Yaojiong Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3426738/publications.pdf Version: 2024-02-01

<u> Хлономс Ми</u>

#	Article	IF	CITATIONS
1	Engineering of human mesenchymal stem cells resistant to multiple natural killer subtypes. International Journal of Biological Sciences, 2022, 18, 426-440.	6.4	3
2	Engineered Skin Substitute Regenerates the Skin with Hair Follicle Formation. Biomedicines, 2021, 9, 400.	3.2	6
3	Human ESC-derived MSCs enhance fat engraftment by promoting adipocyte reaggregation, secreting CCL2 and mobilizing macrophages. Biomaterials, 2021, 272, 120756.	11.4	8
4	Three-dimensional cultured mesenchymal stem cells enhance repair of ischemic stroke through inhibition of microglia. Stem Cell Research and Therapy, 2021, 12, 358.	5.5	14
5	Platelet sonicates activate hair follicle stem cells and mediate enhanced hair follicle regeneration. Journal of Cellular and Molecular Medicine, 2020, 24, 1786-1794.	3.6	27
6	Sebaceous gland: Milestones of 30â€year modelling research dedicated to the "brain of the skin― Experimental Dermatology, 2020, 29, 1069-1079.	2.9	20
7	PI3K/Akt signaling pathway is essential for de novo hair follicle regeneration. Stem Cell Research and Therapy, 2020, 11, 144.	5.5	51
8	Noninvasive application of mesenchymal stem cell spheres derived from hESC accelerates wound healing in a CXCL12-CXCR4 axis-dependent manner. Theranostics, 2019, 9, 6112-6128.	10.0	33
9	TSA restores hair follicle-inductive capacity of skin-derived precursors. Scientific Reports, 2019, 9, 2867.	3.3	18
10	<i>Pten</i> loss in Lgr5 ⁺ hair follicle stem cells promotes SCC development. Theranostics, 2019, 9, 8321-8331.	10.0	20
11	Isolation and Cultivation of Epidermal (Stem) Cells. Methods in Molecular Biology, 2018, 1879, 133-138.	0.9	2
12	Three-Dimensional Culture Reduces Cell Size By Increasing Vesicle Excretion. Stem Cells, 2018, 36, 286-292.	3.2	25
13	Platelet-derived growth factor receptor beta identifies mesenchymal stem cells with enhanced engraftment to tissue injury and pro-angiogenic property. Cellular and Molecular Life Sciences, 2018, 75, 547-561.	5.4	63
14	Isolation and Cultivation of Skin-Derived Precursors. Methods in Molecular Biology, 2018, 1879, 149-152.	0.9	3
15	Measurement of Mesenchymal Stem Cells Attachment to Endothelial Cells. Bio-protocol, 2018, 8, e2776.	0.4	1
16	Macrophages induce AKT/β-catenin-dependent Lgr5+ stem cell activation and hair follicle regeneration through TNF. Nature Communications, 2017, 8, 14091.	12.8	166
17	3D culture increases pluripotent gene expression in mesenchymal stem cells through relaxation of cytoskeleton tension. Journal of Cellular and Molecular Medicine, 2017, 21, 1073-1084.	3.6	88
18	Distinctively Expressed Cytokines by Three Different Inflammation Cells and Their Interaction with Keratinocytes in Wound Healing. Inflammation, 2017, 40, 2151-2162.	3.8	6

YAOJIONG WU

#	Article	IF	CITATIONS
19	Mesenchymal stem cell subpopulations: phenotype, property and therapeutic potential. Cellular and Molecular Life Sciences, 2016, 73, 3311-3321.	5.4	100
20	Hair Follicle and Sebaceous Gland De Novo Regeneration With Cultured Epidermal Stem Cells and Skin-Derived Precursors. Stem Cells Translational Medicine, 2016, 5, 1695-1706.	3.3	49
21	Self-assembling peptide hydrogel scaffolds support stem cell-based hair follicle regeneration. Nanomedicine: Nanotechnology, Biology, and Medicine, 2016, 12, 2115-2125.	3.3	54
22	Excess Integrins Cause Lung Entrapment of Mesenchymal Stem Cells. Stem Cells, 2015, 33, 3315-3326.	3.2	88
23	The Size of Mesenchymal Stem Cells is a Significant Cause of Vascular Obstructions and Stroke. Stem Cell Reviews and Reports, 2014, 10, 295-303.	5.6	176
24	Epigenetic changes of mesenchymal stem cells in threeâ€dimensional (3D) spheroids. Journal of Cellular and Molecular Medicine, 2014, 18, 2009-2019.	3.6	98
25	Three-Dimensional Spheroid-Cultured Mesenchymal Stem Cells Devoid of Embolism Attenuate Brain Stroke Injury After Intra-Arterial Injection. Stem Cells and Development, 2014, 23, 978-989.	2.1	55
26	A novel method for efficient delivery of stem cells to the ischemic brain. Stem Cell Research and Therapy, 2013, 4, 116.	5.5	18
27	The mouse excisional wound splinting model, including applications for stem cell transplantation. Nature Protocols, 2013, 8, 302-309.	12.0	328
28	Trichostatin A Stabilizes the Expression of Pluripotent Genes in Human Mesenchymal Stem Cells during Ex Vivo Expansion. PLoS ONE, 2013, 8, e81781.	2.5	23
29	Mesenchymal Stem Cell Homing to Injured Tissues. , 2013, , 63-74.		0
30	Human Genome-Specific Real-Time PCR Method for Sensitive Detection and Reproducible Quantitation of Human Cells in Mice. Stem Cell Reviews and Reports, 2012, 8, 1155-1162.	5.6	27
31	The Role of Chemokines in Mesenchymal Stem Cell Homing to Myocardium. Stem Cell Reviews and Reports, 2012, 8, 243-250.	5.6	124
32	Dynamic Signals for Hair Follicle Development and Regeneration. Stem Cells and Development, 2012, 21, 7-18.	2.1	67
33	The role of microRNAs in self-renewal and differentiation of mesenchymal stem cells. Experimental Hematology, 2011, 39, 608-616.	0.4	140
34	Epigenetic Dysregulation in Mesenchymal Stem Cell Aging and Spontaneous Differentiation. PLoS ONE, 2011, 6, e20526.	2.5	174
35	Molecular regulation of mast cell development and maturation. Molecular Biology Reports, 2010, 37, 1993-2001.	2.3	21
36	Concise Review: Bone Marrow-Derived Stem/Progenitor Cells in Cutaneous Repair and Regeneration. Stem Cells, 2010, 28, 905-915.	3.2	242

YAOJIONG WU

#	Article	IF	CITATIONS
37	Analysis of Allogenicity of Mesenchymal Stem Cells in Engraftment and Wound Healing in Mice. PLoS ONE, 2009, 4, e7119.	2.5	155
38	CD133 as a Marker for Cancer Stem Cells: Progresses and Concerns. Stem Cells and Development, 2009, 18, 1127-1134.	2.1	261
39	Paracrine Factors of Mesenchymal Stem Cells Recruit Macrophages and Endothelial Lineage Cells and Enhance Wound Healing. PLoS ONE, 2008, 3, e1886.	2.5	1,350
40	Mesenchymal Stem Cells Use Integrin β1 Not CXC Chemokine Receptor 4 for Myocardial Migration and Engraftment. Molecular Biology of the Cell, 2007, 18, 2873-2882.	2.1	210
41	Mesenchymal Stem Cells Enhance Wound Healing Through Differentiation and Angiogenesis. Stem Cells, 2007, 25, 2648-2659.	3.2	1,465
42	Essential Role of ICAM-1/CD18 in Mediating EPC Recruitment, Angiogenesis, and Repair to the Infarcted Myocardium. Circulation Research, 2006, 99, 315-322.	4.5	172