Yu Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3426832/publications.pdf Version: 2024-02-01

279798 434195 8,445 31 23 31 h-index citations g-index papers 31 31 31 9862 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nature Nanotechnology, 2007, 2, 577-583.	31.5	5,080
2	Preparation and characterization of magnetite nanoparticles coated by amino silane. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2003, 212, 219-226.	4.7	767
3	Dual Enzyme-like Activities of Iron Oxide Nanoparticles and Their Implication for Diminishing Cytotoxicity. ACS Nano, 2012, 6, 4001-4012.	14.6	717
4	Size dependence of specific power absorption of Fe3O4 particles in AC magnetic field. Journal of Magnetism and Magnetic Materials, 2004, 268, 33-39.	2.3	448
5	Prussian blue modified iron oxide magnetic nanoparticles and their high peroxidase-like activity. Journal of Materials Chemistry, 2010, 20, 5110.	6.7	333
6	High-performance PEGylated Mn–Zn ferrite nanocrystals as a passive-targeted agent for magnetically induced cancer theranostics. Biomaterials, 2014, 35, 9126-9136.	11.4	110
7	Multi-modal Mn–Zn ferrite nanocrystals for magnetically-induced cancer targeted hyperthermia: a comparison of passive and active targeting effects. Nanoscale, 2016, 8, 16902-16915.	5.6	76
8	Magnetic targeting combined with active targeting of dual-ligand iron oxide nanoprobes to promote the penetration depth in tumors for effective magnetic resonance imaging and hyperthermia. Acta Biomaterialia, 2019, 96, 491-504.	8.3	74
9	Magnetic field activated drug release system based on magnetic PLGA microspheres for chemo-thermal therapy. Colloids and Surfaces B: Biointerfaces, 2015, 136, 712-720.	5.0	65
10	Injectable magnetic supramolecular hydrogel with magnetocaloric liquid-conformal property prevents post-operative recurrence in a breast cancer model. Acta Biomaterialia, 2018, 74, 302-311.	8.3	62
11	Graphene oxide-based Fe2O3 hybrid enzyme mimetic with enhanced peroxidase and catalase-like activities. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 506, 747-755.	4.7	60
12	Active-target T ₁ -weighted MR Imaging of Tiny Hepatic Tumor <i>via</i> RGD Modified Ultra-small Fe ₃ O ₄ Nanoprobes. Theranostics, 2016, 6, 1780-1791.	10.0	59
13	Influence of morphology and surface exchange reaction on magnetic properties of monodisperse magnetite nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2012, 408, 114-121.	4.7	58
14	Shape Evolution of "Multibranched―Mn–Zn Ferrite Nanostructures with High Performance: A Transformation of Nanocrystals into Nanoclusters. Chemistry of Materials, 2013, 25, 3702-3709.	6.7	58
15	Using PEGylated magnetic nanoparticles to describe the EPR effect in tumor for predicting therapeutic efficacy of micelle drugs. Nanoscale, 2018, 10, 1788-1797.	5.6	53
16	The Effect of Iron Oxide Magnetic Nanoparticles on Smooth Muscle Cells. Nanoscale Research Letters, 2009, 4, .	5.7	52
17	A Functional Iron Oxide Nanoparticles Modified with PLA-PEG-DG as Tumor-Targeted MRI Contrast Agent. Pharmaceutical Research, 2017, 34, 1683-1692.	3.5	52
18	Injectable thermosensitive magnetic nanoemulsion hydrogel for multimodal-imaging-guided accurate thermoablative cancer therapy. Nanoscale, 2017, 9, 16175-16182.	5.6	49

Yu Zhang

#	Article	IF	CITATIONS
19	Ultra-small particles of iron oxide as peroxidase for immunohistochemical detection. Nanotechnology, 2011, 22, 225703.	2.6	47
20	High-Performance Poly(lactic-co-glycolic acid)-Magnetic Microspheres Prepared by Rotating Membrane Emulsification for Transcatheter Arterial Embolization and Magnetic Ablation in VX ₂ Liver Tumors. ACS Applied Materials & Interfaces, 2017, 9, 43478-43489.	8.0	41
21	Synthesis of Ultrasmall Fe ₃ O ₄ Nanoparticles as <i>T</i> ₁ – <i>T</i> ₂ Dual-Modal Magnetic Resonance Imaging Contrast Agents in Rabbit Hepatic Tumors. ACS Applied Nano Materials, 2020, 3, 3585-3595.	5.0	36
22	Improving sensitivity of magnetic resonance imaging by using a dual-targeted magnetic iron oxide nanoprobe. Colloids and Surfaces B: Biointerfaces, 2018, 161, 339-346.	5.0	28
23	Size-dependent electromagnetic properties and the related simulations of Fe3O4 nanoparticles made by microwave-assisted thermal decomposition. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 530, 191-199.	4.7	27
24	Paclitaxel-loaded magnetic nanocrystals for tumor neovascular-targeted theranostics: an amplifying synergistic therapy combining magnetic hyperthermia with chemotherapy. Nanoscale, 2021, 13, 3613-3626.	5.6	17
25	Magnetic navigation helps PLGA drug loaded magnetic microspheres achieve precise chemoembolization and hyperthermia. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 588, 124364.	4.7	16
26	Precise Study on Size-Dependent Properties of Magnetic Iron Oxide Nanoparticles for <i>In Vivo</i> Magnetic Resonance Imaging. Journal of Nanomaterials, 2018, 2018, 1-9.	2.7	15
27	Coronal relay reactor Fe3O4@CeO2 for accelerating ROS axial conversion through enhanced Enzyme-like effect and relay effect. Chemical Engineering Journal, 2022, 429, 132303.	12.7	14
28	Influence of Reaction Solvent on Crystallinity and Magnetic Properties of MnFe ₂ O ₄ Nanoparticles Synthesized by Thermal Decomposition. Journal of Nanomaterials, 2016, 2016, 1-8.	2.7	12
29	Fe3O4@OA@Poloxamer nanoparticles lower triglyceride in hepatocytes through liposuction effect and nano-enzyme effect. Colloids and Surfaces B: Biointerfaces, 2019, 184, 110528.	5.0	10
30	Quantitative Evaluation of the Total Magnetic Moments of Colloidal Magnetic Nanoparticles: A Kineticsâ€based Method. ChemPhysChem, 2015, 16, 1598-1602.	2.1	7
31	A Novel Method to Construct Dual-targeted Magnetic Nanoprobes by Modular Assembling. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 605, 125339.	4.7	2