Timothy A Yap

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3426964/publications.pdf

Version: 2024-02-01

87888 36028 11,206 102 38 97 citations h-index g-index papers 103 103 103 15654 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Inhibition of Poly(ADP-Ribose) Polymerase in Tumors from <i>BRCA</i> Mutation Carriers. New England Journal of Medicine, 2009, 361, 123-134.	27.0	3,312
2	Poly(ADP)-Ribose Polymerase Inhibition: Frequent Durable Responses in <i>BRCA</i> Carrier Ovarian Cancer Correlating With Platinum-Free Interval. Journal of Clinical Oncology, 2010, 28, 2512-2519.	1.6	877
3	State-of-the-art strategies for targeting the DNA damage response in cancer. Nature Reviews Clinical Oncology, 2019, 16, 81-104.	27.6	736
4	Targeting DNA Repair in Cancer: Beyond PARP Inhibitors. Cancer Discovery, 2017, 7, 20-37.	9.4	488
5	Intratumor Heterogeneity: Seeing the Wood for the Trees. Science Translational Medicine, 2012, 4, 127ps10.	12.4	443
6	PARPi Triggers the STING-Dependent Immune Response and Enhances the Therapeutic Efficacy of Immune Checkpoint Blockade Independent of BRCAness. Cancer Research, 2019, 79, 311-319.	0.9	404
7	PARP Inhibitors: Extending Benefit Beyond <i>BRCA</i> -Mutant Cancers. Clinical Cancer Research, 2019, 25, 3759-3771.	7.0	265
8	Envisioning the future of early anticancer drug development. Nature Reviews Cancer, 2010, 10, 514-523.	28.4	262
9	Development of Therapeutic Combinations Targeting Major Cancer Signaling Pathways. Journal of Clinical Oncology, 2013, 31, 1592-1605.	1.6	249
10	BRD4 Inhibition Is Synthetic Lethal with PARP Inhibitors through the Induction of Homologous Recombination Deficiency. Cancer Cell, 2018, 33, 401-416.e8.	16.8	215
11	Drugging PI3K in cancer: refining targets and therapeutic strategies. Current Opinion in Pharmacology, 2015, 23, 98-107.	3.5	186
12	Poly(ADP-Ribose) polymerase (PARP) inhibitors: Exploiting a synthetic lethal strategy in the clinic. Ca-A Cancer Journal for Clinicians, 2011, 61, 31-49.	329.8	178
13	Serial Next-Generation Sequencing of Circulating Cell-Free DNA Evaluating Tumor Clone Response To Molecularly Targeted Drug Administration. Clinical Cancer Research, 2015, 21, 4586-4596.	7.0	171
14	Sequential Therapy with PARP and WEE1 Inhibitors Minimizes Toxicity while Maintaining Efficacy. Cancer Cell, 2019, 35, 851-867.e7.	16.8	156
15	Development of PARP and Immune-Checkpoint Inhibitor Combinations. Cancer Research, 2018, 78, 6717-6725.	0.9	155
16	Phase I Trial of First-in-Class ATR Inhibitor M6620 (VX-970) as Monotherapy or in Combination With Carboplatin in Patients With Advanced Solid Tumors. Journal of Clinical Oncology, 2020, 38, 3195-3204.	1.6	152
17	First-in-Human Trial of the Oral Ataxia Telangiectasia and RAD3-Related (ATR) Inhibitor BAY 1895344 in Patients with Advanced Solid Tumors. Cancer Discovery, 2021, 11, 80-91.	9.4	148
18	The DNA Damaging Revolution: PARP Inhibitors and Beyond. American Society of Clinical Oncology Educational Book / ASCO American Society of Clinical Oncology Meeting, 2019, 39, 185-195.	3.8	144

#	Article	IF	Citations
19	PARP inhibitors: the race is on. British Journal of Cancer, 2016, 114, 713-715.	6.4	135
20	Development of Immunotherapy Combination Strategies in Cancer. Cancer Discovery, 2021, 11, 1368-1397.	9.4	130
21	Phase I Study of the Novel Enhancer of Zeste Homolog 2 (EZH2) Inhibitor GSK2816126 in Patients with Advanced Hematologic and Solid Tumors. Clinical Cancer Research, 2019, 25, 7331-7339.	7.0	110
22	Clinical <i>BRCA1/2</i> Reversion Analysis Identifies Hotspot Mutations and Predicted Neoantigens Associated with Therapy Resistance. Cancer Discovery, 2020, 10, 1475-1488.	9.4	109
23	Immuno-oncology combinations: raising the tail of the survival curve. Cancer Biology and Medicine, 2016, 13, 171-193.	3.0	98
24	Exploiting the Cancer Genome: Strategies for the Discovery and Clinical Development of Targeted Molecular Therapeutics. Annual Review of Pharmacology and Toxicology, 2012, 52, 549-573.	9.4	96
25	The National Lung Matrix Trial of personalized therapy in lung cancer. Nature, 2020, 583, 807-812.	27.8	96
26	Phase 2 study of pembrolizumab in patients with advanced rare cancers., 2020, 8, e000347.		95
27	Towards Precision Medicine in the Clinic: From Biomarker Discovery to Novel Therapeutics. Trends in Pharmacological Sciences, 2017, 38, 25-40.	8.7	87
28	Phase I Trial of the PARP Inhibitor Olaparib and AKT Inhibitor Capivasertib in Patients with ⟨i⟩BRCA1/2⟨/i⟩- and Non–⟨i⟩BRCA1/2⟨/i⟩-Mutant Cancers. Cancer Discovery, 2020, 10, 1528-1543.	9.4	82
29	Oxidative Phosphorylation Is a Metabolic Vulnerability in Chemotherapy-Resistant Triple-Negative Breast Cancer. Cancer Research, 2021, 81, 5572-5581.	0.9	75
30	Inhibition of the ATM/Chk2 axis promotes cGAS/STING signaling in ARID1A-deficient tumors. Journal of Clinical Investigation, 2020, 130, 5951-5966.	8.2	72
31	Interrogating Two Schedules of the AKT Inhibitor MK-2206 in Patients with Advanced Solid Tumors Incorporating Novel Pharmacodynamic and Functional Imaging Biomarkers. Clinical Cancer Research, 2014, 20, 5672-5685.	7.0	66
32	ATR Inhibition Induces CDK1–SPOP Signaling and Enhances Anti–PD-L1 Cytotoxicity in Prostate Cancer. Clinical Cancer Research, 2021, 27, 4898-4909.	7.0	66
33	Precision Oncology Decision Support: Current Approaches and Strategies for the Future. Clinical Cancer Research, 2018, 24, 2719-2731.	7.0	54
34	Ceralasertib (AZD6738), an Oral ATR Kinase Inhibitor, in Combination with Carboplatin in Patients with Advanced Solid Tumors: A Phase I Study. Clinical Cancer Research, 2021, 27, 5213-5224.	7.0	53
35	Phase I trial of IACS-010759 (IACS), a potent, selective inhibitor of complex I of the mitochondrial electron transport chain, in patients (pts) with advanced solid tumors Journal of Clinical Oncology, 2019, 37, 3014-3014.	1.6	50
36	A Population of Heterogeneous Breast Cancer Patient-Derived Xenografts Demonstrate Broad Activity of PARP Inhibitor in BRCA1/2 Wild-Type Tumors. Clinical Cancer Research, 2017, 23, 6468-6477.	7.0	48

#	Article	IF	Citations
37	Targeting the replication stress response through synthetic lethal strategies in cancer medicine. Trends in Cancer, 2021, 7, 930-957.	7.4	48
38	Extracranial Soft-Tissue Tumors: Repeatability of Apparent Diffusion Coefficient Estimates from Diffusion-weighted MR Imaging. Radiology, 2017, 284, 88-99.	7.3	45
39	Efficacy and safety of pembrolizumab in patients with advanced mesothelioma in the open-label, single-arm, phase 2 KEYNOTE-158 study. Lancet Respiratory Medicine, the, 2021, 9, 613-621.	10.7	44
40	Targeting ATR in cancer medicine. Current Problems in Cancer, 2017, 41, 302-315.	2.0	43
41	Phase II study of pembrolizumab efficacy and safety in women with recurrent small cell neuroendocrine carcinoma of the lower genital tract. Gynecologic Oncology, 2020, 158, 570-575.	1.4	43
42	Advances in the Development of Molecularly Targeted Agents in Non-Small-Cell Lung Cancer. Drugs, 2017, 77, 813-827.	10.9	42
43	Targeting the PD-1/PD-L1 axis in non–small cell lung cancer. Current Problems in Cancer, 2017, 41, 111-124.	2.0	37
44	Phase 1 study of the ATR inhibitor berzosertib in combination with cisplatin in patients with advanced solid tumours. British Journal of Cancer, 2021, 125, 520-527.	6.4	37
45	Continuing EGFR inhibition beyond progression in advanced non-small cell lung cancer. European Journal of Cancer, 2017, 70, 12-21.	2.8	36
46	Triplet Therapy with Palbociclib, Taselisib, and Fulvestrant in <i>PIK3CA</i> Mutant Breast Cancer and Doublet Palbociclib and Taselisib in Pathway-Mutant Solid Cancers. Cancer Discovery, 2021, 11, 92-107.	9.4	36
47	PRMT1-dependent regulation of RNA metabolism and DNA damage response sustains pancreatic ductal adenocarcinoma. Nature Communications, 2021, 12, 4626.	12.8	31
48	Toward precision medicine with next-generation EGFR inhibitors in non-small-cell lung cancer. Pharmacogenomics and Personalized Medicine, 2014, 7, 285.	0.7	30
49	CDK4/6 Inhibitors: Promising Opportunities beyond Breast Cancer. Cancer Discovery, 2016, 6, 697-699.	9.4	30
50	Development of molecularly targeted agents and immunotherapies in small cell lung cancer. European Journal of Cancer, 2016, 60, 26-39.	2.8	28
51	Challenges with biomarkers in cancer drug discovery and development. Expert Opinion on Drug Discovery, 2018, 13, 685-690.	5.0	28
52	First-In-Human Phase I Study of a Next-Generation, Oral, TGFÎ ² Receptor 1 Inhibitor, LY3200882, in Patients with Advanced Cancer. Clinical Cancer Research, 2021, 27, 6666-6676.	7.0	27
53	The role of Schlafen 11 (SLFN11) as a predictive biomarker for targeting the DNA damage response. British Journal of Cancer, 2021, 124, 857-859.	6.4	26
54	The evolution of cyclin dependent kinase inhibitors in the treatment of cancer. Expert Review of Anticancer Therapy, 2021, 21, 1105-1124.	2.4	26

#	Article	IF	CITATIONS
55	First-in-Human Phase I/II ICONIC Trial of the ICOS Agonist Vopratelimab Alone and with Nivolumab: ICOS-High CD4 T-Cell Populations and Predictors of Response. Clinical Cancer Research, 2022, 28, 3695-3708.	7.0	26
56	Targeting <i>BRAF</i> -Mutant Colorectal Cancer: Progress in Combination Strategies. Cancer Discovery, 2017, 7, 558-560.	9.4	25
57	A study of motivations and expectations of patients seen in phase 1 oncology clinics. Cancer, 2016, 122, 3501-3508.	4.1	24
58	A Phase I Dose-Escalation Study to Evaluate the Safety and Tolerability of Evofosfamide in Combination with Ipilimumab in Advanced Solid Malignancies. Clinical Cancer Research, 2021, 27, 3050-3060.	7.0	24
59	Targeting the insulin-like growth factor signaling pathway: figitumumab and other novel anticancer strategies. Expert Opinion on Investigational Drugs, 2011, 20, 1293-1304.	4.1	23
60	Safety and Clinical Activity of a New Anti-PD-L1 Antibody as Monotherapy or Combined with Targeted Therapy in Advanced Solid Tumors: The PACT Phase Ia/Ib Trial. Clinical Cancer Research, 2021, 27, 1267-1277.	7.0	21
61	Prevalence of Germline Findings Among Tumors From Cancer Types Lacking Hereditary Testing Guidelines. JAMA Network Open, 2022, 5, e2213070.	5.9	21
62	PARP inhibition â€" opportunities in pancreatic cancer. Nature Reviews Clinical Oncology, 2019, 16, 595-596.	27.6	19
63	Imprecision in the Era of Precision Medicine in Non-Small Cell Lung Cancer. Frontiers in Medicine, 2017, 4, 39.	2.6	18
64	Development of poly(ADP-ribose) polymerase inhibitor and immunotherapy combinations: progress, pitfalls, and promises. Trends in Cancer, 2021, 7, 958-970.	7.4	18
65	Application of Real-World Data to External Control Groups in Oncology Clinical Trial Drug Development. Frontiers in Oncology, 2021, 11, 695936.	2.8	17
66	Precision Combination Therapies Based on Recurrent Oncogenic Coalterations. Cancer Discovery, 2022, 12, 1542-1559.	9.4	17
67	The promise of DNA damage response inhibitors for the treatment of glioblastoma. Neuro-Oncology Advances, 2021, 3, vdab015.	0.7	16
68	A Phase I Study of GSK2816126, an Enhancer of Zeste Homolog 2(EZH2) Inhibitor, in Patients (pts) with Relapsed/Refractory Diffuse Large B-Cell Lymphoma (DLBCL), Other Non-Hodgkin Lymphomas (NHL), Transformed Follicular Lymphoma (tFL), Solid Tumors and Multiple Myeloma (MM). Blood, 2016, 128, 4203-4203.	1.4	15
69	Adjuvant Therapy of Renal Cell Carcinoma. Clinical Genitourinary Cancer, 2006, 5, 120-130.	1.9	14
70	Abstract PR14: Phase I trial of first-in-class ataxia telangiectasia-mutated and Rad3-related (ATR) inhibitor VX-970 as monotherapy (mono) or in combination with carboplatin (CP) in advanced cancer patients (pts) with preliminary evidence of target modulation and antitumor activity. Molecular Cancer Therapeutics, 2015, 14, PR14-PR14.	4.1	14
71	Precision Medicine in Oncology—Toward the Integrated Targeting of Somatic and Germline Genomic Aberrations. JAMA Oncology, 2021, 7, 507.	7.1	13
72	Abstract CT012: Phase 1 trial of first-in-class ATR inhibitor VX-970 in combination with cisplatin (Cis) in patients (pts) with advanced solid tumors (NCT02157792). Cancer Research, 2016, 76, CT012-CT012.	0.9	12

#	Article	lF	Citations
73	Emerging biomarkers for PD-1 pathway cancer therapy. Biomarkers in Medicine, 2017, 11, 53-67.	1.4	11
74	SARS-CoV-2 vaccination and phase 1 cancer clinical trials. Lancet Oncology, The, 2021, 22, 298-301.	10.7	11
75	Development of the PARP inhibitor talazoparib for the treatment of advanced <i>BRCA1</i> and <i>BRCA2</i> mutated breast cancer. Expert Opinion on Pharmacotherapy, 2021, 22, 1825-1837.	1.8	11
76	A Tale of Two Checkpoints: ATR Inhibition and PD-(L)1 Blockade. Annual Review of Medicine, 2022, 73, 231-250.	12.2	11
77	Phase Ib SEASTAR Study: Combining Rucaparib and Sacituzumab Govitecan in Patients With Cancer With or Without Mutations in Homologous Recombination Repair Genes. JCO Precision Oncology, 2022, 6, e2100456.	3.0	11
78	Phase 1 trial of TLR9 agonist lefitolimod in combination with CTLA-4 checkpoint inhibitor ipilimumab in advanced tumors Journal of Clinical Oncology, 2019, 37, TPS2669-TPS2669.	1.6	10
79	Development of Next-Generation Poly(ADP-Ribose) Polymerase 1–Selective Inhibitors. Cancer Journal (Sudbury, Mass), 2021, 27, 521-528.	2.0	10
80	Targeting MET Exon 14 Skipping Alterations: Has Lung Cancer MET Its Match?. Journal of Thoracic Oncology, 2017, 12, 12-14.	1.1	9
81	Clinical Development of AKT Inhibitors and Associated Predictive Biomarkers to Guide Patient Treatment in Cancer Medicine. Pharmacogenomics and Personalized Medicine, 2021, Volume 14, 1517-1535.	0.7	9
82	IOLite: phase 1b trial of doublet/triplet combinations of dostarlimab with niraparib, carboplatin–paclitaxel, with or without bevacizumab in patients with advanced cancer. , 2022, 10, e003924.		8
83	Precision Medicine: Progress, Pitfalls, and Promises. Molecular Cancer Therapeutics, 2017, 16, 2641-2644.	4.1	7
84	Molecular Profiling of Metastatic Bladder Cancer Early-Phase Clinical Trial Participants Predicts Patient Outcomes. Molecular Cancer Research, 2021, 19, 395-402.	3.4	7
85	Biopsy-Derived Biomarkers in Phase I Trials: Building Confidence in Drug Development. Journal of Clinical Oncology, 2016, 34, 2431-2432.	1.6	6
86	Combining Molecularly Targeted Agents: Is More Always Better?. Clinical Cancer Research, 2017, 23, 1123-1125.	7.0	6
87	Targeting the DNA damage response beyond poly(ADP-ribose) polymerase inhibitors: novel agents and rational combinations. Current Opinion in Oncology, 2022, 34, 559-569.	2.4	6
88	Precision medicine in oncology. Current Problems in Cancer, 2017, 41, 163-165.	2.0	5
89	Global Implementation of Precision Oncology. JCO Precision Oncology, 2021, 5, 854-858.	3.0	5
90	Focused molecular analysis of small cell lung cancer: feasibility in routine clinical practice. BMC Research Notes, 2015, 8, 688.	1.4	4

#	Article	IF	Citations
91	Development of Molecularly Driven Targeted Combination Strategies. Oncologist, 2017, 22, 1421-1423.	3.7	4
92	PIPA: A phase Ib study of selective ß-isoform sparing phosphatidylinositol 3-kinase (PI3K) inhibitor taselisib (T) plus palbociclib (P) in patients (pts) with advanced solid cancersâ€"Safety, tolerability, pharmacokinetic (PK), and pharmacodynamic (PD) analysis of the doublet combination Journal of Clinical Oncology, 2019, 37, 3087-3087.	1.6	4
93	Circulating tumor DNAâ€"From bench to bedside. Current Problems in Cancer, 2017, 41, 212-221.	2.0	2
94	Moving Precision Oncology Forward Amid Myths and Misconceptions. JAMA Oncology, 2018, 4, 1788.	7.1	2
95	The Promise of Poly(ADP-Ribose) Polymerase (PARP) Inhibitors in Gliomas. Journal of Immunotherapy and Precision Oncology, 2020, 3, 157-164.	1.4	2
96	PI3K–AKT–mTOR inhibitors for the systemic treatment of endometrial cancer. Expert Review of Obstetrics and Gynecology, 2012, 7, 421-430.	0.4	1
97	Emerging strategies for the treatment of advanced small cell lung cancer. Journal of Thoracic Disease, 2016, 8, E1249-E1253.	1.4	1
98	Precision oncology: East meets West. International Journal of Cancer, 2018, 142, 1734-1737.	5.1	1
99	Validation of Prognostic Scores in Patients With Metastatic Urothelial Cancer Enrolling in Phase I Targeted Therapy or Next Generation Immunotherapy Trials. Clinical Genitourinary Cancer, 2022, 20, e16-e24.	1.9	1
100	Combination Drug Development in BRAF Mutant Colorectal Cancer. Oncoscience, 2018, 5, 51-53.	2.2	1
101	DNA Damage Response. , 2021, , 1-12.		0
102	DNA Damage Response. , 2021, , 536-547.		0