Wei Tian

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3429351/publications.pdf

Version: 2024-02-01

218677 289244 2,125 104 26 40 h-index citations g-index papers 108 108 108 2591 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	Topological-skeleton controlled chirality expression of supramolecular hyperbranched and linear polymers. Fundamental Research, 2022, 2, 422-428.	3.3	2
2	Crown Etherâ€Based Supramolecular Polymers: From Synthesis to Selfâ€Assembly. Macromolecular Rapid Communications, 2022, 43, e2100775.	3.9	12
3	Functional Aqueous Zinc–Acetylene Batteries for Electricity Generation and Electrochemical Acetylene Reduction to Ethylene. Angewandte Chemie - International Edition, 2022, 61, .	13.8	17
4	Hierarchical self-assembly induced supramolecular polymer helical nanowires with white circularly polarized luminescence. Chemical Communications, 2022, 58, 4647-4650.	4.1	5
5	Multifunctional Magnetic Porous Microspheres for Highly Efficient and Recyclable Water Disinfection and Dye Removal. ACS Applied Polymer Materials, 2022, 4, 1576-1585.	4.4	5
6	Light controlled drug-based supramolecular polymer self-assemblies for efficient antibacterial manipulation., 2022, 1, 100014.		4
7	Supramolecular self-assemblies based on water-soluble pillar[6]arene and drug-drug conjugates for the combination of chemotherapy. Colloids and Surfaces B: Biointerfaces, 2022, 217, 112606.	5.0	5
8	Acylhydrazone-based supramolecular assemblies undergoing a converse sol-to-gel transition on <i>trans</i> â†' <i>cis</i> photoisomerization. Chemical Science, 2022, 13, 7892-7899.	7.4	7
9	Positional Isomerism-Mediated Copolymerization Realizing the Continuous Luminescence Color-Tuning of Liquid-Crystalline Polymers. Macromolecules, 2022, 55, 5332-5341.	4.8	6
10	Time-encoded bio-fluorochromic supramolecular co-assembly for rewritable security printing. Chemical Science, 2021, 12, 10041-10047.	7.4	16
11	Platinum-Containing Supramolecular Drug Self-Delivery Nanomicelles for Efficient Synergistic Combination Chemotherapy. Biomacromolecules, 2021, 22, 2382-2392.	5.4	13
12	Fluorescent Columnar <scp>Liquidâ€Crystalline</scp> Polymers: Synthesis, Mesomorphic Behaviors and Tunable Emission Wavelengths ^{â€} . Chinese Journal of Chemistry, 2021, 39, 2009-2015.	4.9	6
13	Light absorption and hydrophobicity of a polystyrene/multiwall carbon nanotube composite with surface nanostructures. Nanotechnology, 2021, 32, 385302.	2.6	O
14	Ruthenium (II)â€Coordinated Supramolecular Metallodrug Complex Realizing Oxygen Selfâ€Supply In Situ for Overcoming Hypoxic Tumors. Advanced Functional Materials, 2021, 31, 2105837.	14.9	16
15	Programmable binary crystallization behaviors assisted by hydrogen bond on HOPG surface. Applied Surface Science, 2021, 565, 150529.	6.1	5
16	Sequence-controlled supramolecular copolymer constructed by self-sorting assembly of multiple noncovalent interactions. Organic Chemistry Frontiers, 2021, 8, 1117-1124.	4.5	9
17	Supramolecular Dual Drug Nanomicelles for Circumventing Multidrug Resistance. ACS Biomaterials Science and Engineering, 2021, 7, 5515-5523.	5.2	6
18	Perylene Bisimide-Based Luminescent Liquid Crystals with Tunable Solid-State Light Emission. ACS Applied Materials & Samp; Interfaces, 2021, 13, 57786-57795.	8.0	7

#	Article	IF	CITATIONS
19	1,8-Dioxapyrene-based electrofluorochromic supramolecular hyperbranched polymers. Chemical Communications, 2020, 56, 383-386.	4.1	21
20	Self-assembling morphology-tunable single-component supramolecular antibiotics for enhanced antibacterial manipulation. Polymer Chemistry, 2020, 11, 102-111.	3.9	6
21	Facile construction of shape-regulated \hat{l}^2 -cyclodextrin-based supramolecular self-assemblies for drug delivery. Carbohydrate Polymers, 2020, 231, 115714.	10.2	51
22	î ² -Cyclodextrin modified Pt(II) metallacycle-based supramolecular hyperbranched polymer assemblies for DOX delivery to liver cancer cells. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 30942-30948.	7.1	32
23	Architecture transition of supramolecular polymers through hierarchical self-assembly: from supramolecular polymers to fluorescent materials. Polymer Chemistry, 2020, 11, 5642-5648.	3.9	11
24	A dual drug-based hyperbranched polymer with methotrexate and chlorambucil moieties for synergistic cancer chemotherapy. Polymer Chemistry, 2020, 11, 5810-5818.	3.9	9
25	Innentitelbild: A Double Cation–πâ€Driven Strategy Enabling Twoâ€Dimensional Supramolecular Polymers as Efficient Catalyst Carriers (Angew. Chem. 24/2020). Angewandte Chemie, 2020, 132, 9282-9282.	2.0	0
26	Supramolecular Drug–Drug Complex Vesicles Enable Sequential Drug Release for Enhanced Combination Therapy. ACS Applied Materials & Samp; Interfaces, 2020, 12, 27940-27950.	8.0	21
27	A Double Cation–πâ€Driven Strategy Enabling Twoâ€Dimensional Supramolecular Polymers as Efficient Catalyst Carriers. Angewandte Chemie - International Edition, 2020, 59, 9534-9541.	13.8	27
28	Processing-Dependent Lamellar Polymorphism of Hyperbranched Liquid-Crystalline Polymer with Variable Light Emission. Macromolecules, 2020, 53, 5720-5727.	4.8	8
29	β-Cyclodextrin-modified hyaluronic acid-based supramolecular self-assemblies for pH- and esterasedual-responsive drug delivery. Carbohydrate Polymers, 2020, 246, 116654.	10.2	53
30	Acceptor-induced cooperative supramolecular co-assembly with emissive charge-transfer for advanced supramolecular encryption. Chemical Communications, 2020, 56, 9214-9217.	4.1	14
31	Enhanced Conductivity and Thermochromic Luminescence in Hydrogen Bond-Stabilized Columnar Liquid Crystals. ACS Applied Materials & Samp; Interfaces, 2020, 12, 9637-9645.	8.0	42
32	A Double Cation–πâ€Driven Strategy Enabling Twoâ€Dimensional Supramolecular Polymers as Efficient Catalyst Carriers. Angewandte Chemie, 2020, 132, 9621-9628.	2.0	4
33	A quinolone derivative-based organoplatinum(II) metallacycle supramolecular self-delivery nanocarrier for combined cancer therapy. Supramolecular Chemistry, 2020, 32, 597-604.	1.2	3
34	Construction and Biomedical Applications of Macrocycle-Based Supramolecular Topological Polymers., 2020,, 1555-1585.		0
35	Morphology-tunable and pH-responsive supramolecular self-assemblies based on AB ₂ -type host–guest-conjugated amphiphilic molecules for controlled drug delivery. Beilstein Journal of Organic Chemistry, 2019, 15, 1925-1932.	2.2	6
36	Pillararene-based supramolecular polymers. Chemical Communications, 2019, 55, 271-285.	4.1	110

#	Article	IF	CITATIONS
37	Ultrasound and Redox-Triggered Morphology Transitions of Supramolecular Self-assemblies with pH Responsiveness for Triple-Controlled Release. Langmuir, 2019, 35, 8045-8051.	3.5	6
38	Fluorophore core-engineered supramolecular discotic columnar liquid crystals with tunable fluorescent behavior. Materials Chemistry Frontiers, 2019, 3, 1671-1677.	5.9	16
39	Construction and Biomedical Applications of Macrocycle-Based Supramolecular Topological Polymers. , 2019, , 1-31.		0
40	Construction of \hat{l}^2 -cyclodextrin-based supramolecular hyperbranched polymers self-assemblies using AB2-type macromonomer and their application in the drug delivery field. Carbohydrate Polymers, 2019, 213, 411-418.	10.2	29
41	<p>pH-sensitive doxorubicin-loaded polymeric nanocomplex based on β-cyclodextrin for liver cancer-targeted therapy</p> . International Journal of Nanomedicine, 2019, Volume 14, 1997-2010.	6.7	28
42	A light-tunable thermoresponsive supramolecular switch with reversible and complete "off–onâ€∤"on–off―conversion. Materials Chemistry Frontiers, 2019, 3, 1168-1173.	5.9	5
43	Longâ€Chain Hyperbranched Polymers: Synthesis, Properties, and Applications. Macromolecular Rapid Communications, 2019, 40, e1800471.	3.9	41
44	Controllable supramolecular assembly and architecture transformation by the combination of orthogonal self-assembly and competitive self-sorting assembly. Polymer Chemistry, 2019, 10, 6535-6539.	3.9	9
45	Sizeâ€Stable Supramolecular Hyperbranched Polymer Vesicles for Redoxâ€Triggered Doubleâ€Drug Release. Macromolecular Chemistry and Physics, 2019, 220, 1800467.	2.2	4
46	Nonlinear Supramolecular Polymers for Therapeutic Applications. Advanced Therapeutics, 2019, 2, 1800103.	3.2	9
47	A Colorâ€Tunable Fluorescent Supramolecular Hyperbranched Polymer Constructed by Pillar[5]areneâ€Based Host–Guest Recognition and Metal Ion Coordination Interaction. Macromolecular Rapid Communications, 2018, 39, e1800053.	3.9	26
48	Controlled Self-assembly of Thermo-responsive Amphiphilic H-shaped Polymer for Adjustable Drug Release. Chinese Journal of Polymer Science (English Edition), 2018, 36, 406-416.	3.8	22
49	Triple Noncovalentâ€Interactionâ€Containing Supramolecular Polymer Vesicle Chemosensors with Dynamically Tunable Detection Ranges. Chemistry - A European Journal, 2018, 24, 4239-4244.	3.3	12
50	Frontispiece: Photoinduced Liquefaction of Azobenzeneâ€Containing Polymers. Chemistry - A European Journal, 2018, 24, .	3.3	2
51	Cyclodextrin-functionalized ordered porous block copolymer films: Preparation and property. Chinese Journal of Polymer Science (English Edition), 2018, 36, 34-42.	3.8	2
52	Photoinduced Liquefaction of Azobenzeneâ€Containing Polymers. Chemistry - A European Journal, 2018, 24, 6494-6505.	3.3	70
53	Photo―and pH―Dualâ€Responsive βâ€Cyclodextrinâ€Based Supramolecular Prodrug Complex Selfâ€Assemblion for Programmed Drug Delivery. Chemistry - an Asian Journal, 2018, 13, 3903-3911.	2s 3.3	45
54	Hot pressing-induced alignment of hexagonal boron nitride in SEBS elastomer for superior thermally conductive composites. RSC Advances, 2018, 8, 25835-25845.	3.6	24

#	Article	IF	CITATIONS
55	One-Step in Situ Ball Milling Synthesis of Polymer-Functionalized Few-Layered Boron Nitride and Its Application in High Thermally Conductive Cellulose Composites. ACS Applied Nano Materials, 2018, 1, 4875-4883.	5.0	61
56	Engineered Artificial Nanochannels for Nitrite Ion Harmless Conversion. ACS Applied Materials & Samp; Interfaces, 2018, 10, 30852-30859.	8.0	17
57	Polymer composites based on hexagonal boron nitride and their application in thermally conductive composites. RSC Advances, 2018, 8, 21948-21967.	3.6	119
58	A supramolecular hyperbranched polymer with multi-responsiveness constructed by pillar[5]arene-based host–guest recognition and its application in the breath figure method. Materials Chemistry Frontiers, 2018, 2, 1568-1573.	5.9	37
59	AB _x -type amphiphilic macromonomer-based supramolecular hyperbranched polymers for controllable self-assembly. Polymer Chemistry, 2017, 8, 1306-1314.	3.9	19
60	Supramolecular hyperbranched polymers. Chemical Communications, 2017, 53, 2531-2542.	4.1	78
61	Controlled Supramolecular Architecture Transformation from Homopolymer to Copolymer through Competitive Selfâ€Sorting Method. Macromolecular Rapid Communications, 2017, 38, 1600631.	3.9	18
62	Supramolecular Host–Guest Interaction-Enhanced Adjustable Drug Release Based on β-Cyclodextrin-Functionalized Thermoresponsive Porous Polymer Films. Langmuir, 2017, 33, 7393-7402.	3.5	20
63	An Artificial CO ₂ â€Driven Ionic Gate Inspired by Olfactory Sensory Neurons in Mosquitoes. Advanced Materials, 2017, 29, 1603884.	21.0	61
64	Reversible Self-Assembly of Backbone-Thermoresponsive Long Chain Hyperbranched Poly(N-Isopropyl) Tj ETQqC	0 0 0 ₄ .gBT /	Overlock 10 T
65	pH, Temperature, and Magnetic Tripleâ€Responsive Polymer Porous Microspheres for Tunable Adsorption. Macromolecular Materials and Engineering, 2016, 301, 1132-1141.	3.6	16
66	Host–Guest Bindingâ€Siteâ€Tunable Selfâ€Assembly of Stimuliâ€Responsive Supramolecular Polymers. Chemistry - A European Journal, 2016, 22, 8508-8519.	3.3	34
67	Supramolecular Alternating Polymer from Crown Ether and Pillar[5]areneâ€Based Double Molecular Recognition for Preparation of Hierarchical Materials. Chemistry - A European Journal, 2016, 22, 101-105.	3.3	24
68	PGMA-based supramolecular hyperbranched polycations for gene delivery. Polymer Chemistry, 2016, 7, 4334-4341.	3.9	45
69	A triple-monomer methodology to construct controllable supramolecular hyperbranched alternating polymers. Polymer Chemistry, 2016, 7, 4322-4325.	3.9	27
70	Amphiphilic diblock copolymers bearing pendant aromatic acetal groups: Synthesis and tunable pHâ€triggered assembly/disassembly transition behavior. Journal of Polymer Science Part A, 2016, 54, 1537-1547.	2.3	4
71	Thermo and pH dual-controlled charge reversal amphiphilic graft copolymer micelles for overcoming drug resistance in cancer cells. Journal of Materials Chemistry B, 2015, 3, 4585-4596.	5.8	14
72	Ultrasoundâ€Driven Secondary Selfâ€Assembly of Amphiphilic βâ€Cyclodextrin Dimers. Chemistry - A European Journal, 2015, 21, 5000-5008.	3.3	19

#	Article	IF	Citations
73	Chiral recognition of <scp>l</scp> -tryptophan with beta-cyclodextrin-modified biomimetic single nanochannel. Chemical Communications, 2015, 51, 3135-3138.	4.1	108
74	A dual stimuli responsive fluorescent probe carrier from a double hydrophilic block copolymer capped with \hat{l}^2 -cyclodextrin. Polymer Chemistry, 2015, 6, 3382-3386.	3.9	10
75	Preparation of a P(THF-co-PO)-b-PB-b-P(THF-co-PO) triblock copolymer via cationic ring-opening polymerization and its use as a thermoset polymer. RSC Advances, 2015, 5, 66073-66081.	3.6	13
76	Cyclodextrin-tunable reversible self-assembly of a thermoresponsive Y-shaped polymer. RSC Advances, 2015, 5, 34557-34565.	3.6	1
77	Reversible morphology transitions of supramolecular polymer self-assemblies for switch-controlled drug release. Chemical Communications, 2015, 51, 15366-15369.	4.1	40
78	Probing into the Supramolecular Driving Force of an Amphiphilic β-Cyclodextrin Dimer in Various Solvents: Host–Guest Recognition or Hydrophilic–Hydrophobic Interaction?. Journal of Physical Chemistry B, 2015, 119, 11893-11899.	2.6	10
79	Polymer melt flow through nanochannels: from theory and fabrication to application. RSC Advances, 2015, 5, 7160-7172.	3.6	11
80	Morphology transitions of supramolecular hyperbranched polymers induced by double supramolecular driving forces. Polymer Chemistry, 2015, 6, 732-737.	3.9	21
81	Linear-g-hyperbranched and cyclodextrin-based amphiphilic block copolymer as a multifunctional nanocarrier. Beilstein Journal of Organic Chemistry, 2014, 10, 2696-2703.	2.2	2
82	A general, rapid and solvent-free approach to fabricating nanostructured polymer surfaces. Science China Technological Sciences, 2014, 57, 2328-2333.	4.0	7
83	Segmented polymer nanowires and nanorods by one-step template wetting with a hyperbranched polymer and linear polymer blend. RSC Advances, 2014, 4, 53021-53027.	3.6	4
84	A supramolecular hyperbranched polymer based on molecular recognition between benzo-21-crown-7 and secondary ammonium salt. Chemical Communications, 2014, 50, 14666-14669.	4.1	29
85	Phase transition dynamics and mechanism for backbone-thermoresponsive hyperbranched polyethers. Polymer Chemistry, 2014, 5, 4022.	3.9	19
86	How does a tiny terminal alkynyl end group drive fully hydrophilic homopolymers to self-assemble into multicompartment vesicles and flower-like complex particles?. Polymer Chemistry, 2014, 5, 5077-5088.	3.9	47
87	Nonionic Cyclodextrin Based Binary System with Upper and Lower Critical Solution Temperature Transitions via Supramolecular Inclusion Interaction. Langmuir, 2014, 30, 7319-7326.	3.5	22
88	Temperature-responsive Property of Star Poly((N,N-dimethylamino)ethyl methacrylate) with Hyperbranched Core: Effect of Core-Shell Architecture and \hat{I}^2 -Cyclodextrin Grafted i>via / i> Covalent Bond or Ionic Electrostatic Attraction. Soft Materials, 2013, 11, 272-280.	1.7	4
89	An Hâ€shaped polymer bonding βâ€cyclodextrin at branch points: Synthesis and influences of attached βâ€cyclodextrins on physical properties. Journal of Polymer Science Part A, 2013, 51, 1405-1416.	2.3	9
90	A branching point thermo and pH dual-responsive hyperbranched polymer based on poly(N-vinylcaprolactam) and poly(N,N-diethyl aminoethyl methacrylate). Polymer Chemistry, 2013, 4, 2850.	3.9	24

#	Article	IF	CITATIONS
91	Biocompatible amphiphilic hyperbranched nanocapsules with a functional core: Synergistic encapsulation and asynchronous release properties towards multi-guest molecules. RSC Advances, 2012, 2, 11976.	3.6	8
92	Miktoarm star polymers with poly(N-isopropylacrylamide) or poly(oligo(ethylene glycol)) Tj ETQq0 0 0 rgBT /Over Polymer Chemistry, 2012, 3, 1137.	lock 10 Tf 3.9	50 707 Td (37
93	Multiresponsive Properties of Tripleâ€Shell Architectures with Poly(<i>N</i> , <i>N</i> ,ēdiethylaminoethyl) Tj ETQ	q1 1 0.78 2.2	4314 rgBT 14
94	Synthesis and stimulus-responsive micellization of a well-defined H-shaped terpolymer. Polymer Chemistry, 2012, 3, 3330.	3.9	16
95	Cyclodextrinâ€overhanging hyperbranched coreâ€doubleâ€shell miktoarm architectures: Synthesis and gradient stimuliâ€responsive properties. Journal of Polymer Science Part A, 2012, 50, 759-771.	2.3	6
96	\hat{l}^2 -cyclodextrin and its hyperbranched polymers-induced micro/nanopatterns and tunable wettability on polymer surfaces. Nanoscale, 2011, 3, 5147.	5.6	16
97	Synthesis of amphiphilic hyperbranched polymers for the controlled release of double-guest molecules. Journal of Controlled Release, 2011, 152, e97-e98.	9.9	2
98	Study on anionic polymerization of ethylene oxide initiated by ammonium/triisobutylaluminum. Journal of Polymer Research, 2010, 17, 529-534.	2.4	9
99	Synthesis of threeâ€arm poly(ethylene glycol) by combination of controlled anionic polymerization and †click†chemistry. Polymer International, 2010, 59, 543-551.	3.1	18
100	Synthesis and UV curing kinetics of rapidly UVâ€curable hyperbranched polycarbosiloxanes. Polymer International, 2010, 59, 1323-1330.	3.1	6
101	Amphiphilic Hyperbranched Polymers Containing Two Types of <i>β</i> ê€cyclodextrin Segments: Synthesis and Properties. Macromolecular Chemistry and Physics, 2009, 210, 2107-2117.	2.2	13
102	UVâ€activated hydrosilylation: a facile approach for synthesis of hyperbranched polycarbosilanes. Applied Organometallic Chemistry, 2009, 23, 277-282.	3.5	26
103	β yclodextrin polymer brushes based on hyperbranched polycarbosilane: Synthesis and characterization. Journal of Polymer Science Part A, 2008, 46, 5036-5052.	2.3	30
104	Host–guest interaction-based supramolecular prodrug self-assemblies for GSH-consumption augmented chemotherapy. Journal of Materials Chemistry B, O, , .	5.8	10