
Charles Watson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3434188/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A collaborative approach towards prevention of otitis media in Aboriginal children. Deafness and Education International, 2020, 22, 275-287.	1.3	4
2	A Re-evaluation of the Anatomy of the Claustrum in Rodents and Primates—Analyzing the Effect of Pallial Expansion. Frontiers in Neuroanatomy, 2019, 13, 34.	1.7	35
3	Elongation of the CA1 field of the septal hippocampus in ungulates. Journal of Comparative Neurology, 2019, 527, 818-832.	1.6	6
4	Spinal Accessory Motor Neurons in the Mouse: A Special Type of Branchial Motor Neuron?. Anatomical Record, 2019, 302, 505-511.	1.4	5
5	Time for Radical Changes in Brain Stem Nomenclature—Applying the Lessons From Developmental Gene Patterns. Frontiers in Neuroanatomy, 2019, 13, 10.	1.7	53
6	Developmental gene expression in the mouse clarifies the organization of the claustrum and related endopiriform nuclei. Journal of Comparative Neurology, 2017, 525, 1499-1508.	1.6	74
7	Mouse <i>Fgf8</i> â€Cre‣acZ lineage analysis defines the territory of the postnatal mammalian isthmus. Journal of Comparative Neurology, 2017, 525, 2782-2799.	1.6	50
8	Escapees from Rhombomeric Lineage Restriction: Extensive Migration Rostral to the r4/r5 Border of <i>Hoxâ€a3</i> Expression. Anatomical Record, 2017, 300, 1838-1846.	1.4	3
9	An ontologically consistent MRI-based atlas of the mouse diencephalon. NeuroImage, 2017, 157, 275-287.	4.2	15
10	The organization of spinal motor neurons in a monotreme is consistent with a sixâ€region schema of the mammalian spinal cord. Journal of Anatomy, 2016, 229, 394-405.	1.5	4
11	Terminations of reticulospinal fibers originating from the gigantocellular reticular formation in the mouse spinal cord. Brain Structure and Function, 2016, 221, 1623-1633.	2.3	42
12	The substantia nigra and ventral tegmental dopaminergic neurons from development to degeneration. Journal of Chemical Neuroanatomy, 2016, 76, 98-107.	2.1	54
13	Distribution of Raphespinal Fibers in the Mouse Spinal Cord. Molecular Pain, 2015, 11, s12990-015-0046.	2.1	21
14	Mini-atlas of the marmoset brain. Neuroscience Research, 2015, 93, 128-135.	1.9	5
15	The spinal cord of the common marmoset (Callithrix jacchus). Neuroscience Research, 2015, 93, 164-175.	1.9	16
16	Wiring cost and topological participation of the mouse brain connectome. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 10032-10037.	7.1	191
17	Marmoset neuroscience. Neuroscience Research, 2015, 93, 1-2.	1.9	21
18	Development of <scp>MRI</scp> â€based atlases of nonâ€human brains. Journal of Comparative Neurology, 2015. 523. 391-405.	1.6	22

CHARLES WATSON

#	Article	IF	CITATIONS
19	Projections from the oral pontine reticular nucleus to the spinal cord of the mouse. Neuroscience Letters, 2015, 584, 113-118.	2.1	8
20	Ascending and Descending Pathways in the Spinal Cord. , 2015, , 115-130.		12
21	Projections from the central amygdaloid nucleus to the precuneiform nucleus in the mouse. Brain Structure and Function, 2015, 220, 263-271.	2.3	5
22	The anatomy of the caudal zona incerta in rodents and primates. Journal of Anatomy, 2014, 224, 95-107.	1.5	34
23	An MRI atlas of the mouse basal ganglia. Brain Structure and Function, 2014, 219, 1343-1353.	2.3	31
24	Projections from the lateral vestibular nucleus to the spinal cord in the mouse. Brain Structure and Function, 2014, 219, 805-815.	2.3	26
25	Musculotopic organization of the motor neurons supplying the mouse hindlimb muscles: a quantitative study using Fluoro-Gold retrograde tracing. Brain Structure and Function, 2014, 219, 303-321.	2.3	26
26	The Inferior Olive of the C57BL/6J Mouse: A Chemoarchitectonic Study. Anatomical Record, 2014, 297, 289-300.	1.4	21
27	A developmental ontology for the mammalian brain based on the prosomeric model. Trends in Neurosciences, 2013, 36, 570-578.	8.6	229
28	Projections from the paralemniscal nucleus to the spinal cord in the mouse. Brain Structure and Function, 2013, 218, 1307-1316.	2.3	6
29	Spatiotemporal expression patterns of Pax6 in the brain of embryonic, newborn, and adult mice. Brain Structure and Function, 2013, 218, 353-372.	2.3	56
30	Musculotopic organization of the motor neurons supplying forelimb and shoulder girdle muscles in the mouse. Brain Structure and Function, 2013, 218, 221-238.	2.3	32
31	The interfascicular trigeminal nucleus: A precerebellar nucleus in the mouse defined by retrograde neuronal tracing and genetic fate mapping. Journal of Comparative Neurology, 2013, 521, 697-708.	1.6	12
32	An ontology-based segmentation scheme for tracking postnatal changes in the developing rodent brain with MRI. Neurolmage, 2013, 67, 375-384.	4.2	19
33	Cellular composition characterizing postnatal development and maturation of the mouse brain and spinal cord. Brain Structure and Function, 2013, 218, 1337-1354.	2.3	62
34	A segmentation protocol and MRI atlas of the C57BL/6J mouse neocortex. NeuroImage, 2013, 78, 196-203.	4.2	182
35	The Arcuate Nucleus of the C57BL/6J Mouse Hindbrain Is a Displaced Part of the Inferior Olive. Brain, Behavior and Evolution, 2012, 79, 191-204.	1.7	13
36	Organization of Brainstem Nuclei. , 2012, , 260-327.		70

Organization of Brainstem Nuclei. , 2012, , 260-327. 36

CHARLES WATSON

#	Article	IF	CITATIONS
37	The spinal precerebellar nuclei: Calcium binding proteins and gene expression profile in the mouse. Neuroscience Letters, 2012, 518, 161-166.	2.1	15
38	Diencephalon. , 2012, , 313-336.		35
39	A multidimensional magnetic resonance histology atlas of the Wistar rat brain. NeuroImage, 2012, 62, 1848-1856.	4.2	91
40	Segmentation of the C57BL/6J mouse cerebellum in magnetic resonance images. NeuroImage, 2012, 62, 1408-1414.	4.2	31
41	Midbrain. , 2012, , 337-359.		30
42	Hindbrain. , 2012, , 398-423.		17
43	The Somatosensory System. , 2012, , 563-570.		31
44	Cerebellum. , 2012, , 360-397.		29
45	A cytoarchitectonic and chemoarchitectonic analysis of the dopamine cell groups in the substantia nigra, ventral tegmental area, and retrorubral field in the mouse. Brain Structure and Function, 2012, 217, 591-612.	2.3	136
46	Cytoarchitecture of the Spinal Cord of the Postnatal (P4) Mouse. Anatomical Record, 2012, 295, 837-845.	1.4	25
47	What Determines Motor Neuron Number? Slow Scaling of Facial Motor Neuron Numbers With Body Mass in Marsupials and Primates. Anatomical Record, 2012, 295, 1683-1691.	1.4	23
48	The Location of the Major Ascending and Descending Spinal Cord Tracts in all Spinal Cord Segments in the Mouse: Actual and Extrapolated. Anatomical Record, 2012, 295, 1692-1697.	1.4	32
49	Spinal projections from the presumptive midbrain locomotor region in the mouse. Brain Structure and Function, 2012, 217, 211-219.	2.3	15
50	The red nucleus and the rubrospinal projection in the mouse. Brain Structure and Function, 2012, 217, 221-232.	2.3	53
51	Segmentation of the mouse hippocampal formation in magnetic resonance images. NeuroImage, 2011, 58, 732-740.	4.2	88
52	Internet-based atlas of the primate spinal cord. Neuroscience Research, 2011, 70, 128-132.	1.9	9
53	Projections from the brain to the spinal cord in the mouse. Brain Structure and Function, 2011, 215, 159-186.	2.3	84
54	Precerebellar Cell Groups in the Hindbrain of the Mouse Defined by Retrograde Tracing and Correlated with Cumulative Wnt1-Cre Genetic Labeling. Cerebellum, 2011, 10, 570-584.	2.5	51

#	Article	IF	CITATIONS
55	The precerebellar linear nucleus in the mouse defined by connections, immunohistochemistry, and gene expression. Brain Research, 2009, 1271, 49-59.	2.2	13
56	Localization of Motoneurons in the Spinal Cord. , 2009, , 94-114.		7
57	Projections from the Brain to the Spinal Cord. , 2009, , 168-179.		14
58	Atlas of the Mouse Spinal Cord. , 2009, , 308-379.		53
59	Neuroanatomical Affiliation Visualization-Interface System. Neuroinformatics, 2006, 4, 299-318.	2.8	12
60	Benefits of broad spectrum antibiotics outweigh the risks. Medical Journal of Australia, 1998, 168, 196-197.	1.7	0