
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3431661/publications.pdf Version: 2024-02-01

DETED VAN LLISEN

#	Article	IF	CITATIONS
1	Type VII secretion — mycobacteria show the way. Nature Reviews Microbiology, 2007, 5, 883-891.	28.6	628
2	YidC, the Escherichia coli homologue of mitochondrial Oxa1p, is a component of the Sec translocase. EMBO Journal, 2000, 19, 542-549.	7.8	357
3	Structure of the translocator domain of a bacterial autotransporter. EMBO Journal, 2004, 23, 1257-1266.	7.8	333
4	BIOGENESIS OF INNER MEMBRANE PROTEINS IN <i>ESCHERICHIA COLI</i> . Annual Review of Microbiology, 2005, 59, 329-355.	7.3	177
5	Nascent membrane and presecretory proteins synthesized in <i>Escherichia coli</i> associate with signal recognition particle and trigger factor. Molecular Microbiology, 1997, 25, 53-64.	2.5	168
6	Secâ€dependent membrane protein insertion: sequential interaction of nascent FtsQ with SecY and YidC. EMBO Reports, 2001, 2, 524-529.	4.5	164
7	Crystal Structure of Hemoglobin Protease, a Heme Binding Autotransporter Protein from Pathogenic Escherichia coli. Journal of Biological Chemistry, 2005, 280, 17339-17345.	3.4	156
8	Characterization of a Hemoglobin Protease Secreted by the Pathogenic Escherichia coli Strain EB1. Journal of Experimental Medicine, 1998, 188, 1091-1103.	8.5	130
9	A Neisserial autotransporter NalP modulating the processing of other autotransporters. Molecular Microbiology, 2003, 50, 1017-1030.	2.5	127
10	The Bam (Omp85) complex is involved in secretion of the autotransporter haemoglobin protease. Microbiology (United Kingdom), 2009, 155, 3982-3991.	1.8	121
11	Optimizing heterologous protein production in the periplasm of E. coli by regulating gene expression levels. Microbial Cell Factories, 2013, 12, 24.	4.0	114
12	Signal Recognition Particle (SRP)-mediated Targeting and Sec-dependent Translocation of an Extracellular Escherichia coli Protein. Journal of Biological Chemistry, 2003, 278, 4654-4659.	3.4	107
13	Limited tolerance towards folded elements during secretion of the autotransporter Hbp. Molecular Microbiology, 2007, 63, 1524-1536.	2.5	105
14	Type V secretion: From biogenesis to biotechnology. Biochimica Et Biophysica Acta - Molecular Cell Research, 2014, 1843, 1592-1611.	4.1	102
15	The Early Interaction of the Outer Membrane Protein PhoE with the Periplasmic Chaperone Skp Occurs at the Cytoplasmic Membrane. Journal of Biological Chemistry, 2001, 276, 18804-18811.	3.4	95
16	Decoration of Outer Membrane Vesicles with Multiple Antigens by Using an Autotransporter Approach. Applied and Environmental Microbiology, 2014, 80, 5854-5865.	3.1	95
17	Salmonella outer membrane vesicles displaying high densities of pneumococcal antigen at the surface offer protection against colonization. Vaccine, 2015, 33, 2022-2029.	3.8	92
18	Biogenesis of inner membrane proteins in <i>Escherichia coli</i> . Molecular Microbiology, 2001, 40, 314-322.	2.5	90

#	Article	IF	CITATIONS
19	Targeting, Insertion, and Localization of Escherichia coli YidC. Journal of Biological Chemistry, 2002, 277, 12718-12723.	3.4	82
20	Outer membrane vesicles engineered to express membrane-bound antigen program dendritic cells for cross-presentation to CD8+ T cells. Acta Biomaterialia, 2019, 91, 248-257.	8.3	76
21	Polar Localization of the Autotransporter Family of Large Bacterial Virulence Proteins. Journal of Bacteriology, 2006, 188, 4841-4850.	2.2	73
22	Distinct Requirements for Translocation of the N-tail and C-tail of the Escherichia coli Inner Membrane Protein CyoA. Journal of Biological Chemistry, 2006, 281, 10002-10009.	3.4	72
23	Versatility of inner membrane protein biogenesis in Escherichia coli. Molecular Microbiology, 2003, 47, 1015-1027.	2.5	71
24	Detection of crossâ€links between FtsH, YidC, HflK/C suggests a linked role for these proteins in quality control upon insertion of bacterial inner membrane proteins. FEBS Letters, 2008, 582, 1419-1424.	2.8	66
25	Extracellular production of recombinant proteins using bacterial autotransporters. Current Opinion in Biotechnology, 2010, 21, 646-652.	6.6	65
26	<i>Escherichia coli</i> Hemoglobin Protease Autotransporter Contributes to Synergistic Abscess Formation and Heme-Dependent Growth of <i>Bacteroides fragilis</i> . Infection and Immunity, 2002, 70, 5-10.	2.2	64
27	Biogenesis of inner membrane proteins in Escherichia coli. Biochimica Et Biophysica Acta - Bioenergetics, 2012, 1817, 965-976.	1.0	64
28	Protein secretion and secreted proteins in pathogenicNeisseriaceae. FEMS Microbiology Reviews, 2006, 30, 292-319.	8.6	62
29	Biogenesis of MalF and the MalFGK2 Maltose Transport Complex in Escherichia coli Requires YidC. Journal of Biological Chemistry, 2008, 283, 17881-17890.	3.4	58
30	Haemophilus influenzaelocalized in epithelial cell layers is shielded from antibiotics and antibiody-mediated bactericidal activity. Microbial Pathogenesis, 1999, 26, 249-262.	2.9	56
31	A Conserved Aromatic Residue in the Autochaperone Domain of the Autotransporter Hbp Is Critical for Initiation of Outer Membrane Translocation. Journal of Biological Chemistry, 2010, 285, 38224-38233.	3.4	56
32	Integration host factor alleviates the H-NS-mediated repression of the early promoter of bacteriophage Mu. Molecular Microbiology, 1996, 21, 567-578.	2.5	53
33	NalP-Mediated Proteolytic Release of Lactoferrin-Binding Protein B from the Meningococcal Cell Surface. Infection and Immunity, 2010, 78, 3083-3089.	2.2	51
34	Application of an E. coli signal sequence as a versatile inclusion body tag. Microbial Cell Factories, 2017, 16, 50.	4.0	48
35	Antibiotic Trapping by Plasmid-Encoded CMY-2 β-Lactamase Combined with Reduced Outer Membrane Permeability as a Mechanism of Carbapenem Resistance in Escherichia coli. Antimicrobial Agents and Chemotherapy, 2013, 57, 3941-3949.	3.2	47
36	Identification of proteins of <i>Neisseria meningitidis</i> induced under ironâ€limiting conditions using the isobaric tandem mass tag (TMT) labeling approach. Proteomics, 2009, 9, 1771-1781.	2.2	46

#	Article	IF	CITATIONS
37	Display of Recombinant Proteins on Bacterial Outer Membrane Vesicles by Using Protein Ligation. Applied and Environmental Microbiology, 2018, 84, .	3.1	44
38	A structurally informed autotransporter platform for efficient heterologous protein secretion and display. Microbial Cell Factories, 2012, 11, 85.	4.0	43
39	The Conserved Third Transmembrane Segment of YidC Contacts Nascent Escherichia coli Inner Membrane Proteins. Journal of Biological Chemistry, 2008, 283, 34635-34642.	3.4	39
40	Characterization of the Consequences of YidC Depletion on the Inner Membrane Proteome of E. coli Using 2D Blue Native/SDS-PAGE. Journal of Molecular Biology, 2011, 409, 124-135.	4.2	39
41	Characterization of Adherence of Nontypeable Haemophilus influenzae to Human Epithelial Cells. Infection and Immunity, 2000, 68, 4658-4665.	2.2	38
42	An autotransporter display platform for the development of multivalent recombinant bacterial vector vaccines. Microbial Cell Factories, 2014, 13, 162.	4.0	38
43	Domain exchange at the 3' end of the gene encoding the fratricide meningococcal two-partner secretion protein A. BMC Genomics, 2013, 14, 622.	2.8	37
44	Th17-Mediated Cross Protection against Pneumococcal Carriage by Vaccination with a Variable Antigen. Infection and Immunity, 2017, 85, .	2.2	36
45	A novel phase-variable autotransporter serine protease, Ausl, of Neisseria meningitidis. Microbes and Infection, 2006, 8, 2088-2097.	1.9	35
46	Hydrophobic Surface Patches on LolA of Pseudomonas aeruginosa Are Essential for Lipoprotein Binding. Journal of Molecular Biology, 2010, 401, 921-930.	4.2	34
47	Of linkers and autochaperones: an unambiguous nomenclature to identify common and uncommon themes for autotransporter secretion. Molecular Microbiology, 2015, 95, 1-16.	2.5	34
48	Estimating the Size of the Active Translocation Pore of an Autotransporter. Journal of Molecular Biology, 2012, 416, 335-345.	4.2	32
49	Lipidation of the autotransporter NalP of Neisseria meningitidis is required for its function in the release of cell-surface-exposed proteins. Microbiology (United Kingdom), 2013, 159, 286-295.	1.8	32
50	Autotransporter Î ² -Domains Have a Specific Function in Protein Secretion beyond Outer-Membrane Targeting. Journal of Molecular Biology, 2011, 412, 553-567.	4.2	31
51	On display: autotransporter secretion and application. FEMS Microbiology Letters, 2018, 365, .	1.8	30
52	SRP, FtsY, DnaK and YidC Are Required for the Biogenesis of the E. coli Tail-Anchored Membrane Proteins DjlC and Flk. Journal of Molecular Biology, 2018, 430, 389-403.	4.2	28
53	Two-Partner Secretion Systems of <i>Neisseria meningitidis</i> Associated with Invasive Clonal Complexes. Infection and Immunity, 2008, 76, 4649-4658.	2.2	27
54	Candidate verification of iron-regulated Neisseria meningitidis proteins using isotopic versions of tandem mass tags (TMT) and single reaction monitoring. Journal of Proteomics, 2009, 73, 231-239.	2.4	27

#	Article	IF	CITATIONS
55	Processing of cellâ€surface signalling antiâ€sigma factors prior to signal recognition is a conserved autoproteolytic mechanism that produces two functional domains. Environmental Microbiology, 2015, 17, 3263-3277.	3.8	26
56	Conformational analysis of opacity proteins from Neisseria meningitidis. FEBS Journal, 2002, 269, 5215-5223.	0.2	25
57	Self-cleavage of the Pseudomonas aeruginosa Cell-surface Signaling Anti-sigma Factor FoxR Occurs through an N-O Acyl Rearrangement. Journal of Biological Chemistry, 2015, 290, 12237-12246.	3.4	24
58	Immunization With Skp Delivered on Outer Membrane Vesicles Protects Mice Against Enterotoxigenic Escherichia coli Challenge. Frontiers in Cellular and Infection Microbiology, 2018, 8, 132.	3.9	24
59	YidC Is Involved in the Biogenesis of the Secreted Autotransporter Hemoglobin Protease. Journal of Biological Chemistry, 2010, 285, 39682-39690.	3.4	23
60	Combining Protein Ligation Systems to Expand the Functionality of Semi-Synthetic Outer Membrane Vesicle Nanoparticles. Frontiers in Microbiology, 2020, 11, 890.	3.5	23
61	Working Mechanism of Immunoglobulin A1 (IgA1) Protease: Cleavage of IgA1 Antibody to Neisseria meningitidis PorA Requires De Novo Synthesis of IgA1 Protease. Infection and Immunity, 2005, 73, 6721-6726.	2.2	22
62	YidC is required for the assembly of the MscL homopentameric pore. FEBS Journal, 2009, 276, 4891-4899.	4.7	22
63	Variable processing of the IgA protease autotransporter at the cell surface of Neisseria meningitidis. Microbiology (United Kingdom), 2014, 160, 2421-2431.	1.8	22
64	Autotransporter-Based Antigen Display in Bacterial Ghosts. Applied and Environmental Microbiology, 2015, 81, 726-735.	3.1	22
65	<i>Saccharomyces cerevisiae</i> Cox18 complements the essential Secâ€independent function of <i>Escherichia coli</i> YidC. FEBS Journal, 2007, 274, 5704-5713.	4.7	21
66	Mechanical Unfolding of an Autotransporter Passenger Protein Reveals the Secretion Starting Point and Processive Transport Intermediates. ACS Nano, 2016, 10, 5710-5719.	14.6	21
67	Cloning of Genes of Nontypeable Haemophilus influenzae Involved in Penetration between Human Lung Epithelial Cells. Infection and Immunity, 2000, 68, 4616-4623.	2.2	20
68	Role for Escherichia coli YidD in Membrane Protein Insertion. Journal of Bacteriology, 2011, 193, 5242-5251.	2.2	20
69	Inhibition of autotransporter biogenesis by small molecules. Molecular Microbiology, 2019, 112, 81-98.	2.5	20
70	The conserved extension of the Hbp autotransporter signal peptide does not determine targeting pathway specificity. Biochemical and Biophysical Research Communications, 2008, 368, 522-527.	2.1	19
71	Participation of the Flank Regions of the Integration Host Factor Protein in the Specificity and Stability of DNA Binding. Journal of Biological Chemistry, 1995, 270, 17902-17907.	3.4	18
72	Channel properties of the translocator domain of the autotransporter Hbp of <i>Escherichia coli</i> . Molecular Membrane Biology, 2011, 28, 158-170.	2.0	18

#	Article	IF	CITATIONS
73	System Specificity of the TpsB Transporters of Coexpressed Two-Partner Secretion Systems of Neisseria meningitidis. Journal of Bacteriology, 2013, 195, 788-797.	2.2	18
74	Phylogenetic Classification and Functional Review of Autotransporters. Frontiers in Immunology, 0, 13, .	4.8	18
75	Purification of the autotransporter protein Hbp ofEscherichia coli. FEMS Microbiology Letters, 2001, 205, 147-150.	1.8	16
76	Variation in the Composition and Pore Function of Major Outer Membrane Pore Protein P2 of <i>Haemophilus influenzae</i> from Cystic Fibrosis Patients. Antimicrobial Agents and Chemotherapy, 1999, 43, 226-232.	3.2	16
77	Stress-Based High-Throughput Screening Assays to Identify Inhibitors of Cell Envelope Biogenesis. Antibiotics, 2020, 9, 808.	3.7	15
78	The Polypeptide Transport-associated (POTRA) Domains of TpsB Transporters Determine the System Specificity of Two-partner Secretion Systems. Journal of Biological Chemistry, 2014, 289, 19799-19809.	3.4	14
79	A post-insertion strategy for surface functionalization of bacterial and mammalian cell-derived extracellular vesicles. Biochimica Et Biophysica Acta - General Subjects, 2021, 1865, 129763.	2.4	13
80	A ban on BAM: an update on inhibitors of the β-barrel assembly machinery. FEMS Microbiology Letters, 2021, 368, .	1.8	13
81	Combining Cell Envelope Stress Reporter Assays in a Screening Approach to Identify BAM Complex Inhibitors. ACS Infectious Diseases, 2021, 7, 2250-2263.	3.8	13
82	Genes of non-typeable Haemophilus influenzae expressed during interaction with human epithelial cell lines. Molecular Microbiology, 2002, 45, 485-500.	2.5	12
83	Comparing autotransporter \hat{l}^2 -domain configurations for their capacity to secrete heterologous proteins to the cell surface. PLoS ONE, 2018, 13, e0191622.	2.5	11
84	Bacterial inclusion bodies function as vehicles for dendritic cell-mediated T cell responses. Cellular and Molecular Immunology, 2020, 17, 415-417.	10.5	9
85	Protein Secretion Mechanisms in Pseudomonas. , 2004, , 749-791.		7
86	Activators of the Glutamate-Dependent Acid Resistance System Alleviate Deleterious Effects of YidC Depletion in <i>Escherichia coli</i> . Journal of Bacteriology, 2011, 193, 1308-1316.	2.2	7
87	Meningococcal Two-Partner Secretion Systems and Their Association with Outcome in Patients with Meningitis. Infection and Immunity, 2016, 84, 2534-2540.	2.2	7
88	Eeyarestatin 24 impairs SecYEGâ€dependent protein trafficking and inhibits growth of clinically relevant pathogens. Molecular Microbiology, 2021, 115, 28-40.	2.5	7
89	Stapling of Peptides Potentiates the Antibiotic Treatment of Acinetobacter baumannii In Vivo. Antibiotics, 2022, 11, 273.	3.7	6
90	Protein Folding in Bacterial Adhesion: Secretion and Folding of Classical Monomeric Autotransporters. Advances in Experimental Medicine and Biology, 2011, 715, 125-142.	1.6	5

#	Article	IF	CITATIONS
91	Transcription activation by histone-like protein integration host factor. Methods in Enzymology, 1996, 274, 32-43.	1.0	4
92	Overproducing the BAM complex improves secretion of difficult-to-secrete recombinant autotransporter chimeras. Microbial Cell Factories, 2021, 20, 176.	4.0	3
93	Overexpression of the Bam Complex Improves the Production of Chlamydia trachomatis MOMP in the E. coli Outer Membrane. International Journal of Molecular Sciences, 2022, 23, 7393.	4.1	3