Michaela U Gack

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3431199/publications.pdf

Version: 2024-02-01

81900 98798 8,671 71 39 67 citations g-index h-index papers 77 77 77 10731 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	TRIM25 RING-finger E3 ubiquitin ligase is essential for RIG-I-mediated antiviral activity. Nature, 2007, 446, 916-920.	27.8	1,405
2	RIG-I-like receptors: their regulation and roles in RNA sensing. Nature Reviews Immunology, 2020, 20, 537-551.	22.7	838
3	Beclin1-binding UVRAG targets the class C Vps complex to coordinate autophagosome maturation and endocytic trafficking. Nature Cell Biology, 2008, 10, 776-787.	10.3	690
4	Dysregulation of type I interferon responses in COVID-19. Nature Reviews Immunology, 2020, 20, 397-398.	22.7	374
5	Viral evasion of intracellular DNA and RNA sensing. Nature Reviews Microbiology, 2016, 14, 360-373.	28.6	354
6	Cytosolic Viral Sensor RIC-I Is a 5'-Triphosphate–Dependent Translocase on Double-Stranded RNA. Science, 2009, 323, 1070-1074.	12.6	325
7	Species-Specific Inhibition of RIG-I Ubiquitination and IFN Induction by the Influenza A Virus NS1 Protein. PLoS Pathogens, 2012, 8, e1003059.	4.7	273
8	Dephosphorylation of the RNA Sensors RIG-I and MDA5 by the Phosphatase PP1 Is Essential for Innate Immune Signaling. Immunity, 2013, 38, 437-449.	14.3	248
9	Roles of RIG-I N-terminal tandem CARD and splice variant in TRIM25-mediated antiviral signal transduction. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 16743-16748.	7.1	219
10	TRIM Proteins and Their Roles in Antiviral Host Defenses. Annual Review of Virology, 2018, 5, 385-405.	6.7	211
11	ISG15-dependent activation of the sensor MDA5 is antagonized by the SARS-CoV-2 papain-like protease to evade host innate immunity. Nature Microbiology, 2021, 6, 467-478.	13.3	192
12	Linear Ubiquitin Assembly Complex Negatively Regulates RIG-I- and TRIM25-Mediated Type I Interferon Induction. Molecular Cell, 2011, 41, 354-365.	9.7	189
13	Viral unmasking of cellular 5S rRNA pseudogene transcripts induces RIG-I-mediated immunity. Nature Immunology, 2018, 19, 53-62.	14.5	179
14	TRIM23 mediates virus-induced autophagy via activation of TBK1. Nature Microbiology, 2017, 2, 1543-1557.	13.3	160
15	RIG-I-like receptor regulation in virus infection and immunity. Current Opinion in Virology, 2015, 12, 7-14.	5.4	149
16	The Ubiquitin-Specific Protease USP15 Promotes RIG-I–Mediated Antiviral Signaling by Deubiquitylating TRIM25. Science Signaling, 2014, 7, ra3.	3.6	142
17	Ubiquitination in the antiviral immune response. Virology, 2015, 479-480, 52-65.	2.4	142
18	A network medicine approach to investigation and population-based validation of disease manifestations and drug repurposing for COVID-19. PLoS Biology, 2020, 18, e3000970.	5.6	139

#	Article	IF	CITATIONS
19	Post-translational Control of Intracellular Pathogen Sensing Pathways. Trends in Immunology, 2017, 38, 39-52.	6.8	129
20	Phosphorylation-Mediated Negative Regulation of RIG-I Antiviral Activity. Journal of Virology, 2010, 84, 3220-3229.	3.4	116
21	Inhibition of Interferon Regulatory Factor 7 (IRF7)-Mediated Interferon Signal Transduction by the Kaposi's Sarcoma-Associated Herpesvirus Viral IRF Homolog vIRF3. Journal of Virology, 2007, 81, 8282-8292.	3.4	115
22	Mechanism of TRIM25 Catalytic Activation in the Antiviral RIG-I Pathway. Cell Reports, 2016, 16, 1315-1325.	6.4	114
23	Antagonism of the Phosphatase PP1 by the Measles Virus V Protein Is Required for Innate Immune Escape of MDA5. Cell Host and Microbe, 2014, 16, 19-30.	11.0	109
24	Mechanisms of RIG-I-Like Receptor Activation and Manipulation by Viral Pathogens. Journal of Virology, 2014, 88, 5213-5216.	3.4	105
25	Intracellular detection of viral nucleic acids. Current Opinion in Microbiology, 2015, 26, 1-9.	5.1	103
26	Conventional Protein Kinase C- \hat{l}_{\pm} (PKC- \hat{l}_{\pm}) and PKC- \hat{l}^2 Negatively Regulate RIG-I Antiviral Signal Transduction. Journal of Virology, 2012, 86, 1358-1371.	3.4	97
27	The Human Papillomavirus E6 Oncoprotein Targets USP15 and TRIM25 To Suppress RIG-I-Mediated Innate Immune Signaling. Journal of Virology, 2018, 92, .	3.4	97
28	Mutations derived from horseshoe bat ACE2 orthologs enhance ACE2-Fc neutralization of SARS-CoV-2. PLoS Pathogens, 2021, 17, e1009501.	4.7	97
29	Negative Role of RIG-I Serine 8 Phosphorylation in the Regulation of Interferon- \hat{l}^2 Production. Journal of Biological Chemistry, 2010, 285, 20252-20261.	3.4	96
30	Regulation of RIG-I-like receptor signaling by host and viral proteins. Cytokine and Growth Factor Reviews, 2014, 25, 491-505.	7.2	95
31	Kaposi's Sarcoma–Associated Herpesvirus Viral IFN Regulatory Factor 3 Stabilizes Hypoxia-Inducible Factor-1α to Induce Vascular Endothelial Growth Factor Expression. Cancer Research, 2008, 68, 1751-1759.	0.9	91
32	Zika Virus NS3 Mimics a Cellular 14-3-3-Binding Motif to Antagonize RIG-I- and MDA5-Mediated Innate Immunity. Cell Host and Microbe, 2019, 26, 493-503.e6.	11.0	91
33	A phosphomimetic-based mechanism of dengue virus to antagonize innate immunity. Nature Immunology, 2016, 17, 523-530.	14.5	90
34	Measles Virus Suppresses RIG-I-like Receptor Activation in Dendritic Cells via DC-SIGN-Mediated Inhibition of PP1 Phosphatases. Cell Host and Microbe, 2014, 16, 31-42.	11.0	89
35	Distinct and Orchestrated Functions of RNA Sensors in Innate Immunity. Immunity, 2020, 53, 26-42.	14.3	83
36	TRIM25 Binds RNA to Modulate Cellular Anti-viral Defense. Journal of Molecular Biology, 2018, 430, 5280-5293.	4.2	66

3

#	Article	IF	CITATIONS
37	Innate immune escape by Dengue and West Nile viruses. Current Opinion in Virology, 2016, 20, 119-128.	5.4	57
38	Proteasome-independent polyubiquitin linkage regulates synapse scaffolding, efficacy, and plasticity. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E8760-E8769.	7.1	57
39	The antiviral activities of TRIM proteins. Current Opinion in Microbiology, 2021, 59, 50-57.	5.1	56
40	The Bioactive Lipid 4-Hydroxyphenyl Retinamide Inhibits Flavivirus Replication. Antimicrobial Agents and Chemotherapy, 2015, 59, 85-95.	3.2	43
41	Evasion of Innate and Intrinsic Antiviral Pathways by the Zika Virus. Viruses, 2019, 11, 970.	3.3	43
42	Crystal structure of the TRIM25 B30.2 (PRYSPRY) domain: a key component of antiviral signalling. Biochemical Journal, 2013, 456, 231-240.	3.7	42
43	TRIM proteins: New players in virus-induced autophagy. PLoS Pathogens, 2018, 14, e1006787.	4.7	39
44	Centrosomal protein TRIM43 restricts herpesvirus infection by regulating nuclear lamina integrity. Nature Microbiology, 2019, 4, 164-176.	13.3	37
45	Endogenous Nucleic Acid Recognition by RIG-I-Like Receptors and cGAS. Journal of Interferon and Cytokine Research, 2019, 39, 450-458.	1.2	29
46	High-throughput RNA sequencing of paraformaldehyde-fixed single cells. Nature Communications, 2021, 12, 5636.	12.8	29
47	Disassembly of the TRIM23-TBK1 Complex by the Us11 Protein of Herpes Simplex Virus 1 Impairs Autophagy. Journal of Virology, 2019, 93, .	3.4	27
48	Growth Transformation of Human T Cells by Herpesvirus Saimiri Requires Multiple Tip-Lck Interaction Motifs. Journal of Virology, 2006, 80, 9934-9942.	3.4	20
49	Viral Evasion of RIG-I-Like Receptor-Mediated Immunity through Dysregulation of Ubiquitination and ISGylation. Viruses, 2021, 13, 182.	3.3	20
50	The herpesvirus accessory protein $\hat{l}^3134.5$ facilitates viral replication by disabling mitochondrial translocation of RIG-I. PLoS Pathogens, 2021, 17, e1009446.	4.7	16
51	The Small t Antigen of JC Virus Antagonizes RIG-I-Mediated Innate Immunity by Inhibiting TRIM25's RNA Binding Ability. MBio, 2021, 12, .	4.1	14
52	FBXO38 Drives PD-1 to Destruction. Trends in Immunology, 2019, 40, 81-83.	6.8	13
53	Nonsense-mediated decay controls the reactivation of the oncogenic herpesviruses EBV and KSHV. PLoS Biology, 2021, 19, e3001097.	5.6	12
54	Prostaglandin E2: the Villain in the Host Response to Influenza Virus. Immunity, 2014, 40, 453-454.	14.3	11

#	Article	IF	Citations
55	Identification of a second binding site on the TRIM25 B30.2 domain. Biochemical Journal, 2018, 475, 429-440.	3.7	11
56	Agingâ€related cell typeâ€specific pathophysiologic immune responses that exacerbate disease severity in aged COVIDâ€19 patients. Aging Cell, 2022, 21, e13544.	6.7	11
57	The US3 Kinase of Herpes Simplex Virus Phosphorylates the RNA Sensor RIG-I To Suppress Innate Immunity. Journal of Virology, 2022, 96, JVI0151021.	3.4	8
58	Herpesvirus-mediated stabilization of ICPO expression neutralizes restriction by TRIM23. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	7
59	TRIMming Flavivirus Infection. Cell Host and Microbe, 2011, 10, 175-177.	11.0	6
60	The <i>BRCA1</i> Pseudogene Negatively Regulates Antitumor Responses through Inhibition of Innate Immune Defense Mechanisms. Cancer Research, 2021, 81, 1540-1551.	0.9	6
61	RIG-I Works Double Duty. Cell Host and Microbe, 2015, 17, 285-287.	11.0	5
62	Viral Anti-CRISPR Tactics: No Success without Sacrifice. Immunity, 2018, 49, 391-393.	14.3	5
63	Viral pathogenesis: Dengue virus takes on cGAS. Nature Microbiology, 2017, 2, 17050.	13.3	3
64	SARS-CoV-2 learned the â€~Alpha'bet of immune evasion. Nature Immunology, 2022, 23, 351-353.	14.5	3
65	Cyclic guanosine monophosphate/adenosine monophosphate synthase (cGAS), innate immune responses, and viral hepatitis. Hepatology, 2014, 60, 1098-1100.	7.3	2
66	What viruses can teach us about the human immune system. PLoS Pathogens, 2017, 13, e1006364.	4.7	2
67	Reading the fine print: sequence-specific activation of cGAS. Nature Immunology, 2015, 16, 1009-1010.	14.5	1
68	Delicate coordination of TRIM21's dual activity in virus neutralization and signaling. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 9797-9798.	7.1	0
69	Dusting for flu's fingerprints. Nature Microbiology, 2018, 3, 1196-1197.	13.3	0
70	Biographical Feature: Bernhard Fleckenstein. Journal of Virology, 2021, 95, e0089621.	3.4	0
71	ARD1/TRIM23., 2018, , 1-8.		0