Chelsie E Armbruster

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3432155/publications.pdf

Version: 2024-02-01

35 papers 1,910 citations

20 h-index 32 g-index

40 all docs

40 docs citations

40 times ranked

2241 citing authors

#	Article	IF	CITATIONS
1	Polymicrobial Interactions in the Urinary Tract: Is the Enemy of My Enemy My Friend?. Infection and Immunity, 2021, 89, .	2.2	31
2	mSphere of Influence: Of Mice, Men, and Microbes—How Well Do Experimental Models Recapitulate Human Infection?. MSphere, 2021, 6, .	2.9	O
3	Prospective assessment of catheter-associated bacteriuria clinical presentation, epidemiology, and colonization dynamics in nursing home residents. JCI Insight, 2021, 6, .	5.0	8
4	Catalase Activity is Critical for Proteus mirabilis Biofilm Development, Extracellular Polymeric Substance Composition, and Dissemination during Catheter-Associated Urinary Tract Infection. Infection and Immunity, 2021, 89, e0017721.	2.2	10
5	Enterococcus faecalis Polymicrobial Interactions Facilitate Biofilm Formation, Antibiotic Recalcitrance, and Persistent Colonization of the Catheterized Urinary Tract. Pathogens, 2020, 9, 835.	2.8	32
6	Transposon Insertion Site Sequencing of Providencia stuartii: Essential Genes, Fitness Factors for Catheter-Associated Urinary Tract Infection, and the Impact of Polymicrobial Infection on Fitness Requirements. MSphere, 2020, 5, .	2.9	14
7	Ynt is the primary nickel import system used by <i>Proteus mirabilis</i> and specifically contributes to fitness by supplying nickel for urease activity. Molecular Microbiology, 2020, 114, 185-199.	2.5	8
8	Transposon Insertion Site Sequencing in a Urinary Tract Model. Methods in Molecular Biology, 2019, 2021, 297-337.	0.9	1
9	Twin arginine translocation, ammonia incorporation, and polyamine biosynthesis are crucial for Proteus mirabilis fitness during bloodstream infection. PLoS Pathogens, 2019, 15, e1007653.	4.7	29
10	d -Serine Degradation by Proteus mirabilis Contributes to Fitness during Single-Species and Polymicrobial Catheter-Associated Urinary Tract Infection. MSphere, 2019, 4, .	2.9	16
11	A Rare Opportunist, <i>Morganella morganii</i> , Decreases Severity of Polymicrobial Catheter-Associated Urinary Tract Infection. Infection and Immunity, 2019, 88, .	2.2	14
12	Testing the Ability of Compounds to Induce Swarming. Methods in Molecular Biology, 2019, 2021, 27-34.	0.9	0
13	Indwelling Urinary Catheter Model of Proteus mirabilis Infection. Methods in Molecular Biology, 2019, 2021, 187-200.	0.9	9
14	Rapid Growth of Uropathogenic <i>Escherichia coli</i> during Human Urinary Tract Infection. MBio, 2018, 9, .	4.1	93
15	Longitudinal Assessment of Multidrug-Resistant Organisms in Newly Admitted Nursing Facility Patients: Implications for an Evolving Population. Clinical Infectious Diseases, 2018, 67, 837-844.	5.8	50
16	Pathogenesis of <i>Proteus mirabilis</i> Infection. EcoSal Plus, 2018, 8, .	5.4	208
17	Autoinducer 2 (AI-2) Production by Nontypeable Haemophilus influenzae 86-028NP Promotes Expression of a Predicted Glycosyltransferase That Is a Determinant of Biofilm Maturation, Prevention of Dispersal, and Persistence <i>In Vivo</i> Infection and Immunity, 2018, 86, .	2.2	20
18	Urine Cytokine and Chemokine Levels Predict Urinary Tract Infection Severity Independent of Uropathogen, Urine Bacterial Burden, Host Genetics, and Host Age. Infection and Immunity, 2018, 86, .	2.2	19

#	Article	IF	CITATIONS
19	The Pathogenic Potential of Proteus mirabilis Is Enhanced by Other Uropathogens during Polymicrobial Urinary Tract Infection. Infection and Immunity, 2017, 85, .	2.2	81
20	How Often Do Clinically Diagnosed Catheterâ€Associated Urinary Tract Infections in Nursing Homes Meet Standardized Criteria?. Journal of the American Geriatrics Society, 2017, 65, 395-401.	2.6	51
21	Genome-wide transposon mutagenesis of Proteus mirabilis: Essential genes, fitness factors for catheter-associated urinary tract infection, and the impact of polymicrobial infection on fitness requirements. PLoS Pathogens, 2017, 13, e1006434.	4.7	97
22	Urease Activity is Enhanced During Coculture of Common Catheter-Associated Urinary Tract Infection (CAUTI) Pathogens and Contributes to Severity of Disease in a Murine Infection Model. Open Forum Infectious Diseases, 2016, 3, .	0.9	0
23	Peroxiredoxin-Glutaredoxin and Catalase Promote Resistance of Nontypeable Haemophilus influenzae 86-028NP to Oxidants and Survival within Neutrophil Extracellular Traps. Infection and Immunity, 2015, 83, 239-246.	2.2	39
24	Arginine promotes <i>Proteus mirabilis</i> motility and fitness by contributing to conservation of the proton gradient and proton motive force. MicrobiologyOpen, 2014, 3, 630-641.	3.0	25
25	Increased Incidence of Urolithiasis and Bacteremia During Proteus mirabilis and Providencia stuartii Coinfection Due to Synergistic Induction of Urease Activity. Journal of Infectious Diseases, 2014, 209, 1524-1532.	4.0	77
26	Initiation of Swarming Motility by Proteus mirabilis Occurs in Response to Specific Cues Present in Urine and Requires Excess L-Glutamine. Journal of Bacteriology, 2013, 195, 1305-1319.	2.2	54
27	Merging mythology and morphology: the multifaceted lifestyle of Proteus mirabilis. Nature Reviews Microbiology, 2012, 10, 743-754.	28.6	226
28	Nontypeable <i>Haemophilus influenzae</i> Initiates Formation of Neutrophil Extracellular Traps. Infection and Immunity, 2011, 79, 431-438.	2.2	122
29	RbsB (NTHI_0632) mediates quorum signal uptake in nontypeable Haemophilus influenzae strain 86-028NP. Molecular Microbiology, 2011, 82, 836-850.	2.5	63
30	Direct Evaluation of Pseudomonas aeruginosa Biofilm Mediators in a Chronic Infection Model. Infection and Immunity, 2011, 79, 3087-3095.	2.2	79
31	Divergent Mechanisms for Passive Pneumococcal Resistance to \hat{l}^2 -Lactam Antibiotics in the Presence of Haemophilus influenzae. Journal of Infectious Diseases, 2011, 203, 549-555.	4.0	62
32	Coinfection with (i) Haemophilus influenzae (i) Promotes Pneumococcal Biofilm Formation during Experimental Otitis Media and Impedes the Progression of Pneumococcal Disease. Journal of Infectious Diseases, 2010, 202, 1068-1075.	4.0	94
33	Interspecies bacterial communication as a target for therapy in otitis media. Expert Review of Anti-Infective Therapy, 2010, 8, 1067-1070.	4.4	21
34	Indirect Pathogenicity of <i>Haemophilus influenzae</i> and <i>Moraxella catarrhalis</i> in Polymicrobial Otitis Media Occurs via Interspecies Quorum Signaling. MBio, 2010, 1, .	4.1	184
35	LuxS Promotes Biofilm Maturation and Persistence of Nontypeable <i>Haemophilus influenzae</i> In Vivo via Modulation of Lipooligosaccharides on the Bacterial Surface. Infection and Immunity, 2009, 77, 4081-4091.	2.2	62