Thorsten Rissom

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3429558/publications.pdf

Version: 2024-02-01

44 papers

885 citations

430874 18 h-index 477307 29 g-index

44 all docs

44 docs citations

times ranked

44

1078 citing authors

#	Article	IF	Citations
1	Microstrain distribution mapping on CulnSe2 thin films by means of electron backscatter diffraction, X-ray diffraction, and Raman microspectroscopy. Ultramicroscopy, 2016, 169, 89-97.	1.9	12
2	Compositional and electrical properties of line and planar defects in Cu(In,Ga)Se ₂ thin films for solar cells – a review. Physica Status Solidi - Rapid Research Letters, 2016, 10, 363-375.	2.4	47
3	Grain-boundary character distribution and correlations with electrical and optoelectronic properties of CulnSe2 thin films. Acta Materialia, 2016, 118, 244-252.	7.9	21
4	Microstrain distributions in polycrystalline thin films measured by X-ray microdiffraction. Journal of Applied Crystallography, 2016, 49, 632-635.	4.5	10
5	Composition-dependent nanostructure of Cu(In,Ga)Se 2 powders and thin films. Thin Solid Films, 2015, 582, 356-360.	1.8	8
6	Ion beam analysis of Cu(In,Ga)Se 2 thin film solar cells. Applied Surface Science, 2015, 356, 631-638.	6.1	15
7	Origins of electrostatic potential wells at dislocations in polycrystalline Cu(In,Ga)Se2 thin films. Journal of Applied Physics, 2014, 115, .	2.5	22
8	Junction formation by Zn(O,S) sputtering yields CIGSe-based cells with efficiencies exceeding 18%. Progress in Photovoltaics: Research and Applications, 2014, 22, 161-165.	8.1	86
9	Real-time observation of the phase transformations and microstructural changes during the incorporation of In into a thin Cu film at 770K. Journal of Alloys and Compounds, 2014, 588, 644-647.	5.5	1
10	Electron-beam-induced current at absorber back surfaces of Cu(In,Ga)Se2 thin-film solar cells. Journal of Applied Physics, 2014, 115, .	2.5	24
11	Symmetry dependent optoelectronic properties of grain boundaries in polycrystalline Cu(In,Ga)Se2 thin films. Journal of Applied Physics, 2014, 115, 023514.	2.5	12
12	In-depth elemental characterization of Cu(In,Ga)Se2 thin film solar cells by means of RBS and PIXE techniques. Nuclear Instruments & Methods in Physics Research B, 2014, 331, 93-95.	1.4	7
13	Reliable wet-chemical cleaning of natively oxidized high-efficiency Cu(In,Ga)Se2 thin-film solar cell absorbers. Journal of Applied Physics, 2014, 116, .	2.5	38
14	Comparison of Techniques for Strain Measurements in CulnSe2 Absorber Layers of Thin-film Solar Cells. Microscopy and Microanalysis, 2014, 20, 1464-1465.	0.4	0
15	Investigation of Cu(In,Ga)Se ₂ thinâ€film formation during the multiâ€stage coâ€evaporation process. Progress in Photovoltaics: Research and Applications, 2013, 21, 30-46.	8.1	104
16	Buffer-free Cu(In,Ga)Se2-solar cells by near-surface ion implantation. Solar Energy Materials and Solar Cells, 2013, 116, 43-48.	6.2	7
17	Metastability of solar cells based on evaporated chalcopyrite absorber layers prepared with varying selenium flux. Thin Solid Films, 2013, 535, 340-342.	1.8	11
18	Comparative study of Cu(In,Ga)Se2/CdS and Cu(In,Ga)Se2/In2S3 systems by surface photovoltage techniques. Thin Solid Films, 2013, 535, 357-361.	1.8	29

#	Article	IF	CITATIONS
19	Formation of CulnSe ₂ and CuGaSe ₂ Thinâ€Films Deposited by Threeâ€Stage Thermal Coâ€Evaporation: A Realâ€Time Xâ€Ray Diffraction and Fluorescence Study. Advanced Energy Materials, 2013, 3, 1381-1387.	19.5	37
20	Influence of Mo Back-Contact Oxidation on Properties of CIGSe\$_{2}\$ Thin Film Solar Cells on Glass Substrates. Japanese Journal of Applied Physics, 2012, 51, 10NC02.	1.5	4
21	Compositional Gradients in $Cu(In,Ga)Se_{f 2}$ Thin Films for Solar Cells and Their Effects on Structural Defects. IEEE Journal of Photovoltaics, 2012, 2, 364-370.	2.5	18
22	Enhancements in specimen preparation of Cu(In,Ga)(S,Se)2 thin films. Micron, 2012, 43, 470-474.	2,2	17
23	Electronic properties of grain boundaries in Cu(In,Ga)Se2 thin films with various Ga-contents. Solar Energy Materials and Solar Cells, 2012, 103, 86-92.	6.2	22
24	Luminescence properties of Ga-graded Cu(In,Ga)Se2 thin films. Thin Solid Films, 2012, 520, 3657-3662.	1.8	5
25	Influence of Mo Back-Contact Oxidation on Properties of CIGSe2Thin Film Solar Cells on Glass Substrates. Japanese Journal of Applied Physics, 2012, 51, 10NC02.	1.5	0
26	Effect of compositional gradients on structural defects in Cu(In, Ga)Se<inf>2</inf> thin films for solar cells. , 2011 , , .		0
27	Evaluating different Na-incorporation methods for low temperature grown CIGSe thin film on polyimide foils. , $2011, , .$		1
28	Symmetry-dependence of electronic grain boundary properties in polycrystalline CuInSe2 thin films. Applied Physics Letters, 2011, 99, .	3.3	33
29	Near-interface doping by ion implantation in Cu(In,Ga)Se2 solar cells. Thin Solid Films, 2011, 519, 7276-7279.	1.8	1
30	The role of the spray pyrolysed Al2O3 barrier layer in achieving high efficiency solar cells on flexible steel substrates. Applied Physics A: Materials Science and Processing, 2011, 104, 407-413.	2.3	4
31	Tapered aluminum-doped vertical zinc oxide nanorod arrays as light coupling layer for solar energy applications. Solar Energy Materials and Solar Cells, 2011, 95, 1437-1440.	6.2	24
32	Examination of growth kinetics of copper rich Cu(In,Ga)Se2-films using synchrotron energy dispersive X-ray diffractometry. Solar Energy Materials and Solar Cells, 2011, 95, 250-253.	6.2	11
33	Spray pyrolysis of barrier layers for flexible thin film solar cells on steel. Solar Energy Materials and Solar Cells, 2011, 95, 504-509.	6.2	16
34	Increased homogeneity and open-circuit voltage of Cu(In,Ga)Se2 solar cells due to higher deposition temperature. Solar Energy Materials and Solar Cells, 2011, 95, 1028-1030.	6.2	39
35	Analysis of Cu(In,Ga)(S,Se)2 thin-film solar cells by means of electron microscopy. Solar Energy Materials and Solar Cells, 2011, 95, 1452-1462.	6.2	35
36	Preparation and properties of radio-frequency-sputtered half-Heusler films for use in solar cells. Thin Solid Films, 2011, 519, 1866-1871.	1.8	29

#	Article	lF	CITATION
37	Sputtered Zn(O,S) for junction formation in chalcopyriteâ€based thin film solar cells. Physica Status Solidi - Rapid Research Letters, 2010, 4, 109-111.	2.4	28
38	ZnO nanorod arrays as an antireflective coating for Cu(In,Ga)Se $<$ sub $>$ 2 $<$ /sub $>$ thin film solar cells. Progress in Photovoltaics: Research and Applications, 2010, 18, 209-213.	8.1	60
39	Band alignment at Sb2S3/Cu(In,Ga)Se2 heterojunctions and electronic characteristics of solar cell devices based on them. Applied Physics Letters, 2010, 96, 262101.	3.3	11
40	Aspects for the optimization of CIGSe growth at low temperatures for application in thin film solar cells on polyimide foil. , 2009 , , .		3
41	Metastable behavior of donors in CuGaSe2 under illumination. Applied Physics Letters, 2008, 92, 062107.	3.3	10
42	Post-growth p-type doping enhancement for ZnSe-based lasers using a Li3N interlayer. Applied Physics Letters, 2002, 81, 4916-4918.	3.3	15
43	Operation and Catastrophic Optical Degradation of II-VI Laser Diodes at Output Powers larger than 1 W. Physica Status Solidi (B): Basic Research, 2002, 229, 943-948.	1.5	7
44	Operation and Catastrophic Optical Degradation of II–VI Laser Diodes at Output Powers larger than 1 W. Physica Status Solidi (B): Basic Research, 2002, 229, 943-948.	1.5	1