
## Kerstin Stahl

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3429602/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                             | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Drought in the Anthropocene. Nature Geoscience, 2016, 9, 89-91.                                                                                                                                                     | 12.9 | 537       |
| 2  | Candidate Distributions for Climatological Drought Indices ( <scp>SPI</scp> and <scp>SPEI</scp> ).<br>International Journal of Climatology, 2015, 35, 4027-4040.                                                    | 3.5  | 483       |
| 3  | Streamflow trends in Europe: evidence from a dataset of near-natural catchments. Hydrology and Earth System Sciences, 2010, 14, 2367-2382.                                                                          | 4.9  | 370       |
| 4  | Have streamflow droughts in Europe become more severe or frequent?. International Journal of Climatology, 2001, 21, 317-333.                                                                                        | 3.5  | 302       |
| 5  | Comparison of approaches for spatial interpolation of daily air temperature in a large region with complex topography and highly variable station density. Agricultural and Forest Meteorology, 2006, 139, 224-236. | 4.8  | 301       |
| 6  | Drought in a human-modified world: reframing drought definitions, understanding, and analysis<br>approaches. Hydrology and Earth System Sciences, 2016, 20, 3631-3650.                                              | 4.9  | 289       |
| 7  | Glacier change in western North America: influences on hydrology, geomorphic hazards and water quality. Hydrological Processes, 2009, 23, 42-61.                                                                    | 2.6  | 278       |
| 8  | Largeâ€scale river flow archives: importance, current status and future needs. Hydrological Processes, 2011, 25, 1191-1200.                                                                                         | 2.6  | 274       |
| 9  | Flash droughts present a new challenge for subseasonal-to-seasonal prediction. Nature Climate Change, 2020, 10, 191-199.                                                                                            | 18.8 | 210       |
| 10 | Coupled modelling of glacier and streamflow response to future climate scenarios. Water Resources<br>Research, 2008, 44, .                                                                                          | 4.2  | 199       |
| 11 | Impacts of European drought events: insights from an international database of text-based reports.<br>Natural Hazards and Earth System Sciences, 2016, 16, 801-819.                                                 | 3.6  | 187       |
| 12 | Modeling drought impact occurrence based on meteorological drought indices in Europe. Journal of<br>Hydrology, 2015, 530, 37-50.                                                                                    | 5.4  | 169       |
| 13 | Movement of outbreak populations of mountain pine beetle: influences of spatiotemporal patterns and climate. Ecography, 2008, 31, 348-358.                                                                          | 4.5  | 166       |
| 14 | Drought indicators revisited: the need for a wider consideration of environment and society. Wiley<br>Interdisciplinary Reviews: Water, 2016, 3, 516-536.                                                           | 6.5  | 161       |
| 15 | Hydrology needed to manage droughts: the 2015 European case. Hydrological Processes, 2016, 30, 3097-3104.                                                                                                           | 2.6  | 152       |
| 16 | Influence of watershed glacier coverage on summer streamflow in British Columbia, Canada. Water<br>Resources Research, 2006, 42, .                                                                                  | 4.2  | 150       |
| 17 | Climate change and the institutional resilience of international river basins. Journal of Peace Research, 2012, 49, 193-209.                                                                                        | 2.9  | 147       |
| 18 | Comparing Large-Scale Hydrological Model Simulations to Observed Runoff Percentiles in Europe.<br>Journal of Hydrometeorology, 2012, 13, 604-620.                                                                   | 1.9  | 135       |

| #  | Article                                                                                                                                                                                                                   | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Filling the white space on maps of European runoff trends: estimates from a multi-model ensemble.<br>Hydrology and Earth System Sciences, 2012, 16, 2035-2047.                                                            | 4.9 | 134       |
| 20 | The EuropeanÂ2015 drought from a hydrological perspective. Hydrology and Earth System Sciences, 2017, 21, 3001-3024.                                                                                                      | 4.9 | 132       |
| 21 | Estimating drought risk across Europe from reported drought impacts, drought indices, and vulnerability factors. Hydrology and Earth System Sciences, 2016, 20, 2779-2800.                                                | 4.9 | 126       |
| 22 | Climate change could alter the distribution of mountain pine beetle outbreaks in western Canada.<br>Ecography, 2012, 35, 211-223.                                                                                         | 4.5 | 122       |
| 23 | Climate-driven variability in the occurrence of major floods across North America and Europe.<br>Journal of Hydrology, 2017, 552, 704-717.                                                                                | 5.4 | 122       |
| 24 | Detection of runoff timing changes in pluvial, nival, and glacial rivers of western Canada. Water<br>Resources Research, 2009, 45, .                                                                                      | 4.2 | 117       |
| 25 | Towards pan-European drought risk maps: quantifying the link between drought indices and reported drought impacts. Environmental Research Letters, 2015, 10, 014008.                                                      | 5.2 | 116       |
| 26 | Comparison of approaches for spatial interpolation of daily air temperature in a large region with complex topography and highly variable station density. Agricultural and Forest Meteorology, 2006, 139, 224-236.       | 4.8 | 115       |
| 27 | The influence of decadal-scale variability on trends in long European streamflow records. Hydrology and Earth System Sciences, 2013, 17, 2717-2733.                                                                       | 4.9 | 113       |
| 28 | How well do meteorological indicators represent agricultural and forest drought across Europe?.<br>Environmental Research Letters, 2018, 13, 034042.                                                                      | 5.2 | 107       |
| 29 | Comparison of hydrological model structures based on recession and low flow simulations.<br>Hydrology and Earth System Sciences, 2011, 15, 3447-3459.                                                                     | 4.9 | 104       |
| 30 | Catchment water storage variation with elevation. Hydrological Processes, 2017, 31, 2000-2015.                                                                                                                            | 2.6 | 103       |
| 31 | The role of synoptic-scale circulation in the linkage between large-scale ocean–atmosphere indices<br>and winter surface climate in British Columbia, Canada. International Journal of Climatology, 2006,<br>26, 541-560. | 3.5 | 96        |
| 32 | Are streamflow recession characteristics really characteristic?. Hydrology and Earth System Sciences, 2013, 17, 817-828.                                                                                                  | 4.9 | 94        |
| 33 | A quantitative analysis to objectively appraise drought indicators and model drought impacts.<br>Hydrology and Earth System Sciences, 2016, 20, 2589-2609.                                                                | 4.9 | 94        |
| 34 | Exploring the link between drought indicators and impacts. Natural Hazards and Earth System Sciences, 2015, 15, 1381-1397.                                                                                                | 3.6 | 90        |
| 35 | Large-scale analysis of changing frequencies of rain-on-snow events with flood-generation potential.<br>Hydrology and Earth System Sciences, 2014, 18, 2695-2709.                                                         | 4.9 | 89        |
| 36 | Geography of international water conflict and cooperation: Data sets and applications. Water Resources Research, 2004, 40, .                                                                                              | 4.2 | 84        |

| #  | Article                                                                                                                                                                                                              | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Streamflow sensitivity to drought scenarios in catchments with different geology. Geophysical Research Letters, 2014, 41, 6174-6183.                                                                                 | 4.0 | 82        |
| 38 | Linking streamflow drought to the occurrence of atmospheric circulation patterns. Hydrological Sciences Journal, 1999, 44, 467-482.                                                                                  | 2.6 | 79        |
| 39 | A drought index accounting for snow. Water Resources Research, 2014, 50, 7861-7872.                                                                                                                                  | 4.2 | 78        |
| 40 | Human influences on streamflow drought characteristics in England and Wales. Hydrology and Earth<br>System Sciences, 2018, 22, 1051-1064.                                                                            | 4.9 | 65        |
| 41 | Spatial and temporal patterns of largeâ€scale droughts in Europe: Model dispersion and performance.<br>Geophysical Research Letters, 2014, 41, 429-434.                                                              | 4.0 | 63        |
| 42 | Snow redistribution for the hydrological modeling of alpine catchments. Wiley Interdisciplinary Reviews: Water, 2017, 4, e1232.                                                                                      | 6.5 | 63        |
| 43 | Effects of univariate and multivariate bias correction on hydrological impact projections in alpine catchments. Hydrology and Earth System Sciences, 2019, 23, 1339-1354.                                            | 4.9 | 63        |
| 44 | Climatology of winter cold spells in relation to mountain pine beetle mortality in British Columbia,<br>Canada. Climate Research, 2006, 32, 13-23.                                                                   | 1.1 | 62        |
| 45 | Large cale Assessment of Delayed Groundwater Responses to Drought. Water Resources Research,<br>2020, 56, e2019WR025441.                                                                                             | 4.2 | 60        |
| 46 | Comparison of different threshold level methods for drought propagation analysis in Germany.<br>Hydrology Research, 2017, 48, 1311-1326.                                                                             | 2.7 | 58        |
| 47 | Developing drought impact functions for drought risk management. Natural Hazards and Earth<br>System Sciences, 2017, 17, 1947-1960.                                                                                  | 3.6 | 51        |
| 48 | Natural and Human Influences on the Link Between Meteorological and Hydrological Drought Indices<br>for a Large Set of Catchments in the Contiguous United States. Water Resources Research, 2018, 54,<br>6005-6023. | 4.2 | 51        |
| 49 | The Processes, Patterns and Impacts of Low Flows Across Canada. Canadian Water Resources Journal, 2008, 33, 107-124.                                                                                                 | 1.2 | 50        |
| 50 | Attribution of European precipitation and temperature trends to changes in synoptic circulation.<br>Hydrology and Earth System Sciences, 2015, 19, 3093-3107.                                                        | 4.9 | 49        |
| 51 | Inter-comparison of weather and circulation type classifications for hydrological drought development. Physics and Chemistry of the Earth, 2010, 35, 507-515.                                                        | 2.9 | 46        |
| 52 | Low-frequency variability of European runoff. Hydrology and Earth System Sciences, 2011, 15, 2853-2869.                                                                                                              | 4.9 | 46        |
| 53 | Derivation of melt factors from glacier mass-balance records in western Canada. Journal of Glaciology, 2009, 55, 123-130.                                                                                            | 2.2 | 43        |
|    |                                                                                                                                                                                                                      |     |           |

Response to comment on  $\hat{a} \in \hat{C}$  and  $\hat{d}$  at Distributions for Climatological Drought Indices () Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 62 Td ( 3.5

| #  | Article                                                                                                                                                                                                                              | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Streamflow Data from Small Basins: A Challenging Test to High-Resolution Regional Climate<br>Modeling. Journal of Hydrometeorology, 2011, 12, 900-912.                                                                               | 1.9 | 41        |
| 56 | An assessment of trends and potential future changes in groundwater-baseflow drought based on catchment response times. Hydrology and Earth System Sciences, 2018, 22, 6209-6224.                                                    | 4.9 | 40        |
| 57 | Drought Characteristics Derived Based on the Standardized Streamflow Index: A Large Sample<br>Comparison for Parametric and Nonparametric Methods. Water Resources Research, 2020, 56,<br>e2019WR026315.                             | 4.2 | 37        |
| 58 | Spatial cross orrelation patterns of European low, mean and high flows. Hydrological Processes, 2011, 25, 1034-1045.                                                                                                                 | 2.6 | 36        |
| 59 | Beyond binary baseflow separation: a delayed-flow index for multiple streamflow contributions.<br>Hydrology and Earth System Sciences, 2020, 24, 849-867.                                                                            | 4.9 | 36        |
| 60 | The role of glacier changes and threshold definition in the characterisation of future streamflow droughts in glacierised catchments. Hydrology and Earth System Sciences, 2018, 22, 463-485.                                        | 4.9 | 33        |
| 61 | Indexâ€Based Characterization and Quantification of Groundwater Dynamics. Water Resources<br>Research, 2019, 55, 5575-5592.                                                                                                          | 4.2 | 33        |
| 62 | Magic components—why quantifying rain, snowmelt, and icemelt in river discharge is not easy.<br>Hydrological Processes, 2018, 32, 160-166.                                                                                           | 2.6 | 31        |
| 63 | Technical note: Representing glacier geometry changes in a semi-distributed hydrological model.<br>Hydrology and Earth System Sciences, 2018, 22, 2211-2224.                                                                         | 4.9 | 31        |
| 64 | An inventory of Alpine drought impact reports to explore past droughts in a mountain region.<br>Natural Hazards and Earth System Sciences, 2021, 21, 2485-2501.                                                                      | 3.6 | 30        |
| 65 | Synoptic sea-level pressure patterns generated by a general circulation model: comparison with types derived from NCEP/NCAR re-analysis and implications for downscaling. International Journal of Climatology, 2006, 26, 1727-1736. | 3.5 | 29        |
| 66 | Glacioâ€hydrological model calibration and evaluation. Wiley Interdisciplinary Reviews: Water, 2020, 7,<br>e1483.                                                                                                                    | 6.5 | 28        |
| 67 | Is there a superior conceptual groundwater model structure for baseflow simulation?. Hydrological Processes, 2015, 29, 1301-1313.                                                                                                    | 2.6 | 26        |
| 68 | Sensitivity of a data-driven soil water balance model to estimate summer evapotranspiration along a forest chronosequence. Hydrology and Earth System Sciences, 2011, 15, 3461-3473.                                                 | 4.9 | 24        |
| 69 | Influence of Hydroclimatology and Socioeconomic Conditions on Water-Related International Relations. Water International, 2005, 30, 270-282.                                                                                         | 1.0 | 21        |
| 70 | The compensating effect of glaciers: Characterizing the relation between interannual streamflow variability and glacier cover. Hydrological Processes, 2020, 34, 553-568.                                                            | 2.6 | 20        |
| 71 | The challenges of hydrological drought definition, quantification and communication: an<br>interdisciplinary perspective. Proceedings of the International Association of Hydrological Sciences,<br>O, 383, 291-295.                 | 1.0 | 20        |
| 72 | Hydrological response to warm and dry weather: do glaciers compensate?. Hydrology and Earth<br>System Sciences, 2021, 25, 3245-3265.                                                                                                 | 4.9 | 19        |

| #  | Article                                                                                                                                                                                                                            | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Different drought types and the spatial variability in their hazard, impact, and propagation characteristics. Natural Hazards and Earth System Sciences, 2022, 22, 2099-2116.                                                      | 3.6 | 17        |
| 74 | A multidisciplinary drought catalogue for southwestern Germany dating back toÂ1801. Natural<br>Hazards and Earth System Sciences, 2020, 20, 2979-2995.                                                                             | 3.6 | 16        |
| 75 | Physiographic and Climatic Controls on Regional Groundwater Dynamics. Water Resources Research, 2020, 56, e2019WR026545.                                                                                                           | 4.2 | 15        |
| 76 | Groundwater and baseflow drought responses to synthetic recharge stress tests. Hydrology and<br>Earth System Sciences, 2021, 25, 1053-1068.                                                                                        | 4.9 | 14        |
| 77 | A prototype platform for water resources monitoring and early recognition of critical droughts in<br>Switzerland. Proceedings of the International Association of Hydrological Sciences, 0, 364, 492-498.                          | 1.0 | 14        |
| 78 | Trends in groundwater levels in British Columbia. Canadian Water Resources Journal, 2014, 39, 15-31.                                                                                                                               | 1.2 | 13        |
| 79 | Evapotranspiration and land cover transitions: longâ€ŧerm watershed response in recovering forested ecosystems. Ecohydrology, 2012, 5, 721-732.                                                                                    | 2.4 | 12        |
| 80 | Patterns in the linkage of water quantity and quality during lowâ€flows. Hydrological Processes, 2017,<br>31, 4195-4205.                                                                                                           | 2.6 | 12        |
| 81 | A model comparison assessing the importance of lateral groundwater flows at the global scale.<br>Environmental Research Letters, 2022, 17, 044020.                                                                                 | 5.2 | 12        |
| 82 | Recent evidence for warmer and drier growing seasons in climate sensitive regions of Central<br>America from multiple global datasets. International Journal of Climatology, 2022, 42, 1399-1417.                                  | 3.5 | 11        |
| 83 | Groundwater extraction reduces tree vitality, growth and xylem hydraulic capacity in Quercus robur<br>during and after drought events. Scientific Reports, 2021, 11, 5149.                                                         | 3.3 | 10        |
| 84 | Stakeholder Coinquiries on Drought Impacts, Monitoring, and Early Warning Systems. Bulletin of the<br>American Meteorological Society, 2016, 97, ES217-ES220.                                                                      | 3.3 | 8         |
| 85 | Similarity-based approaches in hydrogeology: proposal of a new concept for data-scarce groundwater resource characterization and prediction. Hydrogeology Journal, 2021, 29, 1693.                                                 | 2.1 | 8         |
| 86 | Repository of Drought Event Impacts Across the Danube Catchment Countries Between 1981 and 2016<br>Using Publicly Available Sources. Acta Universitatis Agriculturae Et Silviculturae Mendelianae<br>Brunensis, 2019, 67, 925-938. | 0.4 | 8         |
| 87 | Controls on hydrologic drought duration in near-natural streamflow in Europe and the USA.<br>Hydrology and Earth System Sciences, 2016, 20, 4043-4059.                                                                             | 4.9 | 7         |
| 88 | Stress testing as complement to climate scenarios: recharge scenarios to quantify streamflow<br>drought sensitivity. Proceedings of the International Association of Hydrological Sciences, 0, 383,<br>43-50.                      | 1.0 | 7         |
| 89 | Evaluating tropical drought risk by combining open access gridded vulnerability and hazard data products. Science of the Total Environment, 2022, 822, 153493.                                                                     | 8.0 | 7         |
| 90 | The impact of the resolution of meteorological data sets on catchmentâ€scale precipitation and drought studies. International Journal of Climatology, 2018, 38, 3069-3081.                                                         | 3.5 | 6         |

| #  | Article                                                                                                                                                                                                              | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91 | Revisiting Major Dry Periods by Rolling Time Series Analysis for Human-Water Relevance in Drought.<br>Water Resources Management, 2022, 36, 2725-2739.                                                               | 3.9 | 5         |
| 92 | Assessment of the Vulnerability of a River System to Drought. Advances in Natural and Technological<br>Hazards Research, 2000, , 209-219.                                                                            | 1.1 | 2         |
| 93 | Fostering drought research and science-policy interfacing: Achievements of the DROUGHT-R&SPI project. , 2015, , 3-12.                                                                                                |     | 1         |
| 94 | Movement of outbreak populations of mountain pine beetle: influences of spatiotemporal patterns and climate. Ecography, 2008, .                                                                                      | 4.5 | 0         |
| 95 | The CH-IRP data set: a decade of fortnightly data on<br><i>Î'</i> <sup>2</sup> H and<br><i>Î'</i> <sup>18</sup> O in streamflow and<br>precipitation in Switzerland. Earth System Science Data. 2020. 12. 3057-3066. | 9.9 | 0         |