
Alexander Keller

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/342845/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	How wild bees find a way in European cities: Pollen metabarcoding unravels multiple feeding strategies and their effects on distribution patterns in four wild bee species. Journal of Applied Ecology, 2022, 59, 457-470.	4.0	19
2	An integrative environmental pollen diversity assessment and its importance for the Sustainable Development Goals. Plants People Planet, 2022, 4, 110-121.	3.3	11
3	Forest landscapes increase diversity of honeybee diets in the tropics. Forest Ecology and Management, 2022, 504, 119869.	3.2	6
4	Functional resin use in solitary bees. Ecological Entomology, 2022, 47, 115-136.	2.2	13
5	Critical links between biodiversity and health in wild bee conservation. Trends in Ecology and Evolution, 2022, 37, 309-321.	8.7	48
6	Phylogenetic relatedness of food plants reveals highest insect herbivore specialization at intermediate temperatures along a broad climatic gradient. Global Change Biology, 2022, 28, 4027-4040.	9.5	5
7	Wild bee larval food composition in five European cities. Ecology, 2022, , e3740.	3.2	1
8	Do amino and fatty acid profiles of pollen provisions correlate with bacterial microbiomes in the mason bee <i>Osmia bicornis</i> ?. Philosophical Transactions of the Royal Society B: Biological Sciences, 2022, 377, 20210171.	4.0	14
9	Diets maintained in a changing world: Does landâ€use intensification alter wild bee communities by selecting for flexible generalists?. Ecology and Evolution, 2022, 12, .	1.9	15
10	Changes amid constancy: Flower and leaf microbiomes along land use gradients and between bioregions. Basic and Applied Ecology, 2021, 50, 1-15.	2.7	22
11	(More than) Hitchhikers through the network: the shared microbiome of bees and flowers. Current Opinion in Insect Science, 2021, 44, 8-15.	4.4	55
12	Pollen diets and niche overlap of honey bees and native bees in protected areas. Basic and Applied Ecology, 2021, 50, 169-180.	2.7	30
13	Putative roles of bacteria in the carbon and nitrogen cycles in a tropical peat swamp forest. Basic and Applied Ecology, 2021, 52, 109-123.	2.7	8
14	Many small rather than few large sources identified in long-term bee pollen diets in agroecosystems. Agriculture, Ecosystems and Environment, 2021, 310, 107296.	5.3	29
15	Cryptic species and hidden ecological interactions of halictine bees along an elevational gradient. Ecology and Evolution, 2021, 11, 7700-7712.	1.9	15
16	Effects of three flower field types on bumblebees and their pollen diets. Basic and Applied Ecology, 2021, 52, 95-108.	2.7	16
17	Standard methods for pollen research. Journal of Apicultural Research, 2021, 60, 1-109.	1.5	25
18	Species richness is more important for ecosystem functioning than species turnover along an elevational gradient. Nature Ecology and Evolution, 2021, 5, 1582-1593.	7.8	35

#	Article	IF	CITATIONS
19	Inferring Core Genome Phylogenies for Bacteria. Methods in Molecular Biology, 2021, 2242, 59-68.	0.9	2
20	Osmotic Adaptation and Compatible Solute Biosynthesis of Phototrophic Bacteria as Revealed from Genome Analyses. Microorganisms, 2021, 9, 46.	3.6	37
21	Preservation methods of honey bee-collected pollen are not a source of bias in ITS2 metabarcoding. Environmental Monitoring and Assessment, 2021, 193, 785.	2.7	5
22	BCdatabaser: on-the-fly reference database creation for (meta-)barcoding. Bioinformatics, 2020, 36, 2630-2631.	4.1	30
23	Introduced bees (<i>Osmia cornifrons</i>) collect pollen from both coevolved and novel host-plant species within their family-level phylogenetic preferences. Royal Society Open Science, 2020, 7, 200225.	2.4	20
24	CRISPR/Cas 9-Mediated Mutations as a New Tool for Studying Taste in Honeybees. Chemical Senses, 2020, 45, 655-666.	2.0	24
25	Employing DNA metabarcoding to determine the geographical origin of honey. Heliyon, 2020, 6, e05596.	3.2	19
26	The genus <i>Micromonospora</i> as a model microorganism for bioactive natural product discovery. RSC Advances, 2020, 10, 20939-20959.	3.6	29
27	Susceptibility of Red Mason Bee Larvae to Bacterial Threats Due to Microbiome Exchange with Imported Pollen Provisions. Insects, 2020, 11, 373.	2.2	23
28	Strong phylogenetic constraint on transition metal incorporation in the mandibles of the hyper-diverse Hymenoptera (Insecta). Organisms Diversity and Evolution, 2020, 20, 511-526.	1.6	10
29	Open Science principles for accelerating trait-based science across the Tree of Life. Nature Ecology and Evolution, 2020, 4, 294-303.	7.8	144
30	Floral Species Richness Correlates with Changes in the Nutritional Quality of Larval Diets in a Stingless Bee. Insects, 2020, 11, 125.	2.2	28
31	Linking pollen foraging of megachilid bees to their nest bacterial microbiota. Ecology and Evolution, 2019, 9, 10788-10800.	1.9	36
32	Drivers, Diversity, and Functions of the Solitary-Bee Microbiota. Trends in Microbiology, 2019, 27, 1034-1044.	7.7	57
33	Venus flytrap microbiotas withstand harsh conditions during prey digestion. FEMS Microbiology Ecology, 2019, 95, .	2.7	3
34	Honey bee waggle dance communication increases diversity of pollen diets in intensively managed agricultural landscapes. Molecular Ecology, 2019, 28, 3602-3611.	3.9	38
35	Systematic Affiliation and Genome Analysis of Subtercola vilae DB165T with Particular Emphasis on Cold Adaptation of an Isolate from a High-Altitude Cold Volcano Lake. Microorganisms, 2019, 7, 107.	3.6	4
36	Climate–land-use interactions shape tropical mountain biodiversity and ecosystem functions. Nature, 2019, 568, 88-92.	27.8	313

#	Article	IF	CITATIONS
37	Bacterial community structure and succession in nests of two megachilid bee genera. FEMS Microbiology Ecology, 2019, 95, .	2.7	40
38	The characterization of the circadian clock in the olive fly Bactrocera oleae (Diptera: Tephritidae) reveals a Drosophila-like organization. Scientific Reports, 2018, 8, 816.	3.3	13
39	Draft Genome Sequence of Dyella sp. Strain C9, Isolated from a Malaysian Tropical Peat Swamp Forest. Microbiology Resource Announcements, 2018, 7, .	0.6	3
40	Microbial Community Structure in a Malaysian Tropical Peat Swamp Forest: The Influence of Tree Species and Depth. Frontiers in Microbiology, 2018, 9, 2859.	3.5	43
41	Draft Genome Sequence of Klebsiella sp. Strain C31 Isolated from a Malaysian Tropical Peat Swamp Forest. Genome Announcements, 2018, 6, .	0.8	1
42	Draft Genome Sequence of Dyella sp. Strain C11, Isolated from a Malaysian Tropical Peat Swamp Forest. Genome Announcements, 2018, 6, .	0.8	1
43	Wild bees and their nests host Paenibacillus bacteria with functional potential of avail. Microbiome, 2018, 6, 229.	11.1	23
44	Draft Genome Sequence of Paraburkholderia sp. Strain C35, Isolated from a Malaysian Tropical Peat Swamp Forest. Genome Announcements, 2018, 6, .	0.8	0
45	Functional exploration of natural networks and ecological communities. Methods in Ecology and Evolution, 2018, 9, 2028-2033.	5.2	5
46	Physical contact between mesenchymal stem cells and endothelial precursors induces distinct signatures with relevance to the very early phase of regeneration. Journal of Cellular Biochemistry, 2018, 119, 9122-9140.	2.6	3
47	Generalist social bees maximize diversity intake in plant speciesâ€rich and resourceâ€abundant environments. Ecosphere, 2017, 8, e01758.	2.2	42
48	Release from prey preservation behavior via prey switch allowed diversification of cuticular hydrocarbon profiles in digger wasps. Evolution; International Journal of Organic Evolution, 2017, 71, 2562-2571.	2.3	5
49	Honey bee foraging ecology: Season but not landscape diversity shapes the amount and diversity of collected pollen. PLoS ONE, 2017, 12, e0183716.	2.5	101
50	Laboratory rearing of solitary bees and wasps. Insect Science, 2016, 23, 918-923.	3.0	6
51	Pollen DNA barcoding: current applications and future prospects. Genome, 2016, 59, 629-640.	2.0	166
52	bcgTree: automatized phylogenetic tree building from bacterial core genomes. Genome, 2016, 59, 783-791.	2.0	151
53	Contact of myeloma cells induces a characteristic transcriptome signature in skeletal precursor cells –Implications for myeloma bone disease. Bone, 2016, 93, 155-166.	2.9	18
54	Grapevine (Vitis vinifera) Crown Galls Host Distinct Microbiota. Applied and Environmental Microbiology, 2016, 82, 5542-5552.	3.1	62

#	Article	IF	CITATIONS
55	Draft genome of the Arabidopsis thaliana phyllosphere bacterium, Williamsia sp. ARP1. Standards in Genomic Sciences, 2016, 11, 8.	1.5	10
56	Bacterial Diversity and Community Structure in Two Bornean Nepenthes Species with Differences in Nitrogen Acquisition Strategies. Microbial Ecology, 2016, 71, 938-953.	2.8	11
57	Silent listeners: can preferences of eavesdropping midges predict their hosts' parasitism risk?. Behavioral Ecology, 2016, 27, 995-1003.	2.2	18
58	biojs-io-biom, a BioJS component for handling data in Biological Observation Matrix (BIOM) format. F1000Research, 2016, 5, 2348.	1.6	2
59	Monophyletic clades ofMacaranga-pollinating thrips show high specificity to taxonomic sections of host plants. Biological Journal of the Linnean Society, 2015, 116, 558-570.	1.6	2
60	Functional and phylogenetic diversity of plant communities differently affect the structure of flower-visitor interactions and reveal convergences in floral traits. Evolutionary Ecology, 2015, 29, 437-450.	1.2	47
61	Increased efficiency in identifying mixed pollen samples by meta-barcoding with a dual-indexing approach. BMC Ecology, 2015, 15, 20.	3.0	167
62	ITS2 Database V: Twice as Much: Table 1 Molecular Biology and Evolution, 2015, 32, 3030-3032.	8.9	231
63	Reptiles as Reservoirs of Bacterial Infections: Real Threat or Methodological Bias?. Microbial Ecology, 2015, 70, 579-584.	2.8	21
64	Microhabitat heterogeneity across leaves and flower organs promotes bacterial diversity. FEMS Microbiology Ecology, 2015, 91, fiv097.	2.7	97
65	Evaluating multiplexed nextâ€generation sequencing as a method in palynology for mixed pollen samples. Plant Biology, 2015, 17, 558-566.	3.8	182
66	Novel form of X-linked nonsyndromic hearing loss with cochlear malformation caused by a mutation in the type IV collagen gene COL4A6. European Journal of Human Genetics, 2014, 22, 208-215.	2.8	60
67	Density-dependent negative responses by bumblebees to bacteria isolated from flowers. Apidologie, 2014, 45, 467-477.	2.0	62
68	Confirmation of warfarin resistance of naturally occurring VKORC1 variants by coexpression with coagulation factor IX and in silico protein modelling. BMC Genetics, 2014, 15, 17.	2.7	13
69	Computational integration of genomic traits into 16S rDNA microbiota sequencing studies. Gene, 2014, 549, 186-191.	2.2	19
70	WISP 1 is an important survival factor in human mesenchymal stromal cells. Gene, 2014, 551, 243-254.	2.2	18
71	Only distance matters – non-choosy females in a poison frog population. Frontiers in Zoology, 2013, 10, 29.	2.0	39
72	Diverse Microbiota Identified in Whole Intact Nest Chambers of the Red Mason Bee Osmia bicornis (Linnaeus 1758). PLoS ONE, 2013, 8, e78296.	2.5	39

5

#	Article	IF	CITATIONS
73	Common ancestry or environmental trait filters: crossâ€continental comparisons of trait–habitat relationships in tropical anuran amphibian assemblages. Global Ecology and Biogeography, 2012, 21, 704-715.	5.8	30
74	Hawaiian ant–flower networks: nectar-thieving ants prefer undefended native over introduced plants with floral defenses. Ecological Monographs, 2011, 81, 295-311.	5.4	52
75	Internal Transcribed Spacer 2 (nu ITS2 rRNA) Sequence-Structure Phylogenetics: Towards an Automated Reconstruction of the Green Algal Tree of Life. PLoS ONE, 2011, 6, e16931.	2.5	80
76	Composition of epiphytic bacterial communities differs on petals and leaves. Plant Biology, 2011, 13, 918-924.	3.8	160
77	Ribosomal RNA phylogenetics: the third dimension. Biologia (Poland), 2010, 65, 388-391.	1.5	6
78	Including RNA secondary structures improves accuracy and robustness in reconstruction of phylogenetic trees. Biology Direct, 2010, 5, 4.	4.6	154
79	The ITS2 Database Ill—sequences and structures for phylogeny. Nucleic Acids Research, 2010, 38, D275-D279.	14.5	223
80	ITS2 sequence-structure phylogeny in the Scenedesmaceae with special reference to <i>Coelastrum</i> (Chlorophyta, Chlorophyceae), including the new genera <i>Comasiella</i> and <i>Pectinodesmus</i> Phycologia, 2010, 49, 325-335.	1.4	77
81	ITS2 secondary structure improves phylogeny estimation in a radiation of blue butterflies of the subgenus Agrodiaetus (Lepidoptera: Lycaenidae: Polyommatus). BMC Evolutionary Biology, 2009, 9, 300.	3.2	69
82	The importance of environmental heterogeneity for species diversity and assemblage structure in Bornean stream frogs. Journal of Animal Ecology, 2009, 78, 305-314.	2.8	78
83	5.8S-28S rRNA interaction and HMM-based ITS2 annotation. Gene, 2009, 430, 50-57.	2.2	394
84	ITS2 data corroborate a monophyletic chlorophycean DO-group (Sphaeropleales). BMC Evolutionary Biology, 2008, 8, 218.	3.2	56