Jos C Mieog

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3426764/publications.pdf Version: 2024-02-01

LOS C MIEOC

#	Article	IF	CITATIONS
1	A community change in the algal endosymbionts of a scleractinian coral following a natural bleaching event: field evidence of acclimatization. Proceedings of the Royal Society B: Biological Sciences, 2008, 275, 1359-1365.	2.6	506
2	Juvenile corals can acquire more carbon from high-performance algal symbionts. Coral Reefs, 2009, 28, 405-414.	2.2	233
3	Real-time PCR reveals a high incidence of Symbiodinium clade D at low levels in four scleractinian corals across the Great Barrier Reef: implications for symbiont shuffling. Coral Reefs, 2007, 26, 449-457.	2.2	226
4	ldentity and diversity of coral endosymbionts (zooxanthellae) from three Palauan reefs with contrasting bleaching, temperature and shading histories. Molecular Ecology, 2004, 13, 2445-2458.	3.9	221
5	The Roles and Interactions of Symbiont, Host and Environment in Defining Coral Fitness. PLoS ONE, 2009, 4, e6364.	2.5	176
6	Diversity of algal endosymbionts (zooxanthellae) in octocorals: the roles of geography and host relationships. Molecular Ecology, 2005, 14, 2403-2417.	3.9	168
7	Quantification of algal endosymbionts (<i>Symbiodinium</i>) in coral tissue using realâ€ŧime PCR. Molecular Ecology Resources, 2009, 9, 74-82.	4.8	96
8	Vibrio Zinc-Metalloprotease Causes Photoinactivation of Coral Endosymbionts and Coral Tissue Lesions. PLoS ONE, 2009, 4, e4511.	2.5	89
9	Engineering α-amylase levels in wheat grain suggests a highly sophisticated level of carbohydrate regulation during development. Journal of Experimental Botany, 2014, 65, 5443-5457.	4.8	48
10	Does Late Maturity Alpha-Amylase Impact Wheat Baking Quality?. Frontiers in Plant Science, 2018, 9, 1356.	3.6	41
11	Fast-tracking development of homozygous transgenic cereal lines using a simple and highly flexible real-time PCR assay. BMC Plant Biology, 2013, 13, 71.	3.6	34
12	New insight in cereal starch degradation: identification and structural characterization of four $\hat{l}\pm$ -amylases in bread wheat. Amylase, 2017, 1, .	1.6	29
13	Characterization of the Cannabis sativa glandular trichome proteome. PLoS ONE, 2021, 16, e0242633.	2.5	25
14	Overexpression of a wheat αâ€amylase type 2 impact on starch metabolism and abscisic acid sensitivity during grain germination. Plant Journal, 2021, 108, 378-393.	5.7	6
15	Predicting tea tree oil distillate composition using portable spectrometric technology. Journal of Raman Spectroscopy, 2022, 53, 771-784.	2.5	3
16	Transferring a Biomass Enhancement Biotechnology from Glasshouse to Field: A Case Study on Wheat GWD RNAi. Agronomy, 2017, 7, 82.	3.0	2
17	Over-Expression of a Wheat Late Maturity Alpha-Amylase Type 1 Impact on Starch Properties During Grain Development and Germination. Frontiers in Plant Science, 2022, 13, 811728.	3.6	2
18	Fast and Efficient Screening for Wheat Loss-of-Gene Mutants Using Multiplexed Melt Curve Analyses. PLoS ONE, 2016, 11, e0159955.	2.5	0