List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3432741/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The RNA polymerase I transcription inhibitor CX-5461 cooperates with topoisomerase 1 inhibition by enhancing the DNA damage response in homologous recombination-proficient high-grade serous ovarian cancer. British Journal of Cancer, 2021, 124, 616-627.	6.4	26
2	CX-5461 Sensitizes DNA Damage Repair–proficient Castrate-resistant Prostate Cancer to PARP Inhibition. Molecular Cancer Therapeutics, 2021, 20, 2140-2150.	4.1	9
3	A functional genetic screen defines the AKT-induced senescence signaling network. Cell Death and Differentiation, 2020, 27, 725-741.	11.2	40
4	rDNA Chromatin Activity Status as a Biomarker of Sensitivity to the RNA Polymerase I Transcription Inhibitor CX-5461. Frontiers in Cell and Developmental Biology, 2020, 8, 568.	3.7	15
5	CX-5461 activates the DNA damage response and demonstrates therapeutic efficacy in high-grade serous ovarian cancer. Nature Communications, 2020, 11, 2641.	12.8	90
6	Suppression of ABCE1-Mediated mRNA Translation Limits N-MYC–Driven Cancer Progression. Cancer Research, 2020, 80, 3706-3718.	0.9	15
7	The long noncoding RNA lncNB1 promotes tumorigenesis by interacting with ribosomal protein RPL35. Nature Communications, 2019, 10, 5026.	12.8	67
8	Migration of Small Ribosomal Subunits on the 5′ Untranslated Regions of Capped Messenger RNA. International Journal of Molecular Sciences, 2019, 20, 4464.	4.1	17
9	A novel small molecule that kills a subset of MLL-rearranged leukemia cells by inducing mitochondrial dysfunction. Oncogene, 2019, 38, 3824-3842.	5.9	17
10	First-in-Human RNA Polymerase I Transcription Inhibitor CX-5461 in Patients with Advanced Hematologic Cancers: Results of a Phase I Dose-Escalation Study. Cancer Discovery, 2019, 9, 1036-1049.	9.4	129
11	Ribosomal DNA copy loss and repeat instability in ATRX-mutated cancers. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 4737-4742.	7.1	72
12	Palbociclib synergizes with BRAF and MEK inhibitors in treatment naÃ ⁻ ve melanoma but not after the development of BRAF inhibitor resistance. International Journal of Cancer, 2018, 142, 2139-2152.	5.1	56
13	Cell cycle and growth stimuli regulate different steps of RNA polymerase I transcription. Gene, 2017, 612, 36-48.	2.2	14
14	Inhibition of Pol I transcription treats murine and human AML by targeting the leukemia-initiating cell population. Blood, 2017, 129, 2882-2895.	1.4	74
15	Self-reverting mutations partially correct the blood phenotype in a Diamond Blackfan anemia patient. Haematologica, 2017, 102, e506-e509.	3.5	26
16	Inhibition of Pol I Transcription a New Chance in the Fight Against Cancer. Technology in Cancer Research and Treatment, 2017, 16, 736-739.	1.9	3
17	Selective inhibition of RNA polymerase I transcription as a potential approach to treat African trypanosomiasis. PLoS Neglected Tropical Diseases, 2017, 11, e0005432.	3.0	34
18	Amino acid-dependent signaling via S6K1 and MYC is essential for regulation of rDNA transcription. Oncotarget, 2016, 7, 48887-48904.	1.8	8

#	Article	IF	CITATIONS
19	Defining the essential function of FBP/KSRP proteins: <i>Drosophila</i> Psi interacts with the mediator complex to modulate <i>MYC</i> transcription and tissue growth. Nucleic Acids Research, 2016, 44, 7646-7658.	14.5	16
20	Combining High-Content Imaging and Phenotypic Classification Analysis of Senescence-Associated Beta-Galactosidase Staining to Identify Regulators of Oncogene-Induced Senescence. Assay and Drug Development Technologies, 2016, 14, 416-428.	1.2	8
21	The Dual Inhibition of RNA Pol I Transcription and PIM Kinase as a New Therapeutic Approach to Treat Advanced Prostate Cancer. Clinical Cancer Research, 2016, 22, 5539-5552.	7.0	59
22	Combination Therapy Targeting Ribosome Biogenesis and mRNA Translation Synergistically Extends Survival in MYC-Driven Lymphoma. Cancer Discovery, 2016, 6, 59-70.	9.4	105
23	Inhibition of RNA polymerase I transcription initiation by CX-5461 activates non-canonical ATM/ATR signaling. Oncotarget, 2016, 7, 49800-49818.	1.8	93
24	Clustered somatic mutations are frequent in transcription factor binding motifs within proximal promoter regions in melanoma and other cutaneous malignancies. Oncotarget, 2016, 7, 66569-66585.	1.8	21
25	Genome wide mapping of UBF binding-sites in mouse and human cell lines. Genomics Data, 2015, 3, 103-105.	1.3	6
26	Implications of Epithelialââ,¬â€œMesenchymal Plasticity for Heterogeneity in Colorectal Cancer. Frontiers in Oncology, 2015, 5, 13.	2.8	27
27	Targeting RNA polymerase I to treat MYC-driven cancer. Oncogene, 2015, 34, 403-412.	5.9	66
28	PR55α-containing protein phosphatase 2A complexes promote cancer cell migration and invasion through regulation of AP-1 transcriptional activity. Oncogene, 2015, 34, 1333-1339.	5.9	21
29	Defective Hfp-dependent transcriptional repression of dMYC is fundamental to tissue overgrowth in Drosophila XPB models. Nature Communications, 2015, 6, 7404.	12.8	13
30	Unexpected role of CDK4 in a G2/M checkpoint. Cell Cycle, 2015, 14, 1351-1352.	2.6	5
31	Glucocorticoids improve erythroid progenitor maintenance and dampen <i>Trp53</i> response in a mouse model of Diamond–Blackfan anaemia. British Journal of Haematology, 2015, 171, 517-529.	2.5	18
32	S6 Kinase is essential for MYC-dependent rDNA transcription in Drosophila. Cellular Signalling, 2015, 27, 2045-2053.	3.6	15
33	Regulation of rDNA transcription in response to growth factors, nutrients and energy. Gene, 2015, 556, 27-34.	2.2	79
34	A novel role for the Pol I transcription factor UBTF in maintaining genome stability through the regulation of highly transcribed Pol II genes. Genome Research, 2015, 25, 201-212.	5.5	52
35	The nucleolus as a fundamental regulator of the p53 response and a new target for cancer therapy. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2015, 1849, 821-829.	1.9	105
36	Conditional Inactivation of Upstream Binding Factor Reveals Its Epigenetic Functions and the Existence of a Somatic Nucleolar Precursor Body. PLoS Genetics, 2014, 10, e1004505.	3.5	66

#	Article	IF	CITATIONS
37	Targeting the nucleolus for cancer-specific activation of p53. Drug Discovery Today, 2014, 19, 259-265.	6.4	40
38	Targeting the nucleolus for cancer intervention. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2014, 1842, 802-816.	3.8	198
39	Perturbations at the ribosomal genes loci are at the centre of cellular dysfunction and human disease. Cell and Bioscience, 2014, 4, 43.	4.8	47
40	Widespread FRA1-Dependent Control of Mesenchymal Transdifferentiation Programs in Colorectal Cancer Cells. PLoS ONE, 2014, 9, e88950.	2.5	69
41	Targeting RNA polymerase I transcription and the nucleolus for cancer therapy. Expert Opinion on Therapeutic Targets, 2013, 17, 873-878.	3.4	55
42	Dysregulation of RNA polymerase I transcription during disease. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2013, 1829, 342-360.	1.9	116
43	Synergistic inhibition of ovarian cancer cell growth by combining selective PI3K/mTOR and RAS/ERK pathway inhibitors. European Journal of Cancer, 2013, 49, 3936-3944.	2.8	72
44	A functional siRNA screen identifies genes modulating angiotensin II-mediated EGFR transactivation. Journal of Cell Science, 2013, 126, 5377-90.	2.0	30
45	The nucleolus: an emerging target for cancer therapy. Trends in Molecular Medicine, 2013, 19, 643-654.	6.7	205
46	<scp>AKT</scp> signalling is required for ribosomal <scp>RNA</scp> synthesis and progression of <scp>E</scp> 1¼â€ <i>Myc </i> <scp>B</scp> â€cell lymphoma <i>inÂvivo</i> . FEBS Journal, 2013, 280, 5307-53	16. ^{4.7}	19
47	The mTORC1 Inhibitor Everolimus Prevents and Treats Eμ- <i>Myc</i> Lymphoma by Restoring Oncogene-Induced Senescence. Cancer Discovery, 2013, 3, 82-95.	9.4	58
48	Unravelling the molecular complexity of <scp>GPCR</scp> â€mediated <scp>EGFR</scp> transactivation using functional genomics approaches. FEBS Journal, 2013, 280, 5258-5268.	4.7	53
49	Dysregulation of the basal RNA polymerase transcription apparatus in cancer. Nature Reviews Cancer, 2013, 13, 299-314.	28.4	187
50	A Novel Mouse Model of Atherosclerotic Plaque Instability for Drug Testing and Mechanistic/Therapeutic Discoveries Using Gene and MicroRNA Expression Profiling. Circulation Research, 2013, 113, 252-265.	4.5	164
51	Autophagy Induction Is a Tor- and Tp53-Independent Cell Survival Response in a Zebrafish Model of Disrupted Ribosome Biogenesis. PLoS Genetics, 2013, 9, e1003279.	3.5	73
52	Combined inhibition of PI3K-related DNA damage response kinases and mTORC1 induces apoptosis in MYC-driven B-cell lymphomas. Blood, 2013, 121, 2964-2974.	1.4	59
53	AKT-independent PI3-K signaling in cancer – emerging role for SGK3. Cancer Management and Research, 2013, 5, 281.	1.9	73
54	Expression, Regulation and Putative Nutrient-Sensing Function of Taste GPCRs in the Heart. PLoS ONE, 2013, 8, e64579.	2.5	121

#	Article	IF	CITATIONS
55	AKT induces senescence in human cells via mTORC1 and p53 in the absence of DNA damage: implications for targeting mTOR during malignancy. Oncogene, 2012, 31, 1949-1962.	5.9	221
56	A 19S proteasomal subunit cooperates with an ERK MAPK-regulated degron to regulate accumulation of Fra-1 in tumour cells. Oncogene, 2012, 31, 1817-1824.	5.9	27
57	Inhibition of RNA Polymerase I as a Therapeutic Strategy to Promote Cancer-Specific Activation of p53. Cancer Cell, 2012, 22, 51-65.	16.8	468
58	c-MYC coordinately regulates ribosomal gene chromatin remodeling and Pol I availability during granulocyte differentiation. Nucleic Acids Research, 2011, 39, 3267-3281.	14.5	88
59	A phospho-proteomic screen identifies novel S6K1 and mTORC1 substrates revealing additional complexity in the signaling network regulating cell growth. Cellular Signalling, 2011, 23, 1338-1347.	3.6	16
60	Signaling to the ribosome in cancer—It is more than just mTORC1. IUBMB Life, 2011, 63, 79-85.	3.4	35
61	Relative Expression Levels Rather Than Specific Activity Plays the Major Role in Determining <i>In Vivo</i> AKT Isoform Substrate Specificity. Enzyme Research, 2011, 2011, 1-18.	1.8	16
62	AKT Promotes rRNA Synthesis and Cooperates with c-MYC to Stimulate Ribosome Biogenesis in Cancer. Science Signaling, 2011, 4, ra56.	3.6	126
63	Hfp, the Drosophila homolog of the mammalian <i>c-myc</i> transcriptional-repressor and tumor suppressor FIR, inhibits <i>dmyc</i> transcription and cell growth. Fly, 2011, 5, 129-133.	1.7	3
64	Targeting RNA Polymerase I with an Oral Small Molecule CX-5461 Inhibits Ribosomal RNA Synthesis and Solid Tumor Growth. Cancer Research, 2011, 71, 1418-1430.	0.9	482
65	Drosophila Ribosomal Protein Mutants Control Tissue Growth Non-Autonomously via Effects on the Prothoracic Gland and Ecdysone. PLoS Genetics, 2011, 7, e1002408.	3.5	31
66	Determination of the Exact Molecular Requirements for Type 1 Angiotensin Receptor Epidermal Growth Factor Receptor Transactivation and Cardiomyocyte Hypertrophy. Hypertension, 2011, 57, 973-980.	2.7	27
67	The renin–angiotensin system and cancer: old dog, new tricks. Nature Reviews Cancer, 2010, 10, 745-759.	28.4	438
68	ATRX interacts with H3.3 in maintaining telomere structural integrity in pluripotent embryonic stem cells. Genome Research, 2010, 20, 351-360.	5.5	343
69	Hfp inhibits <i>Drosophila myc</i> transcription and cell growth in a TFIIH/Hay-dependent manner. Development (Cambridge), 2010, 137, 2875-2884.	2.5	28
70	Second AKT: The rise of SGK in cancer signalling. Growth Factors, 2010, 28, 394-408.	1.7	127
71	The role of UBF in regulating the structure and dynamics of transcriptionally active rDNA chromatin. Epigenetics, 2009, 4, 374-382.	2.7	100
72	Adenovirus-mediated delivery of relaxin reverses cardiac fibrosis. Molecular and Cellular Endocrinology, 2008, 280, 30-38.	3.2	48

#	Article	IF	CITATIONS
73	UBF levels determine the number of active ribosomal RNA genes in mammals. Journal of Cell Biology, 2008, 183, 1259-1274.	5.2	171
74	Translational control of c-MYC by rapamycin promotes terminal myeloid differentiation. Blood, 2008, 112, 2305-2317.	1.4	92
75	Coordinate regulation of ribosome biogenesis and function by the ribosomal protein S6 kinase, a key mediator of mTOR function. Growth Factors, 2007, 25, 209-226.	1.7	204
76	Centromere RNA is a key component for the assembly of nucleoproteins at the nucleolus and centromere. Genome Research, 2007, 17, 1146-1160.	5.5	255
77	Effect of Dominant-Negative Epidermal Growth Factor Receptors on Cardiomyocyte Hypertrophy. Journal of Receptor and Signal Transduction Research, 2006, 26, 659-677.	2.5	14
78	Tackling the EGFR in pathological tissue remodelling. Pulmonary Pharmacology and Therapeutics, 2006, 19, 74-78.	2.6	25
79	Cross talk between corticosteroids and alpha-adrenergic signalling augments cardiomyocyte hypertrophy: A possible role for SGK1. Cardiovascular Research, 2006, 70, 555-565.	3.8	60
80	A Specific Role for AKT3 in the Genesis of Ovarian Cancer through Modulation of G2-M Phase Transition. Cancer Research, 2006, 66, 11718-11725.	0.9	85
81	Expression of Constitutively Active Angiotensin Receptors in the Rostral Ventrolateral Medulla Increases Blood Pressure. Hypertension, 2006, 47, 1054-1061.	2.7	57
82	Urotensin II Promotes Hypertrophy of Cardiac Myocytes via Mitogen-Activated Protein Kinases. Molecular Endocrinology, 2004, 18, 2344-2354.	3.7	84
83	Proliferation of Neointimal Smooth Muscle Cells after Arterial Injury. Journal of Biological Chemistry, 2004, 279, 42221-42229.	3.4	36
84	MAD1 and c-MYC regulate UBF and rDNA transcription during granulocyte differentiation. EMBO Journal, 2004, 23, 3325-3335.	7.8	166
85	What?s new in the renin-angiotensin system?. Cellular and Molecular Life Sciences, 2004, 61, 2695-2703.	5.4	37
86	Urotensin II: the old kid in town. Trends in Endocrinology and Metabolism, 2004, 15, 175-182.	7.1	64
87	Cardiovascular role of urotensin II: effect of chronic infusion in the rat. Peptides, 2004, 25, 1783-1788.	2.4	34
88	AngiotensinII mediates cardiomyocyte hypertrophic growth pathways via MMP-dependent HB-EGF liberation. International Journal of Peptide Research and Therapeutics, 2003, 10, 431-435.	0.1	1
89	Cardiac hypertrophy: A matter of translation. Clinical and Experimental Pharmacology and Physiology, 2003, 30, 517-527.	1.9	133
90	mTOR-Dependent Regulation of Ribosomal Gene Transcription Requires S6K1 and Is Mediated by Phosphorylation of the Carboxy-Terminal Activation Domain of the Nucleolar Transcription Factor UBFâ€. Molecular and Cellular Biology, 2003, 23, 8862-8877.	2.3	390

#	Article	IF	CITATIONS
91	Cardiac hypertrophy in vivo is associated with increased expression of the ribosomal gene transcription factor UBF. FEBS Letters, 2003, 548, 79-84.	2.8	16
92	Direct Actions of Urotensin II on the Heart. Circulation Research, 2003, 93, 246-253.	4.5	196
93	Emerging Role of the Urotensin II System in Cardiovascular Disease. Cardiology, 2003, 3, 153-158.	0.3	2
94	Adenoviral-Directed Expression of the Type 1A Angiotensin Receptor Promotes Cardiomyocyte Hypertrophy via Transactivation of the Epidermal Growth Factor Receptor. Circulation Research, 2002, 90, 135-142.	4.5	159
95	Inositol Polyphosphate 1-Phosphatase Is a Novel Antihypertrophic Factor. Journal of Biological Chemistry, 2002, 277, 22734-22742.	3.4	33
96	Combined Angiotensin and Endothelin Receptor Blockade Attenuates Adverse Cardiac Remodeling Post-Myocardial Infarction in the Rat: Possible Role of Transforming Growth Factor β1. Journal of Molecular and Cellular Cardiology, 2001, 33, 969-981.	1.9	36
97	An Immediate Response of Ribosomal Transcription to Growth Factor Stimulation in Mammals Is Mediated by ERK Phosphorylation of UBF. Molecular Cell, 2001, 8, 1063-1073.	9.7	226
98	RNA polymerase I transcription in confluent cells: Rb downregulates rDNA transcription during confluence-induced cell cycle arrest. Oncogene, 2000, 19, 3487-3497.	5.9	81
99	Rb and p130 regulate RNA polymerase I transcription: Rb disrupts the interaction between UBF and SL-1. Oncogene, 2000, 19, 4988-4999.	5.9	119
100	Identification of a mammalian RNA polymerase I holoenzyme containing components of the DNA repair/replication system. Nucleic Acids Research, 1999, 27, 3720-3727.	14.5	64
101	Cellular regulation of ribosomal DNA transcription:both rat and Xenopus UBF1 stimulate rDNA transcription in 3T3 fibroblasts. Nucleic Acids Research, 1999, 27, 1205-1213.	14.5	27
102	Affinity Purification of Mammalian RNA Polymerase I. Journal of Biological Chemistry, 1998, 273, 1257-1267.	3.4	70
103	Overexpression of the transcription factor UBF1 is sufficient to increase ribosomal DNA transcription in neonatal cardiomyocytes: implications for cardiac hypertrophy Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 8750-8755.	7.1	69
104	Regulation of Ribosomal DNA Transcription during Contraction-induced Hypertrophy of Neonatal Cardiomyocytes. Journal of Biological Chemistry, 1996, 271, 3213-3220.	3.4	65
105	The RNA Polymerase I Transcription Factor UBF Is the Product of a Primary Response Gene. Journal of Biological Chemistry, 1995, 270, 4209-4212.	3.4	30
106	Regulation of rDNA Transcription Factors during Cardiomyocyte Hypertrophy Induced by Adrenergic Agents. Journal of Biological Chemistry, 1995, 270, 8290-8297.	3.4	48
107	Expression of c-fos and Related Genes in the Rat Heart in Response to Norepinephrine. Journal of Molecular and Cellular Cardiology, 1993, 25, 1137-1148.	1.9	30
108	Adrenergic agents, but not triiodo-L-thyronine induce c-fos and c-myc expression in the rat heart. Basic Research in Cardiology, 1991, 86, 154-164.	5.9	29