
Derek Y C Chan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3427755/publications.pdf Version: 2024-02-01

DEDER YC CHAN

#	Article	IF	CITATIONS
1	Order from Chaos: Dynamics of density segregation in continuously aerated granular systems. Advanced Powder Technology, 2020, 31, 843-847.	2.0	2
2	On the derivation of the Smoluchowski result of electrophoretic mobility. Journal of Colloid and Interface Science, 2020, 568, 176-184.	5.0	6
3	Field-only surface integral equations: scattering from a dielectric body. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2020, 37, 284.	0.8	21
4	Field-only surface integral equations: scattering from a perfect electric conductor. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2020, 37, 276.	0.8	21
5	Analytical solution for an acoustic boundary layer around an oscillating rigid sphere. Physics of Fluids, 2020, 32, 126105.	1.6	5
6	10.1063/5.0033933.1. , 2020, , .		0
7	10.1063/5.0033933.2. , 2020, , .		0
8	The unusual fluid dynamics of particle electrophoresis. Journal of Colloid and Interface Science, 2019, 553, 845-863.	5.0	9
9	Mobile-surface bubbles and droplets coalesce faster but bounce stronger. Science Advances, 2019, 5, eaaw4292.	4.7	33
10	Eliminating the fictitious frequency problem in BEM solutions of the external Helmholtz equation. Engineering Analysis With Boundary Elements, 2019, 109, 106-116.	2.0	7
11	Helmholtz Decomposition and Boundary Element Method Applied to Dynamic Linear Elastic Problems. Journal of Elasticity, 2019, 137, 83-100.	0.9	9
12	Coalescence Dynamics of Mobile and Immobile Fluid Interfaces. Langmuir, 2018, 34, 2096-2108.	1.6	41
13	Nonsingular Field-Only Surface Integral Equations for Electromagnetic Scattering. IEEE Transactions on Antennas and Propagation, 2017, 65, 972-977.	3.1	28
14	Robust multiscale field-only formulation of electromagnetic scattering. Physical Review B, 2017, 95, .	1.1	23
15	Self-determined shapes and velocities of giant near-zero drag gas cavities. Science Advances, 2017, 3, e1701558.	4.7	52
16	Space-time domain solutions of the wave equation by a non-singular boundary integral method and Fourier transform. Journal of the Acoustical Society of America, 2017, 142, 697-707.	0.5	9
17	Navier slip model of drag reduction by Leidenfrost vapor layers. Physics of Fluids, 2017, 29, .	1.6	19
18	Field-only integral equation method for time domain scattering of electromagnetic pulses. Applied Optics, 2017, 56, 9377.	0.9	10

#	Article	IF	CITATIONS
19	Direct and robust boundary integral method for electromagnetic scattering of perfect electric conductors. , 2016, , .		0
20	A robust and accurate formulation of molecular and colloidal electrostatics. Journal of Chemical Physics, 2016, 145, 054106.	1.2	8
21	Leidenfrost Vapor Layers Reduce Drag without the Crisis in High Viscosity Liquids. Physical Review Letters, 2016, 117, 114503.	2.9	36
22	Anomalous Sinking of Spheres due to Local Fluidization of Apparently Fixed Powder Beds. Physical Review Letters, 2016, 116, 068001.	2.9	15
23	The hydrodynamics of bubble rise and impact with solid surfaces. Advances in Colloid and Interface Science, 2016, 235, 214-232.	7.0	56
24	The impact and bounce of air bubbles at a flat fluid interface. Soft Matter, 2016, 12, 3271-3282.	1.2	43
25	10.1063/1.4960033.1. , 2016, , .		0
26	Boundary regularized integral equation formulation of the Helmholtz equation in acoustics. Royal Society Open Science, 2015, 2, 140520.	1.1	28
27	Measurement of surface and interfacial tension using pendant drop tensiometry. Journal of Colloid and Interface Science, 2015, 454, 226-237.	5.0	704
28	Integration of multiple small gensets in a mobile microgrid system. , 2015, , .		1
29	Dynamic power demand allocation and battery energy compensation control of a mobile microgrid system. , 2015, , .		1
30	Measurement and modeling on hydrodynamic forces and deformation of an air bubble approaching a solid sphere in liquids. Advances in Colloid and Interface Science, 2015, 217, 31-42.	7.0	22
31	Measuring Forces and Spatiotemporal Evolution of Thin Water Films between an Air Bubble and Solid Surfaces of Different Hydrophobicity. ACS Nano, 2015, 9, 95-104.	7.3	164
32	Drag Moderation by the Melting of an Ice Surface in Contact with Water. Physical Review Letters, 2015, 115, 044501.	2.9	14
33	Force Balance Model for Bubble Rise, Impact, and Bounce from Solid Surfaces. Langmuir, 2015, 31, 6763-6772.	1.6	59
34	Boundary regularized integral equation formulation of Stokes flow. Physics of Fluids, 2015, 27, 023102.	1.6	10
35	Electric Double-Layer Interaction between Dissimilar Charge-Conserved Conducting Plates. Langmuir, 2015, 31, 9889-9892.	1.6	1
36	Compound Pendant Drop Tensiometry for Interfacial Tension Measurement at Zero Bond Number. Langmuir, 2014, 30, 15388-15391.	1.6	29

#	Article	IF	CITATIONS
37	Universal Behavior of the Initial Stage of Drop Impact. Physical Review Letters, 2014, 113, 194501.	2.9	48
38	A simple and accurate method for calculation of the structure factor of interacting charged spheres. Journal of Colloid and Interface Science, 2014, 426, 80-82.	5.0	14
39	Probing the Hydrophobic Interaction between Air Bubbles and Partially Hydrophobic Surfaces Using Atomic Force Microscopy. Journal of Physical Chemistry C, 2014, 118, 25000-25008.	1.5	108
40	The hydrophobic force: measurements and methods. Physical Chemistry Chemical Physics, 2014, 16, 18065-18075.	1.3	79
41	Leidenfrost vapour layer moderation of the drag crisis and trajectories of superhydrophobic and hydrophilic spheres falling in water. Soft Matter, 2014, 10, 5662-5668.	1.2	63
42	Evaporation of a capillary bridge between a particle and a surface. Soft Matter, 2014, 10, 8489-8499.	1.2	15
43	Stabilization of Thin Liquid Films by Repulsive van der Waals Force. Langmuir, 2014, 30, 5162-5169.	1.6	27
44	A force balance model for the motion, impact, and bounce of bubbles. Physics of Fluids, 2014, 26, .	1.6	33
45	A robust and non-singular formulation of the boundary integral method for the potential problem. Engineering Analysis With Boundary Elements, 2014, 43, 117-123.	2.0	25
46	Modelling bubble rise and interaction with a glass surface. Applied Mathematical Modelling, 2014, 38, 4249-4261.	2.2	24
47	Dynamic Air Layer on Textured Superhydrophobic Surfaces. Langmuir, 2013, 29, 11074-11081.	1.6	50
48	Non-linear and cyclical collisions between drops and bubbles: using AFM to understand droplet interactions in micro-scale flows. Soft Matter, 2013, 9, 2426.	1.2	10
49	Stability of Interfacial Nanobubbles. Langmuir, 2013, 29, 1017-1023.	1.6	189
50	Study of Fluid and Transport Properties of Porous Anodic Aluminum Membranes by Dynamic Atomic Force Microscopy. Langmuir, 2013, 29, 8969-8977.	1.6	6
51	Stokesian dynamics of pill-shaped Janus particles with stick and slip boundary conditions. Physical Review E, 2013, 87, 043009.	0.8	16
52	Measurement of the Hydrophobic Force in a Soft Matter System. Journal of Physical Chemistry Letters, 2013, 4, 3872-3877.	2.1	92
53	Effects of hydrodynamic film boundary conditions on bubble–wall impact. Soft Matter, 2013, 9, 9755.	1.2	33
54	Layer with reduced viscosity at water-oil interfaces probed by fluorescence correlation spectroscopy. Physical Review E, 2013, 87, 012403.	0.8	14

#	Article	IF	CITATIONS
55	Interpreting atomic force microscopy measurements of hydrodynamic and surface forces with nonlinear parametric estimation. Review of Scientific Instruments, 2012, 83, 103702.	0.6	6
56	Spatiotemporal Evolution of Thin Liquid Films during Impact of Water Bubbles on Glass on a Micrometer to Nanometer Scale. Physical Review Letters, 2012, 108, 247803.	2.9	64
57	Compound sessile drops. Soft Matter, 2012, 8, 11042.	1.2	83
58	Polymeric Stabilized Emulsions: Steric Effects and Deformation in Soft Systems. Langmuir, 2012, 28, 4599-4604.	1.6	41
59	Anomalous Pull-Off Forces between Surfactant-Free Emulsion Drops in Different Aqueous Electrolytes. Langmuir, 2012, 28, 4259-4266.	1.6	15
60	Stabilization of Leidenfrost vapour layer by textured superhydrophobic surfaces. Nature, 2012, 489, 274-277.	13.7	467
61	Non-singular boundary integral methods for fluid mechanics applications. Journal of Fluid Mechanics, 2012, 696, 468-478.	1.4	42
62	Measurement and analysis of forces in bubble and droplet systems using AFM. Journal of Colloid and Interface Science, 2012, 371, 1-14.	5.0	138
63	Structural forces in soft matter systems: unique flocculation pathways between deformable droplets. Soft Matter, 2011, 7, 11334.	1.2	35
64	Effect of Gold Oxide in Measurements of Colloidal Force. Langmuir, 2011, 27, 6026-6030.	1.6	39
65	Drainage of the air–water–quartz film: experiments and theory. Physical Chemistry Chemical Physics, 2011, 13, 1434-1439.	1.3	43
66	Bubble Coalescence during Acoustic Cavitation in Aqueous Electrolyte Solutions. Langmuir, 2011, 27, 12025-12032.	1.6	66
67	Structural Forces in Soft Matter Systems. Journal of Physical Chemistry Letters, 2011, 2, 434-437.	2.1	43
68	Precision AFM Measurements of Dynamic Interactions between Deformable Drops in Aqueous Surfactant and Surfactant-Free Solutions. Langmuir, 2011, 27, 2676-2685.	1.6	53
69	Combined AFMâ~'Confocal Microscopy of Oil Droplets: Absolute Separations and Forces in Nanofilms. Journal of Physical Chemistry Letters, 2011, 2, 961-965.	2.1	40
70	Homo- and hetero-interactions between air bubbles and oil droplets measured by atomic force microscopy. Soft Matter, 2011, 7, 8977.	1.2	46
71	Film drainage and coalescence between deformable drops and bubbles. Soft Matter, 2011, 7, 2235-2264.	1.2	342
72	BEM simulations of potential flow with viscous effects as applied to a rising bubble. Engineering Analysis With Boundary Elements, 2011, 35, 489-494.	2.0	40

#	Article	IF	CITATIONS
73	Theory of non-equilibrium force measurements involving deformable drops and bubbles. Advances in Colloid and Interface Science, 2011, 165, 70-90.	7.0	118
74	Anomalous Stability of Carbon Dioxide in pH ontrolled Bubble Coalescence. Angewandte Chemie - International Edition, 2011, 50, 3454-3456.	7.2	58
75	Drag Reduction by Leidenfrost Vapor Layers. Physical Review Letters, 2011, 106, 214501.	2.9	169
76	Repulsive van der Waals Forces in Soft Matter: Why Bubbles Do Not Stick to Walls. Physical Review Letters, 2011, 106, 064501.	2.9	101
77	Dynamic interactions between microbubbles in water. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 11177-11182.	3.3	179
78	Influence of Surfactants on the Force between Two Bubbles. Langmuir, 2010, 26, 655-662.	1.6	7
79	Lateral Hydrodynamic Interactions between an Emulsion Droplet and a Flat Surface Evaluated by Frictional Force Microscopy. Langmuir, 2010, 26, 8002-8007.	1.6	9
80	Interpreting the Dynamic Interaction between a Very Small Rising Bubble and a Hydrophilic Titania Surface. Journal of Physical Chemistry C, 2010, 114, 1942-1946.	1.5	39
81	Viscosity Effects on Hydrodynamic Drainage Force Measurements Involving Deformable Bodies. Langmuir, 2010, 26, 11921-11927.	1.6	33
82	Dynamic interactions between deformable drops in the Hele–Shaw geometry. Soft Matter, 2010, 6, 1809.	1.2	21
83	Assembly of Gold Nanoparticles into Microwire Networks Induced by Drying Liquid Bridges. Physical Review Letters, 2009, 102, 058303.	2.9	89
84	Effects of Internal Flow and Viscosity Ratio on Measurements of Dynamic Forces between Deformable Drops. Langmuir, 2009, 25, 3352-3355.	1.6	19
85	Particulate Templates and Ordered Liquid Bridge Networks in Evaporative Lithography. Langmuir, 2009, 25, 13311-13314.	1.6	23
86	Terminal Velocity and Mobile Surface Species in Rising Microbubbles. Langmuir, 2009, 25, 8899-8902.	1.6	8
87	Silica nano-particle super-hydrophobic surfaces: the effects of surface morphology and trapped air pockets on hydrodynamic drainage forces. Faraday Discussions, 2009, 143, 151.	1.6	13
88	Dynamic deformations and forces in soft matter. Soft Matter, 2009, 5, 2858.	1.2	45
89	Hydrodynamic Boundary Conditions and Dynamic Forces between Bubbles and Surfaces. Physical Review Letters, 2008, 101, 024501.	2.9	98
90	Dynamic Forces between Bubbles and Surfaces and Hydrodynamic Boundary Conditions. Langmuir, 2008, 24, 11533-11543.	1.6	94

#	Article	IF	CITATIONS
91	Dynamic interactions between drops—a critical assessment. Soft Matter, 2008, 4, 1613.	1.2	38
92	Soft matter: from shapes to forces on the nanoscale. Soft Matter, 2008, 4, 471.	1.2	16
93	Measurements of dynamic forces between drops with the AFM: novel considerations in comparisons between experiment and theory. Soft Matter, 2008, 4, 1270.	1.2	46
94	Dynamic Forces between a Moving Particle and a Deformable Drop. Journal of Physical Chemistry C, 2008, 112, 567-574.	1.5	37
95	Transient Responses of a Wetting Film to Mechanical and Electrical Perturbations. Langmuir, 2008, 24, 1381-1390.	1.6	45
96	Bubble Colloidal AFM Probes Formed from Ultrasonically Generated Bubbles. Langmuir, 2008, 24, 603-605.	1.6	61
97	Hydrodynamic forces involving deformable interfaces at nanometer separations. Physics of Fluids, 2008, 20, 032101.	1.6	71
98	Variations in properties of atomic force microscope cantilevers fashioned from the same wafer. Nanotechnology, 2008, 19, 105709.	1.3	13
99	Atomic force microscopy: Loading position dependence of cantilever spring constants and detector sensitivity. Review of Scientific Instruments, 2007, 78, 116102.	0.6	17
100	Dynamics of Interactions Involving Deformable Drops: Hydrodynamic Dimpling under Attractive and Repulsive Electrical Double Layer Interactions. Langmuir, 2007, 23, 626-637.	1.6	69
101	Anomalous pH Dependent Stability Behavior of Surfactant-Free Nonpolar Oil Drops in Aqueous Electrolyte Solutions. Langmuir, 2007, 23, 9335-9340.	1.6	44
102	Dynamic Forces Between Two Deformable Oil Droplets in Water. Science, 2006, 313, 210-213.	6.0	234
103	Electrical double layer interactions between dissimilar oxide surfaces with charge regulation and Stern–Grahame layers. Journal of Colloid and Interface Science, 2006, 296, 150-158.	5.0	44
104	A scalable parallel Monte Carlo method for free energy simulations of molecular systems. Journal of Computational Chemistry, 2005, 26, 72-77.	1.5	18
105	The influence of discrete surface charges on the force between charged surfaces. Journal of Chemical Physics, 2005, 122, 104705.	1.2	29
106	Interaction forces between oil–water particle interfaces—Non-DLVO forces. Faraday Discussions, 2005, 129, 111-124.	1.6	43
107	Measurement of Dynamical Forces between Deformable Drops Using the Atomic Force Microscope. I. Theory. Langmuir, 2005, 21, 2912-2922.	1.6	97
108	Effect of Chain Stiffness on Polyelectrolyte Condensation. Macromolecules, 2005, 38, 3017-3025.	2.2	21

#	Article	IF	CITATIONS
109	Electric-Field-Directed Growth of Gold Nanorods in Aqueous Surfactant Solutions. Advanced Functional Materials, 2004, 14, 571-579.	7.8	540
110	Forces between two oil drops in aqueous solution measured by AFM. Journal of Colloid and Interface Science, 2004, 273, 339-342.	5.0	112
111	Stochastically evolving networks. Physical Review E, 2003, 68, 066124.	0.8	26
112	Monte Carlo Simulations of Stretched Charged Polymersâ€. Journal of Physical Chemistry B, 2003, 107, 8131-8139.	1.2	10
113	Forces between a Rigid Probe Particle and a Liquid Interface:Â Comparison between Experiment and Theory. Langmuir, 2003, 19, 2124-2133.	1.6	51
114	Modeling the Structure of Charged Binary Colloidal Dispersions. Langmuir, 2003, 19, 1121-1126.	1.6	4
115	A boot-strap Poisson–Boltzmann theory for the structure and thermodynamics of charged colloidal solutions. Journal of Chemical Physics, 2003, 118, 5248-5259.	1.2	13
116	Solvent Quality Dependent Continuum van der Waals Attraction and Phase Behavior for Colloids Bearing Nonuniform Adsorbed Polymer Layers. Langmuir, 2002, 18, 7845-7852.	1.6	29
117	The phase behavior of charged colloidal systems in the mean spherical approximation. Journal of Chemical Physics, 2002, 116, 8588.	1.2	16
118	A Simple Algorithm for Calculating Electrical Double Layer Interactions in Asymmetric Electrolytes—Poisson–Boltzmann Theory. Journal of Colloid and Interface Science, 2002, 245, 307-310.	5.0	38
119	Phase Separation in Deionized Colloidal Systems:  Extended Debyeâ^'Hückel Theory. Langmuir, 2001, 17, 4202-4210.	1.6	43
120	Hydrodynamic and Electrokinetic Properties of Decane Droplets in Aqueous Sodium Dodecyl Sulfate Solutions. Langmuir, 2001, 17, 7210-7218.	1.6	54
121	Forces between a Rigid Probe Particle and a Liquid Interface. Journal of Colloid and Interface Science, 2001, 236, 141-154.	5.0	139
122	Density functional theory of charged colloidal systems. Physical Review E, 2001, 63, 061806.	0.8	25
123	Long-Range Electrostatic Attractions between Identically Charged Particles in Confined Geometries and the Poissonâ^'Boltzmann Theory. Langmuir, 2000, 16, 324-331.	1.6	82
124	Bubbles in Wet, Gummed Wine Labels. SIAM Review, 1999, 41, 363-372.	4.2	5
125	Long-Range Electrostatic Attractions between Identically Charged Particles in Confined Geometries: An Unresolved Problem. Journal of Colloid and Interface Science, 1999, 213, 268-269.	5.0	109
126	Electrical Double-Layer Interaction between Charged Particles near Surfaces and in Confined Geometries. Journal of Colloid and Interface Science, 1999, 218, 423-432.	5.0	25

#	Article	IF	CITATIONS
127	A simple theory for the partial molar volumes of a binary mixture. Molecular Physics, 1999, 96, 1145-1149.	0.8	4
128	A Four-Component Model for Small Colloidal Particles in an Aqueous Electrolyte. Langmuir, 1999, 15, 4940-4943.	1.6	4
129	Analysis of inhomogeneous optical systems by the use of ray tracing II Three-dimensional systems with symmetry. Applied Optics, 1998, 37, 5106.	2.1	8
130	Pair Interactions between Heterogeneous Spheres. Langmuir, 1997, 13, 1577-1586.	1.6	27
131	Direct Force Measurements between Silica and Alumina§. Langmuir, 1997, 13, 2109-2112.	1.6	133
132	van der Waals Interaction, Surface Free Energies, and Contact Angles:Â Dispersive Polymers and Liquids. Langmuir, 1997, 13, 3890-3895.	1.6	113
133	Use of Atomic Force Microscopy Force Measurements To Monitor Citrate Displacement by Amines on Gold in Aqueous Solution. Langmuir, 1997, 13, 2429-2431.	1.6	37
134	Determination of the Intrinsic Acidâ^'Base Dissociation Constant and Site Density of Ionizable Surface Groups by Capillary Rise Measurements. Langmuir, 1997, 13, 3043-3046.	1.6	14
135	Rheooptical Studies of Polydiacetylene Solutions. Journal of Physical Chemistry B, 1997, 101, 7732-7735.	1.2	15
136	Analysis of inhomogeneous optical systems by the use of ray tracing I Planar systems. Applied Optics, 1997, 36, 5303.	2.1	16
137	Electrophoretic Motion of Two Spherical Particles with Thick Double Layers. Journal of Colloid and Interface Science, 1997, 191, 357-371.	5.0	25
138	2-D and 3-D Interactions in Random Sequential Adsorption of Charged Particles. Journal of Colloid and Interface Science, 1997, 194, 138-153.	5.0	111
139	Fluorocarbons:  Surface Free Energies and van der Waals Interaction. Langmuir, 1996, 12, 2617-2621.	1.6	89
140	Theoretical Analysis of the Soiling of "Nonstick―Organic Materials. Langmuir, 1996, 12, 3356-3359.	1.6	14
141	Dependence of the Far Field Effective Potential on Surface Inhomogeneities. Journal of Colloid and Interface Science, 1996, 182, 516-525.	5.0	5
142	Pore-scale network model for drainage-dominated three-phase flow in porous media. Transport in Porous Media, 1996, 24, 167-201.	1.2	102
143	On the universality of fracture surface roughness. Europhysics Letters, 1996, 34, 121-126.	0.7	10
144	Calculations of Electric Double-Layer Force and Interaction Free Energy between Dissimilar Surfaces. Journal of Colloid and Interface Science, 1995, 169, 177-196.	5.0	228

#	Article	IF	CITATIONS
145	The Impedance of the Planar Diffuse Double Layer: An Exact Low-Frequency Theory. Journal of Colloid and Interface Science, 1995, 170, 522-537.	5.0	33
146	Accurate Analytic Formulas for the Double-Layer Interaction between Spheres. Journal of Colloid and Interface Science, 1995, 171, 46-54.	5.0	138
147	Colloidal Interactions in Low Volume Fraction Pressurized Ultrafiltration Systems. Journal of Colloid and Interface Science, 1995, 173, 304-318.	5.0	5
148	Förster energy transfer between Langmuir-Blodgett film layers in aqueous solution. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1995, 102, 1-19.	2.3	3
149	Direct Force Measurements between Dissimilar Metal Oxides. The Journal of Physical Chemistry, 1995, 99, 2114-2118.	2.9	103
150	Theory of Contact Angles and the Free Energy of Formation of Ionizable Surfaces: Application to Heptylamine Radio-Frequency Plasma-Deposited Films. Langmuir, 1995, 11, 4122-4128.	1.6	74
151	Non-Newtonian effects on immiscible viscous fingering in a radial Hele-Shaw cell. Physical Review E, 1994, 49, 420-432.	0.8	48
152	Phonon Interaction Energy of an Elastic Layer on an Infinite Half Space Solid. Journal of Colloid and Interface Science, 1994, 163, 100-107.	5.0	3
153	Computation of Forces between Spherical Colloidal Particles: Nonlinear Poisson-Boltzmann Theory. Journal of Colloid and Interface Science, 1994, 165, 116-128.	5.0	163
154	Double Layer Forces between Heterogeneous Charged Surfaces. The Journal of Physical Chemistry, 1994, 98, 9022-9032.	2.9	227
155	On the stress depression under a sandpile. Powder Technology, 1994, 78, 263-271.	2.1	26
156	Electrical Double Layer Interaction between Dissimilar Spherical Colloidal Particles and between a Sphere and a Plate: The Linearized Poisson-Boltzmann Theory. Langmuir, 1994, 10, 2993-3009.	1.6	114
157	Interaction Free Energy between Identical Spherical Colloidal Particles: The Linearized Poisson-Boltzmann Theory. Journal of Colloid and Interface Science, 1993, 155, 297-312.	5.0	80
158	Interaction Free Energy between Plates with Charge Regulation: A Linearized Model. Journal of Colloid and Interface Science, 1993, 161, 260-264.	5.0	143
159	Tensile stresses around boreholes due to transient fluid flow. International Journal for Numerical and Analytical Methods in Geomechanics, 1993, 17, 659-667.	1.7	2
160	Transient gas flow around boreholes. Transport in Porous Media, 1993, 10, 137-152.	1.2	16
161	Direct force measurements between titanium dioxide surfaces. Journal of the American Chemical Society, 1993, 115, 11885-11890.	6.6	226
162	Mathematical description of isogyre formation in refracting structures. Ophthalmic and Physiological Optics, 1993, 13, 212-215.	1.0	11

#	Article	IF	CITATIONS
163	Perturbed spectra of glasslike chains. Physical Review E, 1993, 48, 1207-1217.	0.8	0
164	Cellular-automata calculation of frequency-dependent permeability of porous media. Physical Review E, 1993, 47, 2593-2597.	0.8	15
165	Image effects and ion diffusion times in lamella systems. Journal of the Chemical Society, Faraday Transactions, 1992, 88, 1433.	1.7	0
166	Electrokinetics of the silica-solution interface: a flat plate streaming potential study. Langmuir, 1992, 8, 965-974.	1.6	299
167	Force distribution in a two dimensional sandpile. Powder Technology, 1992, 72, 255-267.	2.1	41
168	Resistor networks with distributed breakdown voltages. Physical Review A, 1991, 43, 2905-2909.	1.0	6
169	A self-consistent mean-field model of polyelectrolyte solutions. An introduction. Colloid and Polymer Science, 1990, 268, 290-302.	1.0	1
170	Mean first passage times of ions between charged surfaces. Journal of the Chemical Society, Faraday Transactions, 1990, 86, 3585.	1.7	3
171	Refractive Index Gradient of Human Lenses. Optometry and Vision Science, 1989, 66, 822-829.	0.6	114
172	Ion diffusion in a Coulombic field. Journal of Statistical Physics, 1988, 52, 383-394.	0.5	8
173	Fluid capacity distributions of random porous media. Transport in Porous Media, 1988, 3, 81-94.	1.2	16
174	Determination and modeling of the 3-D gradient refractive indices in crystalline lenses. Applied Optics, 1988, 27, 926.	2.1	34
175	Simulating flow in porous media. Physical Review A, 1988, 38, 4106-4120.	1.0	29
176	Nondestructive Method of Constructing Three-Dimensional Gradient Index Models for Crystalline Lenses: I. Theory and Experiment. Optometry and Vision Science, 1988, 65, 481-491.	0.6	51
177	Ion diffusion near charged surfaces. Exact analytic solutions. Journal of the Chemical Society, Faraday Transactions 2, 1987, 83, 2271.	1.1	10
178	A physically consistent theory of fracture in a brittle solid. Journal of Colloid and Interface Science, 1987, 115, 240-259.	5.0	16
179	Tunable noise. Nature, 1987, 325, 489-489.	13.7	3
180	Ion diffusion at charged interfaces. Molecular Physics, 1986, 57, 1105-1137.	0.8	15

#	Article	IF	CITATIONS
181	Fluctuations, viscous fingering, and diffusion-limited aggregation. Physical Review A, 1986, 34, 4079-4082.	1.0	13
182	The electrostatic interaction in colloidal systems with low added electrolyte. Journal of Colloid and Interface Science, 1985, 105, 216-234.	5.0	208
183	The drainage of thin liquid films between solid surfaces. Journal of Chemical Physics, 1985, 83, 5311-5324.	1.2	702
184	The stability of a colloidal suspension of coated magnetic particles in an aqueous solution. IBM Journal of Research and Development, 1985, 29, 11-17.	3.2	30
185	Surface Potentials Derived from Co-Ion Exclusion Measurements on Homoionic Montmorillonite and Illite. Clays and Clay Minerals, 1984, 32, 131-138.	0.6	42
186	On a random process interpolating between Markovian and non-Markovian random walks. Journal of Physics A, 1984, 17, L121-L127.	1.6	5
187	The orientation-averaged interaction of a pair of magnetic dipolar spheres in an external magnetic field. Journal of Colloid and Interface Science, 1984, 101, 419-423.	5.0	15
188	Dissociation kinetics of secondary-minimum flocculated colloidal particles. Journal of Colloid and Interface Science, 1984, 102, 400-409.	5.0	29
189	The Smoluchowski-Poisson-Boltzmann description of ion diffusion at charged interfaces. Biophysical Journal, 1984, 46, 387-407.	0.2	43
190	Correlations in inhomogeneous Coulomb systems. Molecular Physics, 1984, 51, 1047-1070.	0.8	47
191	Improvement on the Hogg-Healy-Fuerstenau formulas for the interaction of dissimilar double layers. Journal of Colloid and Interface Science, 1983, 92, 232-242.	5.0	53
192	On the existence of hydrodynamic fluctuation forces. Physica A: Statistical Mechanics and Its Applications, 1983, 122, 505-515.	1.2	8
193	The free energy of an electrical double layer. Journal of Colloid and Interface Science, 1983, 95, 193-197.	5.0	114
194	Electrical double-layer interaction between spherical colloidal particles: An exact solution. Journal of Colloid and Interface Science, 1983, 92, 281-283.	5.0	23
195	Electrical double-layer interactions in concentrated colloidal systems. Faraday Discussions of the Chemical Society, 1983, 76, 65.	2.2	29
196	A non-linear truncation scheme for the Ornstein-Zernike equation for dipolar fluids. Molecular Physics, 1982, 47, 881-896.	0.8	10
197	Ionic and dipolar adsorption from an ion–dipole mixture. A model for the stern layer. Journal of the Chemical Society, Faraday Transactions 2, 1982, 78, 695-722.	1.1	21
198	Highly asymmetric electrolytes: A model for strongly interacting colloidal systems. Chemical Physics Letters, 1982, 92, 474-478.	1.2	60

#	Article	IF	CITATIONS
199	The modelling of solvent structure in the electrical double layer. Advances in Colloid and Interface Science, 1982, 16, 81-100.	7.0	27
200	The interaction of colloidal particles collected at fluid interfaces. Journal of Colloid and Interface Science, 1981, 79, 410-418.	5.0	325
201	The stillinger—lovett condition for non-uniform electrolytes. Chemical Physics Letters, 1981, 77, 437-440.	1.2	41
202	Thermodynamic properties of a fluid of hard spheres with water-like dipole and quadrupole moments. Chemical Physics Letters, 1981, 79, 588-590.	1.2	3
203	The structure of electrolytes at charged surfaces: The primitive model. Journal of Chemical Physics, 1981, 74, 1472-1478.	1.2	147
204	The statistical mechanics of the electrical double layer: Stress tensor and contact conditions. Journal of Chemical Physics, 1981, 74, 1293-1297.	1.2	80
205	Ionic adsorption from a primitive model electrolyte—nonlinear treatment. Journal of Chemical Physics, 1981, 75, 3485-3494.	1.2	16
206	The statistical mechanics of ion-dipole-tetrahedral quadrupole mixtures. Molecular Physics, 1981, 43, 1115-1138.	0.8	37
207	Colloidal behaviour of materials with ionizable group surfaces. Pure and Applied Chemistry, 1980, 52, 1207-1219.	0.9	86
208	The electrostatic interaction between spherical colloidal particles—a comment on the paper by Barouch et al. Journal of Colloid and Interface Science, 1980, 74, 303-305.	5.0	14
209	A simple algorithm for the calculation of the electrostatic repulsion between identical charged surfaces in electrolyte. Journal of Colloid and Interface Science, 1980, 77, 283-285.	5.0	347
210	A selfâ€consistent study of ion adsorption and discrete charge effects in the electrical double layer. Journal of Chemical Physics, 1980, 72, 5159-5162.	1.2	13
211	The structure of electrolytes at charged surfaces: Ion–dipole mixtures. Journal of Chemical Physics, 1980, 73, 2949-2957.	1.2	187
212	Solvent structure in particle interactions. Low pressure effects and analytic limits. Journal of the Chemical Society, Faraday Transactions 2, 1980, 76, 776.	1.1	11
213	A model of solvent structure around ions. Journal of Chemical Physics, 1979, 70, 2946-2957.	1.2	178
214	Competitive adsorption from binary mixtures: Adhesive hard sphere model. Journal of Colloid and Interface Science, 1979, 72, 27-40.	5.0	23
215	Dispersion interactions across binary liquid mixtures. A proper account of structural effects. Journal of Colloid and Interface Science, 1979, 68, 462-470.	5.0	17
216	Forces due to solvent structure in particle interactions: the one-dimensional problem. Journal of the Chemical Society, Faraday Transactions 2, 1979, 75, 556.	1.1	11

#	Article	IF	CITATIONS
217	Reply to comments on the theory of dipolar fluids. Journal of Chemical Physics, 1979, 70, 1578-1578.	1.2	1
218	Solvent mediated interactions—solute size effects and predictions of mean field theory. Chemical Physics Letters, 1978, 56, 533-536.	1.2	6
219	On the theory of dipolar fluids and ion–dipole mixtures. Journal of Chemical Physics, 1978, 69, 691-696.	1.2	46
220	Order/disorder transitions in concentrated electrocratic dispersions. Journal of the Chemical Society, Faraday Transactions 2, 1978, 74, 136.	1.1	40
221	Short-range interactions mediated by a solvent with surface adhesion. Molecular Physics, 1978, 35, 1669-1679.	0.8	45
222	Towards a microscopic theory of hydrophobic solutions. Journal of the Chemical Society, Faraday Transactions 2, 1978, 74, 2050.	1.1	11
223	Conformational properties of a polymer confined between two adsorbing surfaces. Journal of the Chemical Society, Faraday Transactions 2, 1976, 72, 1584.	1.1	16
224	Static and dynamic interactions with spatially dispersive media. Journal of Physics C: Solid State Physics, 1976, 9, 163-168.	1.5	41
225	Free energies across inhomogeneous dispersive media. III. Metals and retardation effects. Journal of Physics C: Solid State Physics, 1976, 9, 153-162.	1.5	9
226	Electrical double layer interactions under regulation by surface ionization equilibria–dissimilar amphoteric surfaces. Journal of the Chemical Society Faraday Transactions I, 1976, 72, 2844.	1.0	145
227	Non-retarded van der Waals interactions between two spatially dispersive media. Physics Letters, Section A: General, Atomic and Solid State Physics, 1975, 51, 323-324.	0.9	4
228	A general theory of free energies of inhomogeneous spatially dispersive media. I. Journal of Physics C: Solid State Physics, 1975, 8, 2509-2521.	1.5	15
229	Free energies of inhomogeneous spatially dispersive media. II. Thin films. Journal of Physics C: Solid State Physics, 1975, 8, 3221-3231.	1.5	7
230	Regulation of surface potential at amphoteric surfaces during particle–particle interaction. Journal of the Chemical Society Faraday Transactions I, 1975, 71, 1046.	1.0	220
231	Phase transitions in adsorbed polymer systems. Faraday Discussions of the Chemical Society, 1975, 59, 181.	2.2	6
232	Conformation of a non-interacting polymer near a "sticky―wall. Journal of the Chemical Society, Faraday Transactions 2, 1975, 71, 235-268.	1.1	27
233	The electrostatic interaction between surfaces bearing amphoteric ionizable groups across a 1:1 electrolyte. Journal of Theoretical Biology, 1974, 48, 253-256.	0.8	2
234	Phase transitions in polymer solutions and the prediction of ? temperatures. Journal of the Chemical Society, Faraday Transactions 2, 1974, 70, 586.	1.1	1

#	Article	IF	CITATIONS
235	Classical theory of dynamical image interactions. Surface Science, 1973, 39, 437-440.	0.8	47
236	The interaction of optically active molecules. Chemical Physics Letters, 1972, 16, 287-288.	1.2	2
237	Modelling drop-drop interactions in an atomic force microscope. ANZIAM Journal, 0, 46, 805.	0.0	16
238	Effective simulation methods for polyelectrolytes in low dielectric solvents. ANZIAM Journal, 0, 46, 1254.	0.0	0