Tias Guns

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3427815/publications.pdf

Version: 2024-02-01

759233 677142 48 751 12 22 citations h-index g-index papers 50 50 50 438 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	Cost-sensitive learning for profit-driven credit scoring. Journal of the Operational Research Society, 2022, 73, 338-350.	3.4	15
2	Learning to Rank for Uplift Modeling. IEEE Transactions on Knowledge and Data Engineering, 2022, 34, 4888-4904.	5.7	10
3	Using shared sell-through data to forecast wholesaler demand in multi-echelon supply chains. European Journal of Operational Research, 2021, 288, 466-479.	5.7	20
4	Contrastive Losses and Solution Caching for Predict-and-Optimize. , 2021, , .		2
5	A framework for step-wise explaining how to solve constraint satisfaction problems. Artificial Intelligence, 2021, 300, 103550.	5.8	6
6	Analyzing passenger and freight vehicle movements from automatic-Number plate recognition camera data. European Transport Research Review, 2020, 12, .	4.8	21
7	Dynamic Programming for Predict+Optimise. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34, 1444-1451.	4.9	7
8	Hybrid Classification and Reasoning for Image-Based Constraint Solving. Lecture Notes in Computer Science, 2020, , 364-380.	1.3	0
9	Smart Predict-and-Optimize for Hard Combinatorial Optimization Problems. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34, 1603-1610.	4.9	32
10	Probability of default estimation, with a reject option. , 2020, , .		3
10	Probability of default estimation, with a reject option. , 2020, , . An Investigation into PredictionÂ+ÂOptimisation for the Knapsack Problem. Lecture Notes in Computer Science, 2019, , 241-257.	1.3	9
	An Investigation into PredictionÂ+ÂOptimisation for the Knapsack Problem. Lecture Notes in Computer	1.3	
11	An Investigation into PredictionÂ+ÂOptimisation for the Knapsack Problem. Lecture Notes in Computer Science, 2019, , 241-257. Monitoring Urban-Freight Transport Based on GPS Trajectories of Heavy-Goods Vehicles. IEEE		9
11 12	An Investigation into PredictionÂ+ÂOptimisation for the Knapsack Problem. Lecture Notes in Computer Science, 2019, , 241-257. Monitoring Urban-Freight Transport Based on GPS Trajectories of Heavy-Goods Vehicles. IEEE Transactions on Intelligent Transportation Systems, 2019, 20, 3747-3758.		9 20
11 12 13	An Investigation into PredictionÂ+ÂOptimisation for the Knapsack Problem. Lecture Notes in Computer Science, 2019, , 241-257. Monitoring Urban-Freight Transport Based on GPS Trajectories of Heavy-Goods Vehicles. IEEE Transactions on Intelligent Transportation Systems, 2019, 20, 3747-3758. Predict+Optimise with Ranking Objectives: Exhaustively Learning Linear Functions. , 2019, , .		9 20 4
11 12 13	An Investigation into PredictionÂ+ÂOptimisation for the Knapsack Problem. Lecture Notes in Computer Science, 2019, , 241-257. Monitoring Urban-Freight Transport Based on GPS Trajectories of Heavy-Goods Vehicles. IEEE Transactions on Intelligent Transportation Systems, 2019, 20, 3747-3758. Predict+Optimise with Ranking Objectives: Exhaustively Learning Linear Functions. , 2019, , . Learning Relational Representations with Auto-encoding Logic Programs. , 2019, , . Vehicle Routing by Learning from Historical Solutions. Lecture Notes in Computer Science, 2019, ,	8.0	9 20 4 7
11 12 13 14	An Investigation into PredictionÂ+ÂOptimisation for the Knapsack Problem. Lecture Notes in Computer Science, 2019, , 241-257. Monitoring Urban-Freight Transport Based on GPS Trajectories of Heavy-Goods Vehicles. IEEE Transactions on Intelligent Transportation Systems, 2019, 20, 3747-3758. Predict+Optimise with Ranking Objectives: Exhaustively Learning Linear Functions. , 2019, , . Learning Relational Representations with Auto-encoding Logic Programs. , 2019, , . Vehicle Routing by Learning from Historical Solutions. Lecture Notes in Computer Science, 2019, , 54-70. Finding Probabilistic Rule Lists using the Minimum Description Length Principle. Lecture Notes in	1.3	9 20 4 7

#	Article	IF	CITATIONS
19	Learning constraints in spreadsheets and tabular data. Machine Learning, 2017, 106, 1441-1468.	5.4	26
20	Mining Time-constrained Sequential Patterns with Constraint Programming. Constraints, 2017, 22, 548-570.	0.7	13
21	TaCLe., 2017,,.		4
22	The Inductive Constraint Programming Loop. IEEE Intelligent Systems, 2017, 32, 44-52.	4.0	5
23	CoverSize: A Global Constraint for Frequency-Based Itemset Mining. Lecture Notes in Computer Science, 2017, , 529-546.	1.3	15
24	Stochastic Constraint Programming with And-Or Branch-and-Bound., 2017,,.		5
25	Direct Mining of Subjectively Interesting Relational Patterns. , 2016, , .		O
26	Partition-Based Clustering Using Constraint Optimization. Lecture Notes in Computer Science, 2016, , 282-299.	1.3	0
27	An Efficient Algorithm for Mining Frequent Sequence with Constraint Programming. Lecture Notes in Computer Science, 2016, , 315-330.	1.3	12
28	The Inductive Constraint Programming Loop. Lecture Notes in Computer Science, 2016, , 303-309.	1.3	1
29	Modeling in MiningZinc. Lecture Notes in Computer Science, 2016, , 257-281.	1.3	O
30	Learning Constraint Satisfaction Problems: An ILP Perspective. Lecture Notes in Computer Science, 2016, , 96-112.	1.3	6
31	Declarative pattern mining using constraint programming. Constraints, 2015, 20, 492-493.	0.7	2
32	Constraint-Based Sequence Mining Using Constraint Programming. Lecture Notes in Computer Science, 2015, , 288-305.	1.3	26
33	Constrained Clustering Using Column Generation. Lecture Notes in Computer Science, 2014, , 438-454.	1.3	24
34	Dominance Programming for Itemset Mining. , 2013, , .		19
35	k-Pattern Set Mining under Constraints. IEEE Transactions on Knowledge and Data Engineering, 2013, 25, 402-418.	5.7	56
36	The MiningZinc Framework for Constraint-Based Itemset Mining. , 2013, , .		4

#	Article	IF	Citations
37	Mining Local Staircase Patterns in Noisy Data. , 2012, , .		0
38	Unveiling combinatorial regulation through the combination of ChIP information and in silico cis regulatory module detection. Nucleic Acids Research, 2012, 40, e90-e90.	14.5	23
39	Constraint-Based Pattern Mining in Multi-relational Databases. , 2011, , .		7
40	Itemset mining: A constraint programming perspective. Artificial Intelligence, 2011, 175, 1951-1983.	5.8	131
41	Declarative Heuristic Search for Pattern Set Mining. , 2011, , .		5
42	Evaluating Pattern Set Mining Strategies in a Constraint Programming Framework. Lecture Notes in Computer Science, 2011, , 382-394.	1.3	8
43	Cis-regulatory module detection using constraint programming. , 2010, , .		3
44	Generalizing Itemset Mining in a Constraint Programming Setting., 2010,, 107-126.		4
45	Integrating Constraint Programming and Itemset Mining. Lecture Notes in Computer Science, 2010, , 467-482.	1.3	9
46	Correlated itemset mining in ROC space. , 2009, , .		48
47	Constraint programming for itemset mining. , 2008, , .		80
48	Machine learning methods for short-term probability of default: A comparison of classification, regression and ranking methods. Journal of the Operational Research Society, 0, , 1-16.	3.4	12