	Analytical Expressions for Lightning Electromagnetic Fields With Arbitrary Channel-Base Current. Part II: Validation and Computational Performance. IEEE Transactions on Electromagnetic Compatibility, 2021, 63, 534-541.	1.4	7
237	Partial discharge localization in power transformers using acoustic time reversal. Electric Power Systems Research, 2022, 206, 107801.	2.1	7
238	Secondary Fast Breakdown in Narrow Bipolar Events. Geophysical Research Letters, 2022, 49, .	1.5	7
239	On the enhancement of radiated electric and magnetic fields associated with lightning return strokes to tall structures. , 0, , .		6
240	A Physical Interpretation of the Equal Area Rule. IEEE Transactions on Electromagnetic Compatibility, 2006, 48, 258-263.	1.4	6
241	On the use of the Time Reversal of Electromagnetic fields to locate lightning discharges. , 2012, , .		6
242	A New Set of Electrodes for Coaxial Quarter Wave Switched Oscillators. IEEE Transactions on Plasma Science, 2013, 41, 2545-2550.	0.6	6
243	A Methodology to Reduce the Computational Effort in the Evaluation of the Lightning Performance of Distribution Networks. Atmosphere, 2016, 7, 147.	1.0	6
244	A Switched Oscillator Geometry Inspired by a Curvilinear Space—Part I: DC Considerations. IEEE Transactions on Plasma Science, 2016, 44, 2240-2248.	0.6	6
245	Implementation and performance analysis of the lightning potential index as a forecasting tool. , 2016, , .		6
246	On the Differential Input Impedance of an Electro-Explosive Device. IEEE Transactions on Microwave Theory and Techniques, 2018, 66, 858-864.	2.9	6
247	Effect of Dispersive Soil on the Electromagnetic Response of Buried Wires in the UHF Range. Radio Science, 2018, 53, 895-905.	0.8	6
248	Analysis of a bipolar upward lightning flash based on simultaneous records of currents and 380-km distant electric fields. Electric Power Systems Research, 2019, 174, 105845.	2.1	6
249	On the Modeling of Non-Vertical Risers in the Interaction of Electromagnetic Fields With Overhead Lines. IEEE Transactions on Electromagnetic Compatibility, 2019, 61, 631-636.	1.4	6
250	An Efficient FDTD Method to Calculate Lightning Electromagnetic Fields Over Irregular Terrain Adopting the Moving Computational Domain Technique. IEEE Transactions on Electromagnetic Compatibility, 2020, 62, 976-980.	1.4	6
251	On the Propagation of Lightning-Radiated Electromagnetic Fields Across a Mountain. IEEE Transactions on Electromagnetic Compatibility, 2020, 62, 2137-2147.	1.4	6
252	Characteristics of different charge transfer modes in upward flashes inferred from simultaneously measured currents and fields. High Voltage, 2020, 5, 30-37.	2.7	6

#	Article	IF	CITATIONS
253	Modified Transmission Line Model with a Current Attenuation Function Derived from the Lightning Radiation Field—MTLD Model. Atmosphere, 2021, 12, 249.	1.0	6
254	Analyse du champ électromagnétique dû à une décharge de foudre dans les domaines temporel et fréquentiel. Annales Des Telecommunications/Annals of Telecommunications, 1988, 43, 625-637.	1.6	5
255	Measurement of lightning-induced currents in an experimental coaxial buried cable. , 0, , .		5
256	Analysis of power line communication networks using a new approach based on an efficient measurement technique. , 0, , .		5
257	Evaluation of indoor PLC radiation resulting from conducted emission limits. , 2003, , .		5
258	Discussion on the assessment and mitigation of radiation from PLC networks. , 2005, , .		5
259	Lightning-Correlated Faults in Power Distribution Networks. , 2007, , .		5
260	Benford's Law and Its Application to Lightning Data. IEEE Transactions on Electromagnetic Compatibility, 2010, 52, 956-961.	1.4	5
261	Wideband experimental characterization of differential antennas. , 2012, , .		5
262	A full-wave analysis of lightning-induced voltages on distribution lines considering the conductive coupling between the lightning channel and the grounding system. , 2012, , .		5
263	Characteristics of electric fields of upward negative stepped leaders. , 2015, , .		5
264	Single-end FPGA-based fault location system for radial/meshed AC/DC networks based on the electromagnetic time reversal theory. , 2017, , .		5
265	Electromagnetic Fields Associated With the Mâ€Component Mode of Charge Transfer. Journal of Geophysical Research D: Atmospheres, 2019, 124, 6791-6809.	1.2	5
266	Grounding Resistance of a Hemispheric Electrode Located on the Top of a Finite-Height, Cone-Shaped Mountain. IEEE Transactions on Electromagnetic Compatibility, 2020, 62, 1889-1892.	1.4	5
267	The Polarity Reversal of Lightningâ€Generated Sky Wave. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2020JD032448.	1.2	5
268	A New Channel-Base Lightning Current Formula With Analytically Adjustable Parameters. IEEE Transactions on Electromagnetic Compatibility, 2021, 63, 542-549.	1.4	5
269	Field-to-Transmission Line Coupling Models With Special Attention to the Cooray–Rubinstein Approximation. IEEE Transactions on Electromagnetic Compatibility, 2021, 63, 484-493.	1.4	5
270	Single-Sensor EMI Source Localization Using Time Reversal: An Experimental Validation. Electronics (Switzerland), 2021, 10, 2448.	1.8	5

#	Article	IF	CITATIONS
271	High-frequency electromagnetic coupling to transmission lines: electrodynamics correction to the TL approximation. WIT Transactions on State-of-the-art in Science and Engineering, 2008, , 123-158.	0.0	5
272	Electric and magnetic fields at very close range from a lightning strike to a tall object. , 2008, , .		4
273	On the propagation of current pulses along tall structures struck by lightning. , 2010, , .		4
274	Current waveforms associated with positive flashes recorded on the säntis tower in summer 2010. , 2011, , .		4
275	Modeling of the electromagnetic coupling to electro-explosive devices. , 2011, , .		4
276	Electric field within lightning protection volume in presence of a descending leader. Electric Power Systems Research, 2012, 85, 82-89.	2.1	4
277	A comparator-based technique for identification of intentional electromagnetic interference attacks. , 2014, , .		4
278	On the Concept of Grounding Impedance of Multipoint Grounding Systems. IEEE Transactions on Electromagnetic Compatibility, 2014, 56, 1540-1544.	1.4	4
279	On the use of Electromagnetic Time Reversal for lightning location. , 2015, , .		4
280	On the adequacy of standardized lightning current waveform for composite structures for aircraft and wind turbine blades. , 2016, , .		4
281	Stable simulation of nonlinearly loaded lossy transmission lines with time marching approach. , 2016, , .		4
282	On the Impact of Meteorological Conditions on the Initiation of Upward Lightning Flashes from Tall Structures. , 2018, , .		4
283	Nonlinear electrical conductivity through the thickness of multidirectional carbon fiber composites. Journal of Materials Science, 2019, 54, 3893-3903.	1.7	4
284	On the influence of the soil stratification and frequency-dependent parameters on lightning electromagnetic fields. Electric Power Systems Research, 2020, 178, 106047.	2.1	4
285	Estimation of the Lightning Performance of Overhead Lines Accounting for Different Types of Strokes and Multiple Strike Points. IEEE Transactions on Electromagnetic Compatibility, 2021, 63, 2015-2023.	1.4	4
286	On the Initiation of Upward Negative Lightning by Nearby Lightning Activity: An Analytical Approach. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD034043.	1.2	4
287	An Extension of the Guided Wave Mâ€Component Model Taking Into Account the Presence of a Tall Strike Object. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2021JD035121.	1.2	4
288	Assessing the Efficacy of a GPU-Based MW-FDTD Method for Calculating Lightning Electromagnetic Fields Over Large-Scale Terrains. IEEE Letters on EMC Practice and Applications, 2020, 2, 106-110.	0.7	4

#	Article	IF	CITATIONS
289	A Prony-based approach for accelerating the lightning electromagnetic fields computation above a perfectly conducting ground. Electric Power Systems Research, 2022, 210, 108125.	2.1	4
290	Design of a new air-cored current transformer: analytical modeling and experimental validation. , 0, , .		3
291	Influence of power switching on power line communications in medium voltage networks. , 2004, , .		3
292	On the use of the equal area rule for the wire-grid representation of metallic surfaces. , 2006, , .		3
293	On the Impact of Mitigating Radiated Emissions on the Capacity of PLC Systems. , 2007, , .		3
294	Design and simulation of an electromagnetic lens for a half impulse radiating antenna. , 2009, , .		3
295	Corona Charged Subnanosecond Impulse Generator. , 2009, , .		3
296	On the proportion of upward flashes to lightning research towers. , 2011, , .		3
297	A statistical analysis on the risetime of lightning current pulses in negative upward flashes measured at Säntis tower. , 2012, , .		3
298	On the evaluation of the effective height of towers: The case of the Gaisberg tower. , 2012, , .		3
299	Critical equipment input impedance measurement for IEMI calculations. , 2013, , .		3
300	High-frequency electromagnetic field coupling to a long finite line with vertical risers. , 2014, , .		3
301	Modeling lightning current distribution in conductive elements of a wind turbine blade. , 2014, , .		3
302	A model for the evaluation of the electric field associated with the lightning-triggering rocket wire and its corona. Journal of Geophysical Research D: Atmospheres, 2015, 120, 10,964-10,973.	1.2	3
303	On the validity limits of the transmission line theory in evaluating differential-mode signals along a two-wire line above a ground plane. , 2015, , .		3
304	Assessment of the influence of losses on the performance of the electromagnetic time reversal fault location method. , 2017, , .		3
305	Lightning performance of distribution lines due to positive and negative indirect lightning flashes. , 2017, , .		3
306	Stable Simulation of Multiport Passive Distributed Networks Using Time Marching Method. IEEE Transactions on Electromagnetic Compatibility, 2017, 59, 447-453.	1.4	3

#	Article	IF	CITATIONS
307	Transient Impedance of Interconnected Wind Turbine Grounding Systems. , 2018, , .		3
308	LMA observation of upward flashes at SÃ $f R$ tis Tower: Preliminary results. , 2018, , .		3
309	Ionization Waves Enhance the Production of X-rays during Streamer Collisions. Atmosphere, 2021, 12, 1101.	1.0	3
310	Could Macroscopic Dark Matter (Macros) Give Rise to Mini-Lightning Flashes out of a Blue Sky without Clouds?. Atmosphere, 2021, 12, 1230.	1.0	3
311	On the Use of Benford's Law to Assess the Quality of the Data Provided by Lightning Locating Systems. Atmosphere, 2022, 13, 552.	1.0	3
312	Estimation of Charge Transfer During Long Continuing Currents in Natural Downward Flashes Using Singleâ€Station Eâ€Field Measurements. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	1.2	3
313	An Inverse-Filter-Based Method to Locate Partial Discharge Sources in Power Transformers. Energies, 2022, 15, 1988.	1.6	3
314	Assessment of the Lightning Performance of overhead distribution lines based on Lightning Location Systems data. International Journal of Electrical Power and Energy Systems, 2022, 142, 108230.	3.3	3
315	In situ characterization of impedance mismatch in a medium voltage network. , 2005, , .		2
316	On the efficiency of notching technique to reduce EM radiations from PLC networks. , 2008, , .		2
317	Time-domain analysis of an electromagnetic lens for a Half Impulse Radiating Antenna. , 2010, , .		2
318	A two-station lightning location method based on a combination of difference of time of arrival and amplitude attenuation. , 2010, , .		2
319	MTL modeling of spacecraft harness cable assemblies. , 2014, , .		2
320	Editorial [50th anniversary of the IEEE Transactions on Electromagnetic Compatibility]. IEEE Transactions on Electromagnetic Compatibility, 2014, 56, 2-2.	1.4	2
321	The european project STRUCTURES: Challenges and results. , 2015, , .		2
322	A Switched Oscillator Geometry Inspired by a Curvilinear Space—Part II: Electrodynamic Considerations. IEEE Transactions on Plasma Science, 2016, 44, 2249-2257.	0.6	2
323	High power electromagnetics applied to humanitarian demining in Colombia. , 2016, , .		2
			_

#	Article	IF	CITATIONS
325	Modeling of EMP coupling to lossless MTLs in time domain based on analytical Gauss-Seidel iteration technique. , 2018, , .		2
326	On the Classification of Self-Triggered versus OtherTriggered Lightning Flashes. , 2018, , .		2
327	On the representation of thin wires inside lossy dielectric materials for FDTDâ€based LEMP simulations. IEEJ Transactions on Electrical and Electronic Engineering, 2019, 14, 1314-1322.	0.8	2
328	On the Influence of an Elevated Terrain on the Grounding Resistance of a Vertical Rod. , 2019, , .		2
329	LMA Observation of Upward Bipolar Lightning Flash at the SÃ $f R$ tis Tower. , 2019, , .		2
330	THE UPPER BOUND OF THE SPEED OF PROPAGATION OF WAVES ALONG A TRANSMISSION LINE. Progress in Electromagnetics Research M, 2020, 93, 119-125.	0.5	2
331	Locating Transient Directional Sources in Free Space Based on the Electromagnetic Time Reversal Technique. IEEE Transactions on Electromagnetic Compatibility, 2020, 62, 2036-2044.	1.4	2
332	Bidirectional Recoil Leaders in Upward Lightning Flashes Observed at the Sätis Tower. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2021JD035238.	1.2	2
333	Electromagnetic Environment in the Vicinity of a Tall Tower Struck by Lightning—A Review—. IEEJ Transactions on Power and Energy, 2012, 132, 573-578.	0.1	2
334	A Self-Consistent Return Stroke Model That Includes the Effect of the Ground Conductivity at the Strike Point. Atmosphere, 2022, 13, 593.	1.0	2
335	Sätis lightning research facility: aÂsummary of the first ten years and future outlook. Elektrotechnik Und Informationstechnik, 2022, 139, 379-394.	0.7	2
336	On the reconstruction of the attenuation function of a return-stroke current from the Fourier Transform of finite-duration measurements. International Journal of Electrical Power and Energy Systems, 2022, 142, 108186.	3.3	2
337	Corrections To "Influence Of A Lossy Ground On Lightning-induced Voltages On Overhead Lines". IEEE Transactions on Electromagnetic Compatibility, 1997, 39, 187-187.	1.4	1
338	On the amplitude enhancement of voltages induced by external EM fields on transmission lines due to ground losses and corona phenomenon. , 0, , .		1
339	A concept to enhance system data rate for PLC access networks. , 2008, , .		1
340	On the zero crossing of distant electromagnetic fields radiated by lightning. , 2009, , .		1
341	Experimental verification of common-mode current generation in home electrical wiring in the Powerline Communications Band. , 2009, , .		1
342	Design and construction of a corona charged high power impulse generator. , 2009, , .		1

Design and construction of a corona charged high power impulse generator. , 2009, , . 342

#	Article	IF	CITATIONS
343	Benford's law and lightning data. , 2010, , .		1
344	Design of a switched oscillator for IEMI susceptibility testing. , 2013, , .		1
345	An efficient method based on the electromagnetic time reversal to locate faults in power networks. , 2014, , .		1
346	Lightning induced currents on river-crossing buried cables. , 2014, , .		1
347	An update on experimental data obtained at the Säntis Tower. , 2015, , .		1
348	Evaluation of the electric-field transfer functions between IEMI sources and banking IT equipment. , 2015, , .		1
349	ON INSTABILITIES IN TIME MARCHING METHODS. Progress in Electromagnetics Research C, 2016, 68, 1-10.	0.6	1
350	Electromagnetic field coupling to transmission lines: A model for the risers. , 2016, , .		1
351	On the use of magnetic current loop source model in lightning electromagnetics. , 2017, , .		1
352	A Simple Formula Expressing the Fields on the Aperture of an Impulse Radiating Antenna Fed by TEM Coplanar Plates. IEEE Transactions on Antennas and Propagation, 2018, 66, 1549-1552.	3.1	1
353	An Analysis of the Distribution of Inter-Flash Time Intervals in the Area of the Sätis Tower. , 2018, , .		1
354	Generalized Telegrapher's Equations for Buried Curved Wires. , 2018, , .		1
355	On the Similarity of Electric Field Signatures of Upward and Downward Negative Leaders. , 2018, , .		1
356	Properties of Direct-Time and Reversed-Time Transfer Functions to Locate Disturbances along Power Transmission Lines. , 2019, , .		1
357	Evaluation of Site Errors in LLS Magnetic Direction Finding Caused by Large Hills Using the 3Dâ€FDTD Technique. Earth and Space Science, 2021, 8, e2021EA001914.	1.1	1
358	On the Apparent Non-Uniqueness of the Electromagnetic Field Components of Return Strokes Revisited. Atmosphere, 2021, 12, 1319.	1.0	1
359	High-frequency electromagnetic field coupling to long loaded non-uniform lines: an asymptotic approach. WIT Transactions on State-of-the-art in Science and Engineering, 2008, , 159-186.	0.0	1
360	A Compressive Sensing Framework for EMI Source Localization Using a Metalens Structure: Localization Beyond the Diffraction Limit. IEEE Transactions on Electromagnetic Compatibility, 2022, 64, 58-65.	1.4	1

#	Article	IF	CITATIONS
361	Simulation of High-Frequency Transients in Overhead Lines Including Frequency-Dependent Soil Parameters: a FDTD Approach. , 2021, , .		1
362	A Prony-Based Approach for Accelerating the Lightning Electromagnetic Fields Computation: Effect of the Soil Finite Conductivity. Electric Power Systems Research, 2022, 209, 108013.	2.1	1
363	Indirect-Lightning Performance of Distribution Lines: Influence of Protection Devices. , 0, , .		Ο
364	Impact of the Symmetry of Coupling-Decoupling Networks on the Conducted Immunity Testing of PLC Modems. , 2007, , .		0
365	Near-field coupling of wireless devices and long communications cables. IET Science, Measurement and Technology, 2008, 2, 18-24.	0.9	0
366	Guest Editorial Special Issue on Lightning. IEEE Transactions on Electromagnetic Compatibility, 2009, 51, 426-427.	1.4	0
367	The impact of the grounding system on the lightning performance of transmission lines: A sensitivity analysis. , 2010, , .		0
368	Vertical and radial electric fields from leaders and return strokes associated with lightning strikes to the Gaisberg Tower. , 2010, , .		0
369	On the FEM and TL approaches for the calculation of lightning - induced voltages on overhead lines. , 2012, , .		0
370	The use of the regularization theory for the analysis of the field-to-line coupling problem. , 2012, , .		0
371	On the influence of measuring instruments bandwidth limitations on the inferred statistical parameters for lightning currents. , 2014, , .		0
372	From the Outgoing Editor-in-Chief. IEEE Transactions on Electromagnetic Compatibility, 2015, 57, 1287-1288.	1.4	0
373	Optimization of a Vircator using a novel evolutionary algorithm designed to reducing the number of evaluations. , 2015, , .		0
374	Analysis and modeling of epoxy/MWCNT composites. , 2015, , .		0
375	Lightning location systems and interstroke intervals: Effects of imperfect detection efficiency. , 2016, ,		Ο
376	Simultaneous records of current and 380-km distant electric field of a bipolar lightning flash. , 2017, ,		0
377	Workshop: Measurement techniques for lightning currents interpretation of the measurements under performance constraints. , 2017, , .		Ο
378	On wind turbine impedance analysis via different approaches. , 2017, , .		0

#	Article	IF	CITATIONS
379	A method to detect causality violations using discrete Hilbert transform. , 2017, , .		О
380	A semi-analytical simplified approach to compute lightning radiated electric fields at long distances taking into account ionospheric reflection. , 2017, , .		0
381	Time marching simulation of signal propagation in power lines loaded with non-linear devices. , 2017, ,		0
382	An improved time marching simulation of distributed multiport networks loaded with nonlinear devices. International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, 2018, 31, e2315.	1.2	0
383	Corrections to "Study of the Propagation of Common Mode IEMI Signals Through Concrete Walls― [Apr 18 385-393]. IEEE Transactions on Electromagnetic Compatibility, 2018, 60, 1610-1610.	1.4	Ο
384	Performance Analysis of the Moving Computational Domain Technique for the Calculation of Sferics. , 2019, , .		0
385	Reduction of a Cone-Shaped Terrain Grounding Resistance by Remote Grounding. , 2019, , .		Ο
386	Using Electromagnetic Time Reversal Similarity Metric to Locate Lightning-Originated Flashovers on Overhead Transmission Lines. , 2019, , .		0
387	Laser lightning rod and artificial fog dissipation. , 2021, , .		Ο
388	An Experimental Study on Electromagnetic Time Reversal Focusing Property in Mismatched Media. , 2021, , .		0
389	Swiss competence center on energy research FURIES - Overview and contributions in the area of power electronics and SmartGrids. , 2019, , .		0
390	Investigation of Electromagnetic Field Coupling to a Transmission Line Terminated with Non-Vertical Risers. , 2020, , .		0
391	A Method for the Improvement of the Stability in FDTD-Based Numerical Codes Evaluating Lightning-Induced Voltages. , 2021, , .		0
392	Lightning-Induced Voltage on an Overhead Transmission Line Terminated with Non-veritical Risers. , 2021, , .		0
393	Lightning-induced Voltages on Overhead Distribution Lines Computed through Analytical Expressions for the Electromagnetic Fields. , 2021, , .		0
394	Polarity Asymmetry in Lightning Return Stroke Speed Caused by the Momentum Associated with Radiation. Atmosphere, 2021, 12, 1642.	1.0	0
395	Comment on "Straight lightning as a signature of macroscopic dark matter― Physical Review D, 2022, 105, .	1.6	0
396	A Frequency-Domain Analysis of a Time-Reversal Cavity for Electromagnetic Waves in Transmission Line		0

Networks. , 2022, , .