List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3427680/publications.pdf Version: 2024-02-01

SHIVI CHEN

#	Article	IF	CITATIONS
1	LATTICE BOLTZMANN METHOD FOR FLUID FLOWS. Annual Review of Fluid Mechanics, 1998, 30, 329-364.	10.8	6,195
2	Recovery of the Navier-Stokes equations using a lattice-gas Boltzmann method. Physical Review A, 1992, 45, R5339-R5342.	1.0	1,289
3	A Novel Thermal Model for the Lattice Boltzmann Method in Incompressible Limit. Journal of Computational Physics, 1998, 146, 282-300.	1.9	1,194
4	A Lattice Boltzmann Scheme for Incompressible Multiphase Flow and Its Application in Simulation of Rayleigh–Taylor Instability. Journal of Computational Physics, 1999, 152, 642-663.	1.9	945
5	Lattice Boltzmann model for simulation of magnetohydrodynamics. Physical Review Letters, 1991, 67, 3776-3779.	2.9	591
6	Simulation of Cavity Flow by the Lattice Boltzmann Method. Journal of Computational Physics, 1995, 118, 329-347.	1.9	521
7	On boundary conditions in lattice Boltzmann methods. Physics of Fluids, 1996, 8, 2527-2536.	1.6	432
8	Mesoscopic predictions of the effective thermal conductivity for microscale random porous media. Physical Review E, 2007, 75, 036702.	0.8	394
9	A public turbulence database cluster and applications to study Lagrangian evolution of velocity increments in turbulence. Journal of Turbulence, 2008, 9, N31.	0.5	373
10	Stability Analysis of Lattice Boltzmann Methods. Journal of Computational Physics, 1996, 123, 196-206.	1.9	346
11	Lattice-Boltzmann Simulations of Fluid Flows in MEMS. Journal of Statistical Physics, 2002, 107, 279-289.	0.5	330
12	A consistent hydrodynamic boundary condition for the lattice Boltzmann method. Physics of Fluids, 1995, 7, 203-209.	1.6	301
13	Camassa-Holm Equations as a Closure Model for Turbulent Channel and Pipe Flow. Physical Review Letters, 1998, 81, 5338-5341.	2.9	272
14	Probability distribution of a stochastically advected scalar field. Physical Review Letters, 1989, 63, 2657-2660.	2.9	250
15	Pore scale study of flow in porous media: Scale dependency, REV, and statistical REV. Geophysical Research Letters, 2000, 27, 1195-1198.	1.5	242
16	Lattice Boltzmann computational fluid dynamics in three dimensions. Journal of Statistical Physics, 1992, 68, 379-400.	0.5	240
17	Physical symmetry and lattice symmetry in the lattice Boltzmann method. Physical Review E, 1997, 55, R21-R24.	0.8	237
18	Displacement of a two-dimensional immiscible droplet in a channel. Physics of Fluids, 2002, 14, 3203-3214.	1.6	233

#	Article	IF	CITATIONS
19	Lattice Boltzmann simulation of chemical dissolution in porous media. Physical Review E, 2002, 65, 036318.	0.8	214
20	The joint cascade of energy and helicity in three-dimensional turbulence. Physics of Fluids, 2003, 15, 361-374.	1.6	185
21	Examination of hypotheses in the Kolmogorov refined turbulence theory through high-resolution simulations. Part 1. Velocity field. Journal of Fluid Mechanics, 1996, 309, 113-156.	1.4	182
22	On the three-dimensional Rayleigh–Taylor instability. Physics of Fluids, 1999, 11, 1143-1152.	1.6	177
23	Direct numerical simulations of the Navier–Stokes alpha model. Physica D: Nonlinear Phenomena, 1999, 133, 66-83.	1.3	150
24	A improved incompressible lattice Boltzmann model for time-independent flows. Journal of Statistical Physics, 1995, 81, 35-48.	0.5	148
25	Flow patterns in the sedimentation of an elliptical particle. Journal of Fluid Mechanics, 2009, 625, 249-272.	1.4	137
26	Numerical experiments on reaction front propagation in n-heptane/air mixture with temperature gradient. Proceedings of the Combustion Institute, 2015, 35, 3045-3052.	2.4	135
27	Physical Mechanism of the Two-Dimensional Inverse Energy Cascade. Physical Review Letters, 2006, 96, 084502.	2.9	134
28	Unified lattice Boltzmann method for flow in multiscale porous media. Physical Review E, 2002, 66, 056307.	0.8	124
29	Sweeping decorrelation in isotropic turbulence. Physics of Fluids A, Fluid Dynamics, 1989, 1, 2019-2024.	1.6	121
30	Oxygen vacancy induced performance enhancement of toluene catalytic oxidation using LaFeO3 perovskite oxides. Chemical Engineering Journal, 2020, 387, 124101.	6.6	121
31	Electroosmosis in homogeneously charged micro- and nanoscale random porous media. Journal of Colloid and Interface Science, 2007, 314, 264-273.	5.0	119
32	Ca2Fe2O5: A promising oxygen carrier for CO/CH4 conversion and almost-pure H2 production with inherent CO2 capture over a two-step chemical looping hydrogen generation process. Applied Energy, 2018, 211, 431-442.	5.1	119
33	Energy transfer, pressure tensor, and heating of kinetic plasma. Physics of Plasmas, 2017, 24, .	0.7	115
34	Lattice gas automata for flow through porous media. Physica D: Nonlinear Phenomena, 1991, 47, 72-84.	1.3	114
35	Displacement of a three-dimensional immiscible droplet in a duct. Journal of Fluid Mechanics, 2005, 545, 41.	1.4	112
36	Reynolds-stress-constrained large-eddy simulation of wall-bounded turbulent flows. Journal of Fluid Mechanics, 2012, 703, 1-28.	1.4	112

#	Article	IF	CITATIONS
37	Kinetic energy transfer in compressible isotropic turbulence. Journal of Fluid Mechanics, 2018, 841, 581-613.	1.4	112
38	Immiscible displacement in a channel: simulations of fingering in two dimensions. Advances in Water Resources, 2004, 27, 13-22.	1.7	106
39	Effect of compressibility on the small-scale structures in isotropic turbulence. Journal of Fluid Mechanics, 2012, 713, 588-631.	1.4	105
40	Non-modal growth of perturbations in density-driven convection in porous media. Journal of Fluid Mechanics, 2008, 609, 285-303.	1.4	104
41	Aerodynamic heating in transitional hypersonic boundary layers: Role of second-mode instability. Physics of Fluids, 2018, 30, .	1.6	103
42	Experimental investigation of chemical-looping hydrogen generation using Al 2 O 3 or TiO 2 -supported iron oxides in a batch fluidized bed. International Journal of Hydrogen Energy, 2011, 36, 8915-8926.	3.8	101
43	Physical Mechanism of the Two-Dimensional Enstrophy Cascade. Physical Review Letters, 2003, 91, 214501.	2.9	100
44	Scaling Relations for a Randomly Advected Passive Scalar Field. Physical Review Letters, 1995, 75, 240-243.	2.9	99
45	Investigation of coal gasification hydrogen and electricity co-production plantÂwith three-reactors chemical looping process. International Journal of Hydrogen Energy, 2010, 35, 8580-8591.	3.8	96
46	Dynamics of Freely Cooling Granular Gases. Physical Review Letters, 2002, 89, 204301.	2.9	95
47	Refined Similarity Hypothesis for Transverse Structure Functions in Fluid Turbulence. Physical Review Letters, 1997, 79, 2253-2256.	2.9	94
48	Coal gasification integration with solid oxide fuel cell and chemical looping combustion for high-efficiency power generation with inherent CO2 capture. Applied Energy, 2015, 146, 298-312.	5.1	92
49	Intermittency in the Joint Cascade of Energy and Helicity. Physical Review Letters, 2003, 90, 214503.	2.9	91
50	A continuum–atomistic simulation of heat transfer in micro- and nano-flows. Journal of Computational Physics, 2007, 227, 279-291.	1.9	89
51	Is there a statistical mechanics of turbulence?. Physica D: Nonlinear Phenomena, 1989, 37, 160-172.	1.3	88
52	Far-dissipation range of turbulence. Physical Review Letters, 1993, 70, 3051-3054.	2.9	87
53	Transition in Hypersonic Boundary Layers: Role of Dilatational Waves. AIAA Journal, 2016, 54, 3039-3049.	1.5	85
54	Lattice Boltzmann magnetohydrodynamics. Physics of Plasmas, 1994, 1, 1850-1867.	0.7	83

#	Article	IF	CITATIONS
55	Roughness and cavitations effects on electro-osmotic flows in rough microchannels using the lattice Poisson–Boltzmann methods. Journal of Computational Physics, 2007, 226, 836-851.	1.9	82
56	Momentum-exchange method in lattice Boltzmann simulations of particle-fluid interactions. Physical Review E, 2013, 88, 013303.	0.8	82
57	Recent progress in the study of transition in the hypersonic boundary layer. National Science Review, 2019, 6, 155-170.	4.6	82
58	Experimental study of freely falling thin disks: Transition from planar zigzag to spiral. Physics of Fluids, 2011, 23, .	1.6	80
59	Interface and surface tension in incompressible lattice Boltzmann multiphase model. Computer Physics Communications, 2000, 129, 121-130.	3.0	79
60	Cascade of Kinetic Energy in Three-Dimensional Compressible Turbulence. Physical Review Letters, 2013, 110, 214505.	2.9	78
61	Mesoscopic simulations of phase distribution effects on the effective thermal conductivity of microgranular porous media. Journal of Colloid and Interface Science, 2007, 311, 562-570.	5.0	77
62	Reynolds number dependence of isotropic Navier-Stokes turbulence. Physical Review Letters, 1993, 70, 3251-3254.	2.9	75
63	Three-dimensional effect on the effective thermal conductivity of porous media. Journal Physics D: Applied Physics, 2007, 40, 260-265.	1.3	75
64	Inertial Range Scalings of Dissipation and Enstrophy in Isotropic Turbulence. Physical Review Letters, 1997, 79, 1253-1256.	2.9	74
65	Statistics and structures of pressure in isotropic turbulence. Physics of Fluids, 1999, 11, 2235-2250.	1.6	74
66	Resonant interactions in rotating homogeneous three-dimensional turbulence. Journal of Fluid Mechanics, 2005, 542, 139.	1.4	71
67	Effects of Zr doping on Fe2O3/CeO2 oxygen carrier in chemical looping hydrogen generation. Chemical Engineering Journal, 2018, 346, 712-725.	6.6	71
68	Effect of shocklets on the velocity gradients in highly compressible isotropic turbulence. Physics of Fluids, 2011, 23, .	1.6	70
69	Electrokinetic pumping effects of charged porous media in microchannels using the lattice Poisson–Boltzmann method. Journal of Colloid and Interface Science, 2006, 304, 246-253.	5.0	67
70	Chemical looping dry reforming of methane with hydrogen generation on Fe2O3/Al2O3 oxygen carrier. Chemical Engineering Journal, 2019, 368, 812-823.	6.6	67
71	Newly identified principle for aerodynamic heating in hypersonic flows. Journal of Fluid Mechanics, 2018, 855, 152-180.	1.4	66
72	Artificial neural network mixed model for large eddy simulation of compressible isotropic turbulence. Physics of Fluids, 2019, 31, .	1.6	66

#	Article	IF	CITATIONS
73	Onset of convection over a transient base-state in anisotropic and layered porous media. Journal of Fluid Mechanics, 2009, 641, 227-244.	1.4	65
74	Constrained subgrid-scale stress model for large eddy simulation. Physics of Fluids, 2008, 20, .	1.6	63
75	Effects of CeO ₂ , ZrO ₂ , and Al ₂ O ₃ Supports on Iron Oxygen Carrier for Chemical Looping Hydrogen Generation. Energy & Fuels, 2017, 31, 8001-8013.	2.5	63
76	Lattice Boltzmann simulation on particle suspensions in a two-dimensional symmetric stenotic artery. Physical Review E, 2004, 69, 031919.	0.8	62
77	Experimental investigation of freely falling thin disks. Part 1. The flow structures and Reynolds number effects on the zigzag motion. Journal of Fluid Mechanics, 2013, 716, 228-250.	1.4	62
78	Scalings and Relative Scalings in the Navier-Stokes Turbulence. Physical Review Letters, 1996, 76, 3711-3714.	2.9	60
79	Surface tension effects on two-dimensional two-phase Kelvin–Helmholtz instabilities. Advances in Water Resources, 2001, 24, 461-478.	1.7	60
80	Effects of supports on hydrogen production and carbon deposition of Fe-based oxygen carriers in chemical looping hydrogen generation. International Journal of Hydrogen Energy, 2017, 42, 11006-11016.	3.8	60
81	A model for the laminar flame speed of binary fuel blends and its application to methane/hydrogen mixtures. International Journal of Hydrogen Energy, 2012, 37, 10390-10396.	3.8	59
82	Carbon formation on iron-based oxygen carriers during CH 4 reduction period in Chemical Looping Hydrogen Generation process. Chemical Engineering Journal, 2017, 325, 322-331.	6.6	59
83	Experimental investigation of freely falling thin disks. Part 2. Transition of three-dimensional motion from zigzag to spiral. Journal of Fluid Mechanics, 2013, 732, 77-104.	1.4	57
84	High-resolution turbulent simulations using the Connection Machine-2. Computers in Physics, 1992, 6, 643.	0.6	54
85	Hybrid continuum-atomistic simulation of singular corner flow. Physics of Fluids, 2004, 16, 3579-3591.	1.6	54
86	Calcium looping gasification for high-concentration hydrogen production with CO2 capture in a novel compact fluidized bed: Simulation and operation requirements. International Journal of Hydrogen Energy, 2011, 36, 4887-4899.	3.8	54
87	Effects of Hydrodynamics on Phase Transition Kinetics in Two-Dimensional Binary Fluids. Physical Review Letters, 1995, 74, 3852-3855.	2.9	53
88	Simulations of a randomly advected passive scalar field. Physics of Fluids, 1998, 10, 2867-2884.	1.6	53
89	Enhanced sintering resistance of Fe2O3/CeO2 oxygen carrier for chemical looping hydrogen generation using core-shell structure. International Journal of Hydrogen Energy, 2019, 44, 6491-6504.	3.8	53
90	Examination of hypotheses in the Kolmogorov refined turbulence theory through high-resolution simulations. Part 2. Passive scalar field. Journal of Fluid Mechanics, 1999, 400, 163-197.	1.4	52

#	Article	IF	CITATIONS
91	Steam gasification of sewage sludge with CaO as CO 2 sorbent for hydrogen-rich syngas production. Biomass and Bioenergy, 2017, 107, 52-62.	2.9	52
92	Spinodal decomposition in fluids: Diffusive, viscous, and inertial regimes. Physical Review E, 1996, 53, 5513-5516.	0.8	51
93	Ignition of methane with hydrogen and dimethyl ether addition. Fuel, 2014, 118, 1-8.	3.4	51
94	Resolving Singular Forces in Cavity Flow: Multiscale Modeling from Atomic to Millimeter Scales. Physical Review Letters, 2006, 96, 134501.	2.9	50
95	Transition in hypersonic boundary layers. AIP Advances, 2015, 5, .	0.6	50
96	Scaling and Statistics in Three-Dimensional Compressible Turbulence. Physical Review Letters, 2012, 108, 214505.	2.9	48
97	Uncovering Molecular Mechanisms of Electrowetting and Saturation with Simulations. Physical Review Letters, 2012, 108, 216101.	2.9	47
98	Thermodynamic assessment and optimization of a pressurized fluidized bed oxy-fuel combustion power plant with CO2 capture. Energy, 2019, 175, 445-455.	4.5	47
99	Anomalous Scaling and Structure Instability in Three-Dimensional Passive Scalar Turbulence. Physical Review Letters, 1997, 78, 3459-3462.	2.9	45
100	Turbulent bands in plane-Poiseuille flow at moderate Reynolds numbers. Physics of Fluids, 2015, 27, .	1.6	45
101	Characterization of Fe 2 O 3 /CeO 2 oxygen carriers for chemical looping hydrogen generation. International Journal of Hydrogen Energy, 2018, 43, 3154-3164.	3.8	44
102	Statistics of Dissipation and Enstrophy Induced by Localized Vortices. Physical Review Letters, 1998, 81, 4636-4639.	2.9	43
103	Peristaltic particle transport using the lattice Boltzmann method. Physics of Fluids, 2009, 21, .	1.6	43
104	Effects of supports on reduction activity and carbon deposition of iron oxide for methane chemical looping hydrogen generation. Applied Energy, 2018, 225, 912-921.	5.1	43
105	Finite Size Effect in Lattice-BGK Models. International Journal of Modern Physics C, 1997, 08, 763-771.	0.8	41
106	Flame propagation in a tube with wall quenching of radicals. Combustion and Flame, 2013, 160, 2810-2819.	2.8	41
107	Scale dependence of energy transfer in turbulent plasma. Monthly Notices of the Royal Astronomical Society, 2019, 482, 4933-4940.	1.6	41
108	Ni, Co and Cu-promoted iron-based oxygen carriers in methane-fueled chemical looping hydrogen generation process. Fuel Processing Technology, 2021, 221, 106917.	3.7	40

#	Article	IF	CITATIONS
109	Constrained large-eddy simulation of wall-bounded compressible turbulent flows. Physics of Fluids, 2013, 25, .	1.6	39
110	Direct numerical simulation of turbulent channel flow with spanwise rotation. Journal of Fluid Mechanics, 2016, 788, 42-56.	1.4	39
111	Hydrogen-rich syngas production via sorption-enhanced steam gasification of sewage sludge. Biomass and Bioenergy, 2020, 138, 105607.	2.9	38
112	Lattice Boltzmann simulation of the two-dimensional Rayleigh-Taylor instability. Physical Review E, 1998, 58, 6861-6864.	0.8	37
113	Energy cascade and its locality in compressible magnetohydrodynamic turbulence. Physical Review E, 2016, 93, 061102.	0.8	37
114	Hypersonic aerodynamic heating over a flared cone with wavy wall. Physics of Fluids, 2019, 31, .	1.6	37
115	Vortex reconnection in the late transition in channel flow. Journal of Fluid Mechanics, 2016, 802, .	1.4	36
116	Integration of chemical looping combustion and supercritical CO2 cycle for combined heat and power generation with CO2 capture. Energy Conversion and Management, 2018, 167, 113-124.	4.4	36
117	Investigation of synergistic effects and high performance of La-Co composite oxides for toluene catalytic oxidation at low temperature. Environmental Science and Pollution Research, 2019, 26, 12123-12135.	2.7	36
118	Biomass pyrolysis-gasification over Zr promoted CaO-HZSM-5 catalysts for hydrogen and bio-oil co-production with CO2 capture. International Journal of Hydrogen Energy, 2017, 42, 16031-16044.	3.8	33
119	Compressibility effect on coherent structures, energy transfer, and scaling in magnetohydrodynamic turbulence. Physics of Fluids, 2017, 29, .	1.6	32
120	Fe–O terminated LaFeO3 perovskite oxide surface for low temperature toluene oxidation. Journal of Cleaner Production, 2020, 277, 123224.	4.6	32
121	Sintering and agglomeration of Fe2O3-MgAl2O4 oxygen carriers with different Fe2O3 loadings in chemical looping processes. Fuel, 2020, 265, 116983.	3.4	32
122	Molecular simulations of electroosmotic flows in rough nanochannels. Journal of Computational Physics, 2010, 229, 7834-7847.	1.9	31
123	Spectra and Mach number scaling in compressible homogeneous shear turbulence. Physics of Fluids, 2018, 30, .	1.6	31
124	Cascades of temperature and entropy fluctuations in compressible turbulence. Journal of Fluid Mechanics, 2019, 867, 195-215.	1.4	30
125	Effect of flow topology on the kinetic energy flux in compressible isotropic turbulence. Journal of Fluid Mechanics, 2020, 883, .	1.4	30
126	Subgrid-scale eddy viscosity model for helical turbulence. Physics of Fluids, 2013, 25, .	1.6	29

#	Article	IF	CITATIONS
127	Effect of shock waves on the statistics and scaling in compressible isotropic turbulence. Physical Review E, 2018, 97, 043108.	0.8	29
128	Effects of compressibility and Atwood number on the single-mode Rayleigh-Taylor instability. Physics of Fluids, 2020, 32, 012110.	1.6	29
129	Simulation of three-dimensional compressible decaying isotropic turbulence using a redesigned discrete unified gas kinetic scheme. Physics of Fluids, 2020, 32, .	1.6	29
130	Coupling of high Knudsen number and non-ideal gas effects in microporous media. Journal of Fluid Mechanics, 2018, 840, 56-73.	1.4	28
131	Multiple states in turbulent plane Couette flow with spanwise rotation. Journal of Fluid Mechanics, 2018, 837, 477-490.	1.4	28
132	Generalized hydrodynamic transport in lattice-gas automata. Physical Review A, 1991, 43, 7097-7100.	1.0	27
133	Properties of Velocity Circulation in Three-Dimensional Turbulence. Physical Review Letters, 1996, 76, 616-619.	2.9	27
134	Effective volumetric lattice Boltzmann scheme. Physical Review E, 2001, 63, 056705.	0.8	27
135	Effects of approaching main flow boundary layer on flow and cooling performance of an inclined jet in cross flow. International Journal of Heat and Mass Transfer, 2016, 103, 572-581.	2.5	27
136	Slip boundary conditions over curved surfaces. Physical Review E, 2016, 93, 013105.	0.8	27
137	Inertial range scaling in turbulence. Physical Review E, 1995, 52, R5757-R5759.	0.8	26
138	Is the Kolmogorov Refined Similarity Relation Dynamic or Kinematic?. Physical Review Letters, 1995, 74, 1755-1758.	2.9	26
139	Constrained large-eddy simulation and detached eddy simulation of flow past a commercial aircraft at 14 degrees angle of attack. Science China: Physics, Mechanics and Astronomy, 2013, 56, 270-276.	2.0	26
140	Effect of wall temperature on the kinetic energy transfer in a hypersonic turbulent boundary layer. Journal of Fluid Mechanics, 2021, 929, .	1.4	26
141	Scaling of Low-Order Structure Functions in Homogeneous Turbulence. Physical Review Letters, 1996, 77, 3799-3802.	2.9	25
142	Evolution of material surfaces in the temporal transition in channel flow. Journal of Fluid Mechanics, 2016, 793, 840-876.	1.4	25
143	Dissipation-energy flux correlations as evidence for the Lagrangian energy cascade in turbulence. Physics of Fluids, 2010, 22, .	1.6	24
144	A modified optimal LES model for highly compressible isotropic turbulence. Physics of Fluids, 2018, 30, 065108.	1.6	24

#	Article	IF	CITATIONS
145	Effects of bulk viscosity on compressible homogeneous turbulence. Physics of Fluids, 2019, 31, .	1.6	24
146	Spatially multi-scale artificial neural network model for large eddy simulation of compressible isotropic turbulence. AIP Advances, 2020, 10, .	0.6	24
147	Compressibility effect in hypersonic boundary layer with isothermal wall condition. Physical Review Fluids, 2021, 6, .	1.0	24
148	Constrained Large-Eddy Simulation of Compressible Flow Past a Circular Cylinder. Communications in Computational Physics, 2014, 15, 388-421.	0.7	23
149	Mach Number Effect of Compressible Flow Around a Circular Cylinder. AIAA Journal, 2016, 54, 2004-2009.	1.5	23
150	Sorption enhanced coal gasification for hydrogen production using a synthesized CaOMgO-molecular sieve sorbent. International Journal of Hydrogen Energy, 2016, 41, 17323-17333.	3.8	23
151	Effect of compressibility on small scale statistics in homogeneous shear turbulence. Physics of Fluids, 2019, 31, 025107.	1.6	23
152	Subgrid-scale modeling of helicity and energy dissipation in helical turbulence. Physical Review E, 2006, 74, 026310.	0.8	22
153	Correlations for the ignition delay times of hydrogen/air mixtures. Science Bulletin, 2011, 56, 215-221.	1.7	22
154	Design and Fluid Dynamic Analysis of a Three-Fluidized-Bed Reactor System for Chemical-Looping Hydrogen Generation. Industrial & Engineering Chemistry Research, 2012, 51, 4267-4278.	1.8	22
155	Enhanced Hydrogen Generation for Fe ₂ O ₃ /CeO ₂ Oxygen Carrier via Rare-Earth (Y, Sm, and La) Doping in Chemical Looping Process. Energy & Fuels, 2018, 32, 11362-11374.	2.5	22
156	Spatial artificial neural network model for subgrid-scale stress and heat flux of compressible turbulence. Theoretical and Applied Mechanics Letters, 2020, 10, 27-32.	1.3	22
157	Near-wall flow structures and related surface quantities in wall-bounded turbulence. Physics of Fluids, 2021, 33, .	1.6	22
158	Interactions between inertial particles and shocklets in compressible turbulent flow. Physics of Fluids, 2014, 26, .	1.6	21
159	Constrained large-eddy simulation of laminar-turbulent transition in channel flow. Physics of Fluids, 2014, 26, .	1.6	21
160	Modulation to compressible homogenous turbulence by heavy point particles. I. Effect of particles' density. Physics of Fluids, 2016, 28, .	1.6	21
161	Synergistic Effects of the Zr and Sm Co-doped Fe ₂ O ₃ /CeO ₂ Oxygen Carrier for Chemical Looping Hydrogen Generation. Energy & Fuels, 2020, 34, 10256-10267.	2.5	21
162	Turbulent statistics and flow structures in spanwise-rotating turbulent plane Couette flows. Physical Review Fluids, 2016, 1, .	1.0	21

#	Article	IF	CITATIONS
163	Is the Kelvin Theorem Valid for High Reynolds Number Turbulence?. Physical Review Letters, 2006, 97, 144505.	2.9	20
164	Theoretical model of scattering from flow ducts with semi-infinite axial liner splices. Journal of Fluid Mechanics, 2016, 786, 62-83.	1.4	20
165	Role of magnetic field curvature in magnetohydrodynamic turbulence. Physics of Plasmas, 2019, 26, .	0.7	20
166	Process integration of coal fueled chemical looping hydrogen generation with SOFC for power production and CO2 capture. International Journal of Hydrogen Energy, 2017, 42, 28732-28746.	3.8	19
167	Solar–Wind–Bio Ecosystem for Biomass Cascade Utilization with Multigeneration of Formic Acid, Hydrogen, and Graphene. ACS Sustainable Chemistry and Engineering, 2019, 7, 2558-2568.	3.2	19
168	Dual channels of helicity cascade in turbulent flows. Journal of Fluid Mechanics, 2020, 894, .	1.4	19
169	Growth kinetics in multicomponent fluids. Journal of Statistical Physics, 1995, 81, 223-235.	0.5	18
170	Clustering kinetics of granular media in three dimensions. Physics Letters, Section A: General, Atomic and Solid State Physics, 2000, 269, 218-223.	0.9	18
171	Kolmogorov's Third Hypothesis and Turbulent Sign Statistics. Physical Review Letters, 2003, 90, 254501.	2.9	18
172	Acceleration of Passive Tracers in Compressible Turbulent Flow. Physical Review Letters, 2013, 110, 064503.	2.9	18
173	Sinuous distortion of vortex surfaces in the lateral growth of turbulent spots. Physical Review Fluids, 2018, 3, .	1.0	18
174	Lattice gas automata for simple and complex fluids. Journal of Statistical Physics, 1991, 64, 1133-1162.	0.5	17
175	Application of chemical looping air separation for MILD oxy-combustion: Identifying a suitable operational region. Applied Thermal Engineering, 2018, 132, 8-17.	3.0	17
176	Effect of compressibility on the local flow topology in homogeneous shear turbulence. Physics of Fluids, 2020, 32, 015118.	1.6	17
177	Dilatational-wave-induced aerodynamic cooling in transitional hypersonic boundary layers. Journal of Fluid Mechanics, 2021, 911, .	1.4	17
178	AMADEUS Project and Microscopic Simulation of Boiling Two-Phase Flow by the Lattice-Boltzmann Method. International Journal of Modern Physics C, 1997, 08, 843-858.	0.8	16
179	The scaling of pressure in isotropic turbulence. Physics of Fluids, 1998, 10, 2119-2121.	1.6	16
180	Lattice Boltzmann Scheme for Simulating Two-Phase Flows JSME International Journal Series B, 2000, 43, 305-313.	0.3	16

#	Article	IF	CITATIONS
181	Statistics and structures of pressure and density in compressible isotropic turbulence. Journal of Turbulence, 2013, 14, 21-37.	0.5	16
182	Elucidation of syngas composition from catalytic steam gasification of lignin, cellulose, actual and simulated biomasses. Biomass and Bioenergy, 2018, 115, 210-222.	2.9	16
183	Effective slip boundary conditions for sinusoidally corrugated surfaces. Physical Review Fluids, 2016, 1, .	1.0	16
184	Flow structures and kinetic-potential exchange in forced rotating stratified turbulence. Physical Review Fluids, 2020, 5, .	1.0	16
185	Inhibition of turbulent cascade by sweep. Journal of Plasma Physics, 1997, 57, 187-193.	0.7	15
186	Spinodal decomposition in binary fluids under shear flow. Physica A: Statistical Mechanics and Its Applications, 1997, 239, 428-436.	1.2	15
187	Multiscale Fluid Mechanics and Modeling. Procedia IUTAM, 2014, 10, 100-114.	1.2	15
188	Evolutionary geometry of Lagrangian structures in a transitional boundary layer. Physics of Fluids, 2016, 28, 035110.	1.6	15
189	Interactions between the premixed flame front and the three-dimensional Taylor–Green vortex. Proceedings of the Combustion Institute, 2019, 37, 2461-2468.	2.4	15
190	Thermodynamic analysis of oxy-fuel combustion integrated with the sCO2 Brayton cycle for combined heat and power production. Energy Conversion and Management, 2021, 232, 113869.	4.4	15
191	A new idea to predict reshocked Richtmyer–Meshkov mixing: constrained large-eddy simulation. Journal of Fluid Mechanics, 2021, 918, .	1.4	15
192	An intermittency model for passive-scalar turbulence. Physics of Fluids, 1997, 9, 1203-1205.	1.6	14
193	Lattice Boltzmann simulation of a single charged particle in a Newtonian fluid. Physical Review E, 2003, 68, 011401.	0.8	14
194	Contact Angle of Glycerol Nanodroplets Under van der Waals Force. Journal of Physical Chemistry C, 2009, 113, 16169-16173.	1.5	14
195	Simulation of self-assemblies of colloidal particles on the substrate using a lattice Boltzmann pseudo-solid model. Journal of Computational Physics, 2013, 248, 323-338.	1.9	14
196	A hybrid scheme for compressible magnetohydrodynamic turbulence. Journal of Computational Physics, 2016, 306, 73-91.	1.9	14
197	Magnetohydrodynamics computations with lattice gas automata. Journal of Statistical Physics, 1992, 68, 533-556.	0.5	13
198	Effect of finite computational domain on turbulence scaling law in both physical and spectral spaces. Physical Review E, 1998, 58, 5841-5844.	0.8	13

#	Article	IF	CITATIONS
199	Calculations of longitudinal and transverse velocity structure functions using a vortex model of isotropic turbulence. Physics of Fluids, 1999, 11, 3743-3748.	1.6	13
200	Stabilizing/destabilizing the large-scale circulation in turbulent Rayleigh–Bénard convection with sidewall temperature control. Journal of Fluid Mechanics, 2021, 915, .	1.4	13
201	Lattice gas models for nonideal gas fluids. Physica D: Nonlinear Phenomena, 1991, 47, 97-111.	1.3	12
202	A lattice gas model for thermohydrodynamics. Journal of Statistical Physics, 1991, 62, 1121-1151.	0.5	12
203	Local Reynolds number and thresholds of transition in shear flows. Science China: Physics, Mechanics and Astronomy, 2013, 56, 263-269.	2.0	12
204	Constrained large-eddy simulation of turbulent flow and heat transfer in a stationary ribbed duct. International Journal of Numerical Methods for Heat and Fluid Flow, 2016, 26, 1069-1091.	1.6	12
205	Interscale kinetic energy transfer in chemically reacting compressible isotropic turbulence. Journal of Fluid Mechanics, 2021, 912, .	1.4	12
206	Boosting the surface oxygen activity for high performance Iron-based perovskite oxide. Science of the Total Environment, 2021, 795, 148904.	3.9	11
207	Kinematic effects on local energy dissipation rate and local enstrophy in fluid turbulence. Physics of Fluids, 1998, 10, 312-314.	1.6	10
208	Analysis of Reynolds number scaling for viscous vortex reconnection. Physics of Fluids, 2012, 24, .	1.6	10
209	Intermittency caused by compressibility: aÂLagrangian study. Journal of Fluid Mechanics, 2016, 786, .	1.4	10
210	Large eddy simulation of spanwise rotating turbulent channel flow with dynamic variants of eddy viscosity model. Physics of Fluids, 2018, 30, .	1.6	10
211	Investigation of a dual cold-flow fluidized bed for calcium looping gasification process. Powder Technology, 2019, 353, 10-19.	2.1	10
212	Acoustic-wave-induced cooling in onset of hypersonic turbulence. Physics of Fluids, 2020, 32, 061702.	1.6	10
213	Controlling flow reversal in two-dimensional Rayleigh–Bénard convection. Journal of Fluid Mechanics, 2020, 891, .	1.4	10
214	Spectra and scaling in chemically reacting compressible isotropic turbulence. Physical Review Fluids, 2020, 5, .	1.0	10
215	Image-based modelling of the skin-friction coefficient in compressible boundary-layer transition. Journal of Fluid Mechanics, 2019, 875, 1175-1203.	1.4	9
216	Application of incremental support vector regression based on optimal training subset and improved particle swarm optimization algorithm in real-time sensor fault diagnosis. Applied Intelligence, 2021, 51, 3323-3338.	3.3	9

#	Article	IF	CITATIONS
217	Transfer of internal energy fluctuation in compressible isotropic turbulence with vibrational non-equilibrium. Journal of Fluid Mechanics, 2021, 919, .	1.4	9
218	Constrained large-eddy simulation of turbulent flow over inhomogeneous rough surfaces. Theoretical and Applied Mechanics Letters, 2021, 11, 100229.	1.3	9
219	Hysteresis behavior in spanwise rotating plane Couette flow with varying rotation rates. Physical Review Fluids, 2019, 4, .	1.0	9
220	Contribution of flow topology to the kinetic energy flux in hypersonic turbulent boundary layer. Physics of Fluids, 2022, 34, 046103.	1.6	9
221	Statistics of one-dimensional compressible turbulence with random large-scale force. Physics of Fluids, 2013, 25, .	1.6	8
222	Large Eddy Simulation of Inclined Jet in Cross Flow With Cylindrical and Fan-Shaped Holes. , 2016, , .		8
223	Constrained large-eddy simulation of supersonic turbulent boundary layer over a compression ramp. Journal of Turbulence, 2017, 18, 781-808.	0.5	8
224	Investigations on fluid dynamics of binary particles in a dual fluidized bed reactor system for enhanced calcium looping gasification process. Powder Technology, 2020, 361, 803-811.	2.1	8
225	Inverse design of mesoscopic models for compressible flow using the Chapman-Enskog analysis. Advances in Aerodynamics, 2021, 3, .	1.3	8
226	Classification and prediction of gas turbine gas path degradation based on deep neural networks. International Journal of Energy Research, 2021, 45, 10513-10526.	2.2	8
227	Computing mean fields with known Reynolds stresses at steady state. Theoretical and Applied Mechanics Letters, 2021, 11, 100244.	1.3	8
228	Role of the large-scale structures in spanwise rotating plane Couette flow with multiple states. Physical Review Fluids, 2019, 4, .	1.0	8
229	Vibrational relaxation in compressible isotropic turbulence with thermal nonequilibrium. Physical Review Fluids, 2020, 5, .	1.0	8
230	Enhanced Fe ₂ O ₃ /Al ₂ O ₃ Oxygen Carriers for Chemical Looping Steam Reforming of Methane with Different Mg Ratios. Industrial & Engineering Chemistry Research, 2022, 61, 1022-1031.	1.8	8
231	Simulation of three-dimensional forced compressible isotropic turbulence by a redesigned discrete unified gas kinetic scheme. Physics of Fluids, 2022, 34, 025106.	1.6	8
232	Effect of compressibility on the small-scale structures in hypersonic turbulent boundary layer. Physics of Fluids, 2022, 34, .	1.6	8
233	Recent progress in compressible turbulence. Acta Mechanica Sinica/Lixue Xuebao, 2015, 31, 275-291.	1.5	7
234	Comparisons of different implementations of turbulence modelling in lattice Boltzmann method. Journal of Turbulence, 2015, 16, 67-80.	0.5	7

#	Article	IF	CITATIONS
235	A new identification method in sampled quadrant analysis for wall-bounded turbulence. Physics of Fluids, 2016, 28, 061702.	1.6	7
236	Multi-scale simulation method for electroosmotic flows. European Physical Journal: Special Topics, 2016, 225, 1551-1582.	1.2	7
237	Large Eddy Simulation and CDNS Investigation of T106C Low-Pressure Turbine. Journal of Fluids Engineering, Transactions of the ASME, 2018, 140, .	0.8	7
238	Large-Eddy Simulations of Inclined Jets in Crossflow with Different Holes. Journal of Propulsion and Power, 2018, 34, 1098-1108.	1.3	7
239	Heat transfer mechanisms of inclined jets in cross flow with different holes. International Journal of Heat and Mass Transfer, 2019, 131, 664-674.	2.5	7
240	Energy budget in decaying compressible MHD turbulence. Journal of Fluid Mechanics, 2021, 916, .	1.4	7
241	Application of chemical looping air separation for MILD oxyâ€combustion in the supercritical power plant with CO ₂ capture. Energy Science and Engineering, 2018, 6, 490-505.	1.9	6
242	Improved iron oxide oxygen carriers for chemical looping hydrogen generation using colloidal crystal templated method. International Journal of Hydrogen Energy, 2019, 44, 13175-13184.	3.8	6
243	A Hybrid Numerical Simulation of Supersonic Isotropic Turbulence. Communications in Computational Physics, 2019, 25, .	0.7	6
244	Reynolds number dependence of heavy particles clustering in homogeneous isotropic turbulence. Physical Review Fluids, 2020, 5, .	1.0	6
245	Reduced aerodynamic heating in a hypersonic boundary layer by a wavy wall. Science Bulletin, 2022, 67, 988-990.	4.3	6
246	Joint-constraint model for large-eddy simulation of helical turbulence. Physical Review E, 2014, 89, 043021.	0.8	5
247	Multi-objective economic emission dispatch of thermal power plants based on grey relational analysis and analytic hierarchy process. Energy and Environment, 2020, 31, 785-812.	2.7	5
248	Constrained large-eddy simulation of turbulent flow over rough walls. Physical Review Fluids, 2021, 6, .	1.0	5
249	Kinetic energy transfer in compressible homogeneous anisotropic turbulence. Physical Review Fluids, 2021, 6, .	1.0	5
250	High-order moments of streamwise fluctuations in a turbulent channel flow with spanwise rotation. Physical Review Fluids, 2018, 3, .	1.0	5
251	Kinetic-energy-flux-constrained model using an artificial neural network for large-eddy simulation of compressible wall-bounded turbulence. Journal of Fluid Mechanics, 2022, 932, .	1.4	5
252	Modification of Metal (Fe, Al) Doping on Reaction Properties of a NiO Oxygen Carrier with CO during Chemical Looping Combustion. ACS Omega, 2022, 7, 4381-4388.	1.6	5

#	Article	IF	CITATIONS
253	Constrained large-eddy simulation of a spatially evolving supersonic turbulent boundary layer at <i>M</i> = 2.25. Physics of Fluids, 2021, 33, 125116.	1.6	5
254	Integration of molten carbonate fuel cell and chemical looping air separation for high-efficient power generation and CO2 capture. Energy, 2022, 254, 124184.	4.5	5
255	Hierarchy of structure functions for passive scalars advected by turbulent flows. Physics Letters, Section A: General, Atomic and Solid State Physics, 1998, 246, 135-138.	0.9	4
256	Numerical Study on the Ignition Process of <i>n</i> -Decane/Toluene Binary Fuel Blends. Energy & Fuels, 2012, 26, 6729-6736.	2.5	4
257	Large-eddy simulation of plane channel flow with Vreman's model. Journal of Turbulence, 2016, 17, 807-822.	0.5	4
258	Development of a simplified method for the determination of ampere-hour capacity of lead–acid battery. Energy and Environment, 2018, 29, 147-161.	2.7	4
259	Numerical investigation of plane Couette flow with weak spanwise rotation. Science China: Physics, Mechanics and Astronomy, 2019, 62, 1.	2.0	4
260	Promoting effect of ZrO2/CeO2 addition on Fe/CaO catalyst for hydrogen gas production in the gasification process. Biomass and Bioenergy, 2020, 142, 105712.	2.9	4
261	Chemometric modelling on element compositions and product distributions of cellulose and lignin. Biomass Conversion and Biorefinery, 2021, 11, 2233-2246.	2.9	4
262	Statistics of active and passive scalars in one-dimensional compressible turbulence. Physical Review E, 2012, 86, 066307.	0.8	3
263	Comment on "A hybrid subgrid-scale model constrained by Reynolds stress―[Phys. Fluids 25, 110805 (2013)]. Physics of Fluids, 2014, 26, .	1.6	3
264	Constrained Large-Eddy Simulation for Aerodynamics. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 2015, , 105-115.	0.2	3
265	Effect of Oscillation Structures on Inertial-Range Intermittence and Topology in Turbulent Field. Communications in Computational Physics, 2016, 19, 251-272.	0.7	3
266	Flow structures in spanwise rotating plane Poiseuille flow based on thermal analogy. Journal of Fluid Mechanics, 2022, 933, .	1.4	3
267	Reply to comment of Nield. Advances in Water Resources, 2007, 30, 698-699.	1.7	2
268	SIMULATION OF SELF-ASSEMBLIES OF COLLOIDAL PARTICLES WITH DIFFERENT SIZES BY USING A LATTICE BOLTZMANN PSEUDO-SOLID MODEL. International Journal of Modern Physics C, 2013, 24, 1340002.	0.8	2
269	Experimental investigation of a triplet ash valve for circulating fluidized bed. Powder Technology, 2018, 328, 397-405.	2.1	2
270	Thermodynamic Analysis and Optimization of an Oxyfuel Fluidized Bed Combustion Power Plant for CO ₂ Capture. Industrial & Engineering Chemistry Research, 0, , .	1.8	2

#	Article	IF	CITATIONS
271	Identifying the pattern of breakdown in a laminar-turbulent transition via binary sequence statistics and cellular-automaton simulations. Physical Review E, 2019, 100, 023110.	0.8	2
272	Preface: symposium on turbulence structures and aerodynamic heat/force (STSAHF2018). Applied Mathematics and Mechanics (English Edition), 2019, 40, 181-184.	1.9	2
273	Interfacial settling mode and tail dynamics of spherical-particle motion through immiscible fluids interfaces. Chemical Engineering Science, 2021, 229, 116091.	1.9	2
274	Evolution of Smâ€Đoped Fe ₂ O ₃ /CeO ₂ Oxygen Carriers in Chemical Looping Hydrogen Generation. Energy Technology, 2021, 9, 2100535.	1.8	2
275	Spectral energy transfers and kinetic-potential energy exchange in rotating stratified turbulence. Physical Review Fluids, 2020, 5, .	1.0	2
276	Lattice Boltzmann Scheme for Simulating Two-Phase Flows 880-02 Nihon Kikai Gakkai Ronbunshū Transactions of the Japan Society of Mechanical Engineers Series B B-hen, 1999, 65, 1955-1963.	0.2	1
277	A new fourth order finite difference scheme for the heat equation. Communications in Nonlinear Science and Numerical Simulation, 2000, 5, 151-157.	1.7	1
278	Transport of particles in an atmospheric turbulent boundary layer. Acta Mechanica Sinica/Lixue Xuebao, 2005, 21, 235-242.	1.5	1
279	A Memory-Saving Algorithm for Spectral Method of Three-Dimensional Homogeneous Isotropic Turbulence. Communications in Computational Physics, 2011, 9, 1152-1164.	0.7	1
280	LES and CDNS Investigation of T106C Low Pressure Turbine. , 2016, , .		1
281	Large Eddy Simulation of Secondary Flows in an Ultra-High Lift Low Pressure Turbine Cascade at Various Inlet Incidences. International Journal of Turbo and Jet Engines, 2020, 37, 195-207.	0.3	1
282	A Ginzburg–Landau model for linear global modes in open shear flows. Journal of Fluid Mechanics, 2020, 904, .	1.4	1
283	Hysteresis behaviour in spanwise rotating plane Couette flow at Rew = 2600. Journal of Turbulence, 2021, 22, 254-266.	0.5	1
284	Perturbation analysis of baroclinic torque in low-Mach-number flows. Journal of Fluid Mechanics, 2022, 930, .	1.4	1
285	Molecular Simulation of Electrokinetic Transport in Nanofluidics. , 2009, , .		0
286	Flow topology and enstrophy production in chemically reacting compressible isotropic turbulence. Physical Review Fluids, 2022, 7, .	1.0	0