Jae Won Jang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3430799/publications.pdf Version: 2024-02-01

LAF WON LANC

#	Article	IF	CITATIONS
1	Opposite Raman Shift of Ring Stretching Dependent on the Coordinated Silver Volume in Surface-Enhanced Raman Spectroscopy of Polypyrrole. Journal of Physical Chemistry Letters, 2022, 13, 1300-1306.	4.6	8
2	Electron donor or acceptor behavior of a AuCl3 dopant manipulated by dip-pen nanolithography on a MoS2 thin-film transistor. Applied Surface Science, 2022, 588, 152846.	6.1	4
3	Plasmon expedited response time and enhanced response in gold nanoparticles-decorated zinc oxide nanowire-based nitrogen dioxide gas sensor at room temperature. Journal of Colloid and Interface Science, 2021, 582, 658-668.	9.4	28
4	Direct curvature measurement of the compartments in bamboo-shaped multi-walled carbon nanotubes via scanning probe microscopy. Scientific Reports, 2021, 11, 701.	3.3	5
5	Optimized Hole Injection, Diffusion, and Consumption for Efficient Metal-Assisted Chemical Etching Depending on the Silicon Doping Type and Metal Catalyst Area. Journal of Physical Chemistry C, 2021, 125, 22713-22723.	3.1	7
6	Dimensional crossover of quantum Hall conductivity in graphite through proton-irradiation. Carbon, 2021, 187, 126-126.	10.3	0
7	Mass Fabrication of 3D Silicon Nanoâ€∤Microstructures by Fabâ€Free Process Using Tipâ€Based Lithography. Small, 2021, 17, e2005036.	10.0	13
8	Gold Nanohelices: A New Synthesis Route, Characterization, and Plasmonic E-Field Enhancement. ACS Omega, 2020, 5, 14860-14867.	3.5	4
9	Understanding Optomagnetic Interactions in Fe Nanowire–Au Nanoring Hybrid Structures Synthesized through Coaxial Lithography. Chemistry of Materials, 2020, 32, 2843-2851.	6.7	2
10	Structural and Optical Properties of Epitaxial Iron Oxide Thin Films Deposited by Pulsed Laser Deposition. Journal of the Korean Physical Society, 2020, 76, 512-516.	0.7	3
11	Efficient direct electron transfer via band alignment in hybrid metal-semiconductor nanostructures toward enhanced photocatalysts. Nano Energy, 2019, 63, 103841.	16.0	13
12	Investigation on the Structural, Optical, and Vibrational Properties of Lead-Free (1 â^' x) Na0.5Bi0.5TiO3-xBiMnO3 Ceramics. Journal of the Korean Physical Society, 2019, 75, 229-235.	0.7	1
13	Effect of Wavelength-Scale Cu ₂ O Particles on the Performance of Photocathodes for Solar Water Splitting. Journal of Physical Chemistry C, 2019, 123, 24846-24854.	3.1	5
14	Generating semi-metallic conductivity in polymers by laser-driven nanostructural reorganization. Materials Horizons, 2019, 6, 2143-2151.	12.2	21
15	Fabrication of diffraction gratings by top-down and bottom-up approaches based on scanning probe lithography. Nanoscale, 2019, 11, 2326-2334.	5.6	9
16	Effect of dopant-induced defects on structural, electrical, and enhanced ferromagnetism and magnetoelectric properties of Dy and Sr co-doped BiFeO3. Journal of Materials Science: Materials in Electronics, 2019, 30, 7359-7366.	2.2	7
17	Thermoelectric properties of dispersant-free semiconducting single-walled carbon nanotubes sorted by a flavin extraction method. Chemical Communications, 2019, 55, 2636-2639.	4.1	13
18	Helical Structure-Dependent Surface-Enhanced Raman Spectroscopy Enhancement in Gold Nanohelices. Journal of Physical Chemistry C, 2019, 123, 5626-5633.	3.1	9

Jae Won Jang

#	Article	IF	CITATIONS
19	Structural, vibrational, and enhanced magneto-electric coupling in Ho-substituted BiFeO3. Journal of Alloys and Compounds, 2018, 750, 276-285.	5.5	29
20	Overcoming Fill Factor Reduction in Ternary Polymer Solar Cells by Matching the Highest Occupied Molecular Orbital Energy Levels of Donor Polymers. Advanced Energy Materials, 2018, 8, 1702251.	19.5	48
21	Direct Observation of Plasmon-Induced Interfacial Charge Separation in Metal/Semiconductor Hybrid Nanostructures by Measuring Surface Potentials. Nano Letters, 2018, 18, 109-116.	9.1	55
22	A hot-electron-triggered catalytic oxidation reaction of plasmonic silver nanoparticles evidenced by surface potential mapping. Journal of Materials Chemistry A, 2018, 6, 20939-20946.	10.3	18
23	Can Static Electricity on a Conductor Drive a Redox Reaction: Contact Electrification of Au by Polydimethylsiloxane, Charge Inversion in Water, and Redox Reaction. Journal of the American Chemical Society, 2018, 140, 14687-14695.	13.7	15
24	Bulk Heterojunction-Assisted Grain Growth for Controllable and Highly Crystalline Perovskite Films. ACS Applied Materials & Interfaces, 2018, 10, 31366-31373.	8.0	17
25	Gate-enhanced photocurrent of (6,5) single-walled carbon nanotube based field effect transistor. Carbon, 2018, 139, 709-715.	10.3	3
26	Exponential decrease of scission length and low tensile strength of bamboo-shaped multi-walled carbon nanotubes under ultrasonication. Current Applied Physics, 2017, 17, 507-512.	2.4	6
27	Polycrystalline Au Nanomembrane as a Tool for Two-Tone Micro/Nanolithography. Chemistry of Materials, 2017, 29, 3863-3872.	6.7	7
28	Effective hot-air annealing for improving the performance of perovskite solar cells. Solar Energy, 2017, 146, 359-367.	6.1	20
29	Single-Crystal-like Perovskite for High-Performance Solar Cells Using the Effective Merged Annealing Method. ACS Applied Materials & Interfaces, 2017, 9, 12382-12390.	8.0	41
30	Giant Temperature Coefficient of Resistivity and Cryogenic Sensitivity in Silicon with Galvanically Displaced Gold Nanoparticles in Freeze-Out Region. ACS Nano, 2017, 11, 1572-1580.	14.6	3
31	Structural, optical and multiferroic properties of pure and Dy modified YMnO3. Journal of Materials Science: Materials in Electronics, 2017, 28, 16788-16796.	2.2	7
32	Micro- and nano-patterns fabricated by embossed microscale stamp with trenched edges. RSC Advances, 2017, 7, 32058-32064.	3.6	5
33	Critical role of wettability in assembly of zirconia nanoparticles on a self-assembled monolayer-patterned substrate. Journal of Applied Physics, 2016, 120, 085304.	2.5	4
34	Open Circuit Potential Changes upon Protonation/Deprotonation of ï‰â€Functionalized Alkanethiols on Au: Determination of Surface p <i>K</i> _{1/2} in Aqueous and Nonâ€Aqueous System. Bulletin of the Korean Chemical Society, 2016, 37, 1537-1540.	1.9	0
35	Molecular Transport Junctions Created By Selfâ€Contacting Gapped Nanowires. Small, 2016, 12, 4349-4356.	10.0	4
36	Improvement of polypyrrole nanowire devices by plasmonic space charge generation: high photocurrent and wide spectral response by Ag nanoparticle decoration. Nanoscale, 2015, 7, 17328-17337.	5.6	14

JAE WON JANG

#	Article	IF	CITATIONS
37	Unconventional but tunable phase transition above the percolation threshold by two-layer conduction in electroless-deposited Au nanofeatures on silicon substrate. Nanotechnology, 2015, 26, 505202.	2.6	3
38	Finite-difference time-domain analysis on light extraction in a GaN light-emitting diode by empirically capable dielectric nano-features. Journal of Applied Physics, 2014, 116, 184302.	2.5	1
39	Mass fabrication of size-controllable hydrogel microarrays by dip-pen nanolithography with viscosity-tunable ink. Current Applied Physics, 2014, 14, 790-793.	2.4	3
40	Generation of plasmonic Au nanostructures in the visible wavelength using two-dimensional parallel dip-pen nanolithography. Nanoscale, 2014, 6, 7912.	5.6	17
41	Normalized Contact Force to Minimize "Electrode-Lead" Resistance in a Nanodevice. Bulletin of the Korean Chemical Society, 2014, 35, 2415-2418.	1.9	3
42	Userâ€Friendly Universal and Durable Subcellularâ€Scaled Template for Protein Binding: Application to Singleâ€Cell Patterning. Advanced Functional Materials, 2013, 23, 5840-5845.	14.9	7
43	Differences in the catalyst removal from single- and double-walled carbon nanotubes. Current Applied Physics, 2013, 13, 1069-1074.	2.4	9
44	Platinum Monolayer Electrocatalyst on Gold Nanostructures on Silicon for Photoelectrochemical Hydrogen Evolution. ACS Nano, 2013, 7, 6017-6023.	14.6	95
45	Fabrication and optical properties of zirconia nanoparticle array on a patterned hydrophilic-hydrophobic substrate. Journal of Applied Physics, 2013, 114, 234306.	2.5	4
46	Nanolithography: Userâ€Friendly Universal and Durable Subcellularâ€Scaled Template for Protein Binding: Application to Singleâ€Cell Patterning (Adv. Funct. Mater. 47/2013). Advanced Functional Materials, 2013, 23, 5826-5826.	14.9	0
47	Correlation Between Lateral Photovoltaic Effect and Conductivity in p-type Silicon Substrates. Bulletin of the Korean Chemical Society, 2013, 34, 1845-1847.	1.9	1
48	Matrixâ€Assisted Dipâ€Pen Nanolithography and Polymer Pen Lithography. Small, 2010, 6, 1077-1081.	10.0	79
49	Alignment Strategies for the Assembly of Nanowires with Submicron Diameters. Small, 2010, 6, 1736-1740.	10.0	25
50	Multiâ€ink pattern generation by dipâ€pen nanolithography [®] . Scanning, 2010, 32, 24-29.	1.5	23
51	Selfâ€leveling twoâ€dimensional probe arrays for Dip Pen Nanolithography [®] . Scanning, 2010, 32, 49-59.	1.5	20
52	Arrays of Nanoscale Lenses for Subwavelength Optical Lithography. Nano Letters, 2010, 10, 4399-4404.	9.1	47
53	Dip Pen Nanolithography® (DPN®) and the Deposition of Multiple Materials in Nanopatterning. , 2010, , .		0
54	Generation of Metal Photomasks by Dipâ€Pen Nanolithography. Small, 2009, 5, 1850-1853.	10.0	37

JAE WON JANG

#	Article	IF	CITATIONS
55	Inâ€Wire Conversion of a Metal Nanorod Segment into an Organic Semiconductor. Small, 2009, 5, 1527-1530.	10.0	17
56	Polyethylene Glycol as a Novel Resist and Sacrificial Material for Generating Positive and Negative Nanostructures. Small, 2008, 4, 920-924.	10.0	22
57	Topographically Flat, Chemically Patterned PDMS Stamps Made by Dipâ€Pen Nanolithography. Angewandte Chemie - International Edition, 2008, 47, 9951-9954.	13.8	49
58	Electrically Biased Nanolithography with KOH-Coated AFM Tips. Nano Letters, 2008, 8, 1451-1455.	9.1	24
59	On-Wire Lithography-Generated Molecule-Based Transport Junctions: A New Testbed for Molecular Electronics. Journal of the American Chemical Society, 2008, 130, 8166-8168.	13.7	104
60	Actuation of Self-Assembled Two-Component Rodlike Nanostructures. Nano Letters, 2008, 8, 4441-4445.	9.1	18
61	Sub-5-nm Gaps Prepared by On-Wire Lithography: Correlating Gap Size with Electrical Transport. Small, 2007, 3, 86-90.	10.0	52
62	A "Molecular Eraser―for Dip-Pen Nanolithography. Small, 2007, 3, 600-605.	10.0	35
63	Mechanical cutting of bamboo-shaped multiwalled carbon nanotubes by an atomic force microscope tip. Solid State Communications, 2005, 135, 683-686.	1.9	9
64	Interwall support in double-walled carbon nanotubes studied by scanning tunneling microscopy. Applied Physics Letters, 2005, 86, 023110.	3.3	25
65	Hydrogen storage capacity of different carbon nanostructures in ambient conditions. Journal of Applied Physics, 2005, 98, 074316.	2.5	19
66	Structural study of nitrogen-doping effects in bamboo-shaped multiwalled carbon nanotubes. Applied Physics Letters, 2004, 84, 2877-2879.	3.3	295