Ryan J Tibshirani

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3429082/publications.pdf

Version: 2024-02-01

331670 434195 3,028 33 21 31 citations h-index g-index papers 36 36 36 3122 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Comparing trained and untrained probabilistic ensemble forecasts of COVID-19 cases and deaths in the United States. International Journal of Forecasting, 2023, 39, 1366-1383.	6.5	23
2	Surprises in high-dimensional ridgeless least squares interpolation. Annals of Statistics, 2022, 50, .	2.6	82
3	Real-Time Estimation of COVID-19 Infections: Deconvolution and Sensor Fusion. Statistical Science, 2022, 37, .	2.8	6
4	The limits of distribution-free conditional predictive inference. Information and Inference, 2021, 10, 455-482.	1.6	32
5	Postâ€selection inference for changepoint detection algorithms with application to copy number variation data. Biometrics, 2021, 77, 1037-1049.	1.4	13
6	Predictive inference with the jackknife+. Annals of Statistics, 2021, 49, .	2.6	73
7	The US COVID-19 Trends and Impact Survey: Continuous real-time measurement of COVID-19 symptoms, risks, protective behaviors, testing, and vaccination. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	92
8	Can auxiliary indicators improve COVID-19 forecasting and hotspot prediction?. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	30
9	Epidemic tracking and forecasting: Lessons learned from a tumultuous year. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	19
10	An open repository of real-time COVID-19 indicators. Proceedings of the National Academy of Sciences of the United States of America, $2021, 118, \ldots$	7.1	27
11	From Fixed-X to Random-X Regression: Bias-Variance Decompositions, Covariance Penalties, and Prediction Error Estimation. Journal of the American Statistical Association, 2020, 115, 138-151.	3.1	19
12	From Fixed-X to Random-X Regression: Bias-Variance Decompositions, Covariance Penalties, and Prediction Error Estimation: Rejoinder. Journal of the American Statistical Association, 2020, 115, 161-162.	3.1	1
13	Collaborative efforts to forecast seasonal influenza in the United States, 2015–2016. Scientific Reports, 2019, 9, 683.	3.3	90
14	Highâ€dimensional longitudinal classification with the multinomial fused lasso. Statistics in Medicine, 2019, 38, 2184-2205.	1.6	6
15	An open challenge to advance probabilistic forecasting for dengue epidemics. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 24268-24274.	7.1	136
16	Excess Optimism: How Biased is the Apparent Error of an Estimator Tuned by SURE?. Journal of the American Statistical Association, 2019, 114, 697-712.	3.1	7
17	Comment: Statistical Inference from a Predictive Perspective. Statistical Science, 2019, 34, .	2.8	2
18	Results from the second year of a collaborative effort to forecast influenza seasons in the United States. Epidemics, 2018, 24, 26-33.	3.0	83

#	Article	IF	CITATIONS
19	Distribution-Free Predictive Inference for Regression. Journal of the American Statistical Association, 2018, 113, 1094-1111.	3.1	246
20	Nonmechanistic forecasts of seasonal influenza with iterative one-week-ahead distributions. PLoS Computational Biology, 2018, 14, e1006134.	3.2	55
21	A human judgment approach to epidemiological forecasting. PLoS Computational Biology, 2017, 13, e1005248.	3.2	50
22	Exact Post-Selection Inference for Sequential Regression Procedures. Journal of the American Statistical Association, 2016, 111, 600-620.	3.1	208
23	Fast and Flexible ADMM Algorithms for Trend Filtering. Journal of Computational and Graphical Statistics, 2016, 25, 839-858.	1.7	55
24	Efficient Implementations of the Generalized Lasso Dual Path Algorithm. Journal of Computational and Graphical Statistics, 2016, 25, 1-27.	1.7	51
25	Flexible Modeling of Epidemics with an Empirical Bayes Framework. PLoS Computational Biology, 2015, 11, e1004382.	3.2	92
26	Risk of Dengue for Tourists and Teams during the World Cup 2014 in Brazil. PLoS Neglected Tropical Diseases, 2014, 8, e3063.	3.0	25
27	A significance test for the lasso. Annals of Statistics, 2014, 42, 413-468.	2.6	400
28	The lasso problem and uniqueness. Electronic Journal of Statistics, 2013, 7, .	0.7	268
29	Degrees of freedom in lasso problems. Annals of Statistics, 2012, 40, .	2.6	221
30	The solution path of the generalized lasso. Annals of Statistics, 2011, 39, .	2.6	473
31	Don't try for the triple 20. Significance, 2011, 8, 46-48.	0.4	0
32	Nearly-Isotonic Regression. Technometrics, 2011, 53, 54-61.	1.9	64
33	A bias correction for the minimum error rate in cross-validation. Annals of Applied Statistics, 2009, 3,	1.1	70