List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3432767/publications.pdf Version: 2024-02-01

MARK WUNDERLICH

#	Article	IF	CITATIONS
1	R-2HG Exhibits Anti-tumor Activity by Targeting FTO/m6A/MYC/CEBPA Signaling. Cell, 2018, 172, 90-105.e23.	28.9	794
2	METTL14 Inhibits Hematopoietic Stem/Progenitor Differentiation and Promotes Leukemogenesis via mRNA m6A Modification. Cell Stem Cell, 2018, 22, 191-205.e9.	11.1	749
3	Small-Molecule Targeting of Oncogenic FTO Demethylase in Acute Myeloid Leukemia. Cancer Cell, 2019, 35, 677-691.e10.	16.8	516
4	Targeting FTO Suppresses Cancer Stem Cell Maintenance and Immune Evasion. Cancer Cell, 2020, 38, 79-96.e11.	16.8	389
5	Microenvironment Determines Lineage Fate in a Human Model of MLL-AF9 Leukemia. Cancer Cell, 2008, 13, 483-495.	16.8	297
6	Targeting IRAK1 as a Therapeutic Approach for Myelodysplastic Syndrome. Cancer Cell, 2013, 24, 90-104.	16.8	168
7	miR-196b directly targets both HOXA9/MEIS1 oncogenes and FAS tumour suppressor in MLL-rearranged leukaemia. Nature Communications, 2012, 3, 688.	12.8	138
8	MLL-Rearranged Acute Lymphoblastic Leukemias Activate BCL-2 through H3K79 Methylation and Are Sensitive to the BCL-2-Specific Antagonist ABT-199. Cell Reports, 2015, 13, 2715-2727.	6.4	118
9	Xenograft models for normal and malignant stem cells. Blood, 2015, 125, 2630-2640.	1.4	112
10	Asymmetrically Segregated Mitochondria Provide Cellular Memory of Hematopoietic Stem Cell Replicative History and Drive HSC Attrition. Cell Stem Cell, 2020, 26, 420-430.e6.	11.1	108
11	AML cells are differentially sensitive to chemotherapy treatment in a human xenograft model. Blood, 2013, 121, e90-e97.	1.4	95
12	Instructive Role of MLL-Fusion Proteins Revealed by a Model of t(4;11) Pro-B Acute Lymphoblastic Leukemia. Cancer Cell, 2016, 30, 737-749.	16.8	95
13	Cytotoxic effects of bortezomib in myelodysplastic syndrome/acute myeloid leukemia depend on autophagy-mediated lysosomal degradation of TRAF6 and repression of PSMA1. Blood, 2012, 120, 858-867.	1.4	94
14	Antibodies targeting human IL1RAP (IL1R3) show therapeutic effects in xenograft models of acute myeloid leukemia. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 10786-10791.	7.1	92
15	AML1-ETO fusion protein up-regulates TRKA mRNA expression in human CD34+ cells, allowing nerve growth factor-induced expansion. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 4016-4021.	7.1	71
16	Therapeutic antagonists of microRNAs deplete leukemia-initiating cell activity. Journal of Clinical Investigation, 2014, 124, 222-236.	8.2	66
17	Improved multilineage human hematopoietic reconstitution and function in NSGS mice. PLoS ONE, 2018, 13, e0209034.	2.5	65
18	OKT3 prevents xenogeneic GVHD and allows reliable xenograft initiation from unfractionated human hematopoietic tissues. Blood, 2014, 123, e134-e144.	1.4	63

#	Article	IF	CITATIONS
19	Overcoming adaptive therapy resistance in AML by targeting immune response pathways. Science Translational Medicine, 2019, 11, .	12.4	54
20	Salt-inducible kinase inhibition suppresses acute myeloid leukemia progression in vivo. Blood, 2020, 135, 56-70.	1.4	49
21	Human CD34+ cells expressing the inv(16) fusion protein exhibit a myelomonocytic phenotype with greatly enhanced proliferative ability. Blood, 2006, 108, 1690-1697.	1.4	46
22	Targeted inhibition of STAT/TET1 axis as a therapeutic strategy for acute myeloid leukemia. Nature Communications, 2017, 8, 2099.	12.8	45
23	Autophagy is dispensable for <i>Kmt2a/Mll-Mllt3/Af9</i> AML maintenance and anti-leukemic effect of chloroquine. Autophagy, 2017, 13, 955-966.	9.1	43
24	A xenograft model of macrophage activation syndrome amenable to anti-CD33 and anti–IL-6R treatment. JCl Insight, 2016, 1, e88181.	5.0	43
25	CD44 variant isoform 9 emerges in response to injury and contributes to the regeneration of the gastric epithelium. Journal of Pathology, 2017, 242, 463-475.	4.5	41
26	MBNL1 regulates essential alternative RNA splicing patterns in MLL-rearranged leukemia. Nature Communications, 2020, 11, 2369.	12.8	40
27	Antitumor immunity augments the therapeutic effects of p53 activation on acute myeloid leukemia. Nature Communications, 2019, 10, 4869.	12.8	36
28	An <i>In Vivo</i> CRISPR Screening Platform for Prioritizing Therapeutic Targets in AML. Cancer Discovery, 2022, 12, 432-449.	9.4	32
29	Transforming human blood stem and progenitor cells: A new way forward in leukemia modeling. Cell Cycle, 2008, 7, 3314-3319.	2.6	28
30	Therapeutic targeting of the E3 ubiquitin ligase SKP2 in T-ALL. Leukemia, 2020, 34, 1241-1252.	7.2	27
31	Epigenetic regulator genes direct lineage switching inÂ <i>MLL/AF4</i> leukemia. Blood, 2022, 140, 1875-1890.	1.4	26
32	Comparative utility of NRG and NRGS mice for the study of normal hematopoiesis, leukemogenesis, and therapeutic response. Experimental Hematology, 2018, 67, 18-31.	0.4	24
33	Targeting AML-associated FLT3 mutations with a type I kinase inhibitor. Journal of Clinical Investigation, 2020, 130, 2017-2023.	8.2	23
34	Improved chemotherapy modeling with RAG-based immune deficient mice. PLoS ONE, 2019, 14, e0225532.	2.5	21
35	Perturbation of Methionine/S-adenosylmethionine Metabolism as a Novel Vulnerability in MLL Rearranged Leukemia. Cells, 2019, 8, 1322.	4.1	20
36	Design of a hydrogen peroxide-activatable agent that specifically targets cancer cells. Bioorganic and Medicinal Chemistry, 2014, 22, 6885-6892.	3.0	17

#	Article	IF	CITATIONS
37	Model Systems for Examining Effects of Leukemia Associated Oncogenes in Primary Human CD34+ Cells via Retroviral Transduction. Methods in Molecular Biology, 2009, 538, 263-285.	0.9	17
38	Unleashing Cell-Intrinsic Inflammation as a Strategy to Kill AML Blasts. Cancer Discovery, 2022, 12, 1760-1781.	9.4	15
39	Supraphysiologic levels of the AML1-ETO isoform AE9a are essential for transformation. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 9075-9080.	7.1	14
40	Rapid desensitization of humanized mice with anti-human FcεRIα monoclonal antibodies. Journal of Allergy and Clinical Immunology, 2020, 145, 907-921.e3.	2.9	14
41	PD-1 Inhibition Enhances Blinatumomab Response in a UCB/PDX Model of Relapsed Pediatric B-Cell Acute Lymphoblastic Leukemia. Frontiers in Oncology, 2021, 11, 642466.	2.8	14
42	The deubiquitinase USP15 modulates cellular redox and is a therapeutic target in acute myeloid leukemia. Leukemia, 2022, 36, 438-451.	7.2	13
43	A New Immunodeficient Mouse Strain, NOD/SCID IL2Rγâ^'/â^' SGM3, Promotes Enhanced Human Hematopoietic Cell Xenografts with a Robust T Cell Component Blood, 2009, 114, 3524-3524.	1.4	13
44	Blocking UBE2N abrogates oncogenic immune signaling in acute myeloid leukemia. Science Translational Medicine, 2022, 14, eabb7695.	12.4	13
45	High-risk LCH in infants is serially transplantable in a xenograft model but responds durably to targeted therapy. Blood Advances, 2020, 4, 717-727.	5.2	11
46	Cyclosporine enhances the sensitivity to lenalidomide in MDS/AML in vitro. Experimental Hematology, 2020, 86, 21-27.e2.	0.4	11
47	MISTRG extends PDX modeling to favorable AMLs. Blood, 2016, 128, 2111-2112.	1.4	10
48	Momelotinib is a highly potent inhibitor of FLT3-mutant AML. Blood Advances, 2022, 6, 1186-1192.	5.2	10
49	LAMP-5 is an essential inflammatory-signaling regulator and novel immunotherapy target for mixed lineage leukemia-rearranged acute leukemia. Haematologica, 2022, 107, 803-815.	3.5	9
50	Development and characterization of a DNA aptamer for MLL-AF9 expressing acute myeloid leukemia cells using whole cell-SELEX. Scientific Reports, 2021, 11, 19174.	3.3	8
51	Immortalization of human AE pre-leukemia cells by hTERT allows leukemic transformation. Oncotarget, 2016, 7, 55939-55950.	1.8	8
52	Oxidative Cyclizationâ€Induced Activation of a Phosphoinositide 3â€Kinase Inhibitor for Enhanced Selectivity of Cancer Chemotherapeutics. ChemMedChem, 2019, 14, 1933-1939.	3.2	7
53	A ROSâ€Activatable Agent Elicits Homologous Recombination DNA Repair and Synergizes with Pathway Compounds. ChemBioChem, 2015, 16, 2513-2521.	2.6	6
54	Tumor Microenvironment–Derived R-spondins Enhance Antitumor Immunity to Suppress Tumor Growth and Sensitize for Immune Checkpoint Blockade Therapy. Cancer Discovery, 2021, 11, 3142-3157.	9.4	6

#	Article	IF	CITATIONS
55	Opioid receptor signaling suppresses leukemia through both catalytic and non-catalytic functions of TET2. Cell Reports, 2022, 38, 110253.	6.4	6
56	A Novel Method of Mobilizing Leukemia Initiating Cells by a Small Molecule Cdc42 Activity-Specific Inhibitor (CASIN) for Acute Myeloid Leukemia Therapy Blood, 2009, 114, 13-13.	1.4	4
57	Adaptation of a Xenograft AML Model to Evaluate Chemotherapeutic Efficacy In Vivo. Blood, 2010, 116, 3304-3304.	1.4	1
58	Chromatin Modifications Induced by the AML1/ETO Fusion Protein Reversibly Silence Its Genomic Targets Through AML1 and Sp1 Binding Motifs. Blood, 2011, 118, 2422-2422.	1.4	1
59	Targeted Inhibition of STAT/TET1 Axis As a Potent Therapeutic Strategy for Acute Myeloid Leukemia. Blood, 2017, 130, 857-857.	1.4	1
60	Human CD34+ Cells Expressing CBFβ-MYH11 Exhibit a Myelomonocytic Phenotype with Greatly Enhanced Proliferative Ability Blood, 2005, 106, 1379-1379.	1.4	0
61	Epigenomic Analysis of Acute Myeloid Leukemia Identifies Specific Patterns and Markes with Clinical and Biological Relevance Blood, 2009, 114, 2394-2394.	1.4	Ο
62	Bcl-XL Is a Critical Mediator of Rac Signaling in MLL-AF9-Induced Acute Myeloid Leukemia Blood, 2009, 114, 1971-1971.	1.4	0
63	Development and Characterization of a Novel Human Xenograft Model Using an MDS Patient-Derived Cell Line. Blood, 2012, 120, 3814-3814.	1.4	Ο
64	Prenatal Origin of Monosomy 7 in Very Young Children Blood, 2012, 120, 2557-2557.	1.4	0
65	Proton Sensor GPR68 Is Essential to Maintain Myeloid Malignancies. Blood, 2018, 132, 1353-1353.	1.4	0
66	In Vitro Approach for the Identification of Exceptional Responders in Acute Myeloid Leukemia. Blood, 2018, 132, 2212-2212.	1.4	0
67	Momelotinib Is a Highly Potent Inhibitor of FLT3-Mutant AML. Blood, 2021, 138, 206-206.	1.4	Ο
68	Improved chemotherapy modeling with RAG-based immune deficient mice. , 2019, 14, e0225532.		0
69	Improved chemotherapy modeling with RAG-based immune deficient mice. , 2019, 14, e0225532.		Ο
70	Improved chemotherapy modeling with RAG-based immune deficient mice. , 2019, 14, e0225532.		0
71	Improved chemotherapy modeling with RAG-based immune deficient mice. , 2019, 14, e0225532.		Ο