
Michaela U Gack

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3431199/publications.pdf Version: 2024-02-01

MICHAELA LL CACK

#	Article	IF	CITATIONS
1	Agingâ€related cell typeâ€specific pathophysiologic immune responses that exacerbate disease severity in aged COVIDâ€19 patients. Aging Cell, 2022, 21, e13544.	6.7	11
2	The US3 Kinase of Herpes Simplex Virus Phosphorylates the RNA Sensor RIC-I To Suppress Innate Immunity. Journal of Virology, 2022, 96, JVI0151021.	3.4	8
3	SARS-CoV-2 learned the â€~Alpha'bet of immune evasion. Nature Immunology, 2022, 23, 351-353.	14.5	3
4	The <i>BRCA1</i> Pseudogene Negatively Regulates Antitumor Responses through Inhibition of Innate Immune Defense Mechanisms. Cancer Research, 2021, 81, 1540-1551.	0.9	6
5	Viral Evasion of RIG-I-Like Receptor-Mediated Immunity through Dysregulation of Ubiquitination and ISGylation. Viruses, 2021, 13, 182.	3.3	20
6	Nonsense-mediated decay controls the reactivation of the oncogenic herpesviruses EBV and KSHV. PLoS Biology, 2021, 19, e3001097.	5.6	12
7	The antiviral activities of TRIM proteins. Current Opinion in Microbiology, 2021, 59, 50-57.	5.1	56
8	The herpesvirus accessory protein $\hat{I}^3134.5$ facilitates viral replication by disabling mitochondrial translocation of RIG-I. PLoS Pathogens, 2021, 17, e1009446.	4.7	16
9	ISG15-dependent activation of the sensor MDA5 is antagonized by the SARS-CoV-2 papain-like protease to evade host innate immunity. Nature Microbiology, 2021, 6, 467-478.	13.3	192
10	The Small t Antigen of JC Virus Antagonizes RIG-I-Mediated Innate Immunity by Inhibiting TRIM25's RNA Binding Ability. MBio, 2021, 12, .	4.1	14
11	Mutations derived from horseshoe bat ACE2 orthologs enhance ACE2-Fc neutralization of SARS-CoV-2. PLoS Pathogens, 2021, 17, e1009501.	4.7	97
12	Biographical Feature: Bernhard Fleckenstein. Journal of Virology, 2021, 95, e0089621.	3.4	0
13	High-throughput RNA sequencing of paraformaldehyde-fixed single cells. Nature Communications, 2021, 12, 5636.	12.8	29
14	Herpesvirus-mediated stabilization of ICPO expression neutralizes restriction by TRIM23. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	7
15	RIG-I-like receptors: their regulation and roles in RNA sensing. Nature Reviews Immunology, 2020, 20, 537-551.	22.7	838
16	Distinct and Orchestrated Functions of RNA Sensors in Innate Immunity. Immunity, 2020, 53, 26-42.	14.3	83
17	Dysregulation of type I interferon responses in COVID-19. Nature Reviews Immunology, 2020, 20, 397-398.	22.7	374
18	A network medicine approach to investigation and population-based validation of disease manifestations and drug repurposing for COVID-19. PLoS Biology, 2020, 18, e3000970.	5.6	139

MICHAELA U GACK

#	Article	IF	CITATIONS
19	Zika Virus NS3 Mimics a Cellular 14-3-3-Binding Motif to Antagonize RIG-I- and MDA5-Mediated Innate Immunity. Cell Host and Microbe, 2019, 26, 493-503.e6.	11.0	91
20	Evasion of Innate and Intrinsic Antiviral Pathways by the Zika Virus. Viruses, 2019, 11, 970.	3.3	43
21	Disassembly of the TRIM23-TBK1 Complex by the Us11 Protein of Herpes Simplex Virus 1 Impairs Autophagy. Journal of Virology, 2019, 93, .	3.4	27
22	Endogenous Nucleic Acid Recognition by RIC-I-Like Receptors and cGAS. Journal of Interferon and Cytokine Research, 2019, 39, 450-458.	1.2	29
23	FBXO38 Drives PD-1 to Destruction. Trends in Immunology, 2019, 40, 81-83.	6.8	13
24	Centrosomal protein TRIM43 restricts herpesvirus infection by regulating nuclear lamina integrity. Nature Microbiology, 2019, 4, 164-176.	13.3	37
25	The Human Papillomavirus E6 Oncoprotein Targets USP15 and TRIM25 To Suppress RIG-I-Mediated Innate Immune Signaling. Journal of Virology, 2018, 92, .	3.4	97
26	Identification of a second binding site on the TRIM25 B30.2 domain. Biochemical Journal, 2018, 475, 429-440.	3.7	11
27	Viral unmasking of cellular 5S rRNA pseudogene transcripts induces RIG-I-mediated immunity. Nature Immunology, 2018, 19, 53-62.	14.5	179
28	Dusting for flu's fingerprints. Nature Microbiology, 2018, 3, 1196-1197.	13.3	0
29	TRIM25 Binds RNA to Modulate Cellular Anti-viral Defense. Journal of Molecular Biology, 2018, 430, 5280-5293.	4.2	66
30	Viral Anti-CRISPR Tactics: No Success without Sacrifice. Immunity, 2018, 49, 391-393.	14.3	5
31	TRIM Proteins and Their Roles in Antiviral Host Defenses. Annual Review of Virology, 2018, 5, 385-405.	6.7	211
32	TRIM proteins: New players in virus-induced autophagy. PLoS Pathogens, 2018, 14, e1006787.	4.7	39
33	ARD1/TRIM23. , 2018, , 1-8.		0
34	Viral pathogenesis: Dengue virus takes on cGAS. Nature Microbiology, 2017, 2, 17050.	13.3	3
35	Proteasome-independent polyubiquitin linkage regulates synapse scaffolding, efficacy, and plasticity. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E8760-E8769.	7.1	57
36	TRIM23 mediates virus-induced autophagy via activation of TBK1. Nature Microbiology, 2017, 2, 1543-1557.	13.3	160

MICHAELA U GACK

#	Article	IF	CITATIONS
37	Post-translational Control of Intracellular Pathogen Sensing Pathways. Trends in Immunology, 2017, 38, 39-52.	6.8	129
38	What viruses can teach us about the human immune system. PLoS Pathogens, 2017, 13, e1006364.	4.7	2
39	Viral evasion of intracellular DNA and RNA sensing. Nature Reviews Microbiology, 2016, 14, 360-373.	28.6	354
40	Mechanism of TRIM25 Catalytic Activation in the Antiviral RIG-I Pathway. Cell Reports, 2016, 16, 1315-1325.	6.4	114
41	Innate immune escape by Dengue and West Nile viruses. Current Opinion in Virology, 2016, 20, 119-128.	5.4	57
42	A phosphomimetic-based mechanism of dengue virus to antagonize innate immunity. Nature Immunology, 2016, 17, 523-530.	14.5	90
43	The Bioactive Lipid 4-Hydroxyphenyl Retinamide Inhibits Flavivirus Replication. Antimicrobial Agents and Chemotherapy, 2015, 59, 85-95.	3.2	43
44	RIG-I-like receptor regulation in virus infection and immunity. Current Opinion in Virology, 2015, 12, 7-14.	5.4	149
45	Ubiquitination in the antiviral immune response. Virology, 2015, 479-480, 52-65.	2.4	142
46	RIG-I Works Double Duty. Cell Host and Microbe, 2015, 17, 285-287.	11.0	5
47	Intracellular detection of viral nucleic acids. Current Opinion in Microbiology, 2015, 26, 1-9.	5.1	103
48	Delicate coordination of TRIM21's dual activity in virus neutralization and signaling. Proceedings of the United States of America, 2015, 112, 9797-9798.	7.1	0
49	Reading the fine print: sequence-specific activation of cGAS. Nature Immunology, 2015, 16, 1009-1010.	14.5	1
50	Prostaglandin E2: the Villain in the Host Response to Influenza Virus. Immunity, 2014, 40, 453-454.	14.3	11
51	Mechanisms of RIG-I-Like Receptor Activation and Manipulation by Viral Pathogens. Journal of Virology, 2014, 88, 5213-5216.	3.4	105
52	The Ubiquitin-Specific Protease USP15 Promotes RIG-l–Mediated Antiviral Signaling by Deubiquitylating TRIM25. Science Signaling, 2014, 7, ra3.	3.6	142
53	Cyclic guanosine monophosphate/adenosine monophosphate synthase (cGAS), innate immune responses, and viral hepatitis. Hepatology, 2014, 60, 1098-1100.	7.3	2
54	Regulation of RIG-I-like receptor signaling by host and viral proteins. Cytokine and Growth Factor Reviews, 2014, 25, 491-505.	7.2	95

MICHAELA U GACK

#	Article	IF	CITATIONS
55	Measles Virus Suppresses RIG-I-like Receptor Activation in Dendritic Cells via DC-SIGN-Mediated Inhibition of PP1 Phosphatases. Cell Host and Microbe, 2014, 16, 31-42.	11.0	89
56	Antagonism of the Phosphatase PP1 by the Measles Virus V Protein Is Required for Innate Immune Escape of MDA5. Cell Host and Microbe, 2014, 16, 19-30.	11.0	109
57	Dephosphorylation of the RNA Sensors RIG-I and MDA5 by the Phosphatase PP1 Is Essential for Innate Immune Signaling. Immunity, 2013, 38, 437-449.	14.3	248
58	Crystal structure of the TRIM25 B30.2 (PRYSPRY) domain: a key component of antiviral signalling. Biochemical Journal, 2013, 456, 231-240.	3.7	42
59	Species-Specific Inhibition of RIG-I Ubiquitination and IFN Induction by the Influenza A Virus NS1 Protein. PLoS Pathogens, 2012, 8, e1003059.	4.7	273
60	Conventional Protein Kinase C-α (PKC-α) and PKC-β Negatively Regulate RIG-I Antiviral Signal Transduction. Journal of Virology, 2012, 86, 1358-1371.	3.4	97
61	TRIMming Flavivirus Infection. Cell Host and Microbe, 2011, 10, 175-177.	11.0	6
62	Linear Ubiquitin Assembly Complex Negatively Regulates RIG-I- and TRIM25-Mediated Type I Interferon Induction. Molecular Cell, 2011, 41, 354-365.	9.7	189
63	Negative Role of RIG-I Serine 8 Phosphorylation in the Regulation of Interferon-Î ² Production. Journal of Biological Chemistry, 2010, 285, 20252-20261.	3.4	96
64	Phosphorylation-Mediated Negative Regulation of RIG-I Antiviral Activity. Journal of Virology, 2010, 84, 3220-3229.	3.4	116
65	Cytosolic Viral Sensor RIG-I Is a 5'-Triphosphate–Dependent Translocase on Double-Stranded RNA. Science, 2009, 323, 1070-1074.	12.6	325
66	Beclin1-binding UVRAG targets the class C Vps complex to coordinate autophagosome maturation and endocytic trafficking. Nature Cell Biology, 2008, 10, 776-787.	10.3	690
67	Roles of RIG-I N-terminal tandem CARD and splice variant in TRIM25-mediated antiviral signal transduction. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 16743-16748.	7.1	219
68	Kaposi's Sarcoma–Associated Herpesvirus Viral IFN Regulatory Factor 3 Stabilizes Hypoxia-Inducible Factor-1α to Induce Vascular Endothelial Growth Factor Expression. Cancer Research, 2008, 68, 1751-1759.	0.9	91
69	Inhibition of Interferon Regulatory Factor 7 (IRF7)-Mediated Interferon Signal Transduction by the Kaposi's Sarcoma-Associated Herpesvirus Viral IRF Homolog vIRF3. Journal of Virology, 2007, 81, 8282-8292.	3.4	115
70	TRIM25 RING-finger E3 ubiquitin ligase is essential for RIG-I-mediated antiviral activity. Nature, 2007, 446, 916-920.	27.8	1,405
71	Growth Transformation of Human T Cells by Herpesvirus Saimiri Requires Multiple Tip-Lck Interaction Motifs. Journal of Virology, 2006, 80, 9934-9942.	3.4	20