Zhaoping Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3426425/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Lithium/Graphene Composite Anode with 3D Structural LiF Protection Layer for High-Performance Lithium Metal Batteries. ACS Applied Materials & Interfaces, 2022, 14, 2871-2880.	8.0	22
2	CO ₂ treatment enables non-hazardous, reliable, and efficacious recovery of spent Li(Ni _{0.5} Co _{0.2} Mn _{0.3})O ₂ cathodes. Green Chemistry, 2022, 24, 779-789.	9.0	22
3	Ultrafine SnO ₂ /Sn Nanoparticles Embedded into an <i>In Situ</i> Generated Meso-/Macroporous Carbon Matrix with a Tunable Pore Size. Langmuir, 2022, 38, 1689-1697.	3.5	2
4	Understanding the steric effect of graphene in graphene wrapped silicon suboxides anodes for Li-ion batteries. Journal of Power Sources, 2022, 522, 231007.	7.8	3
5	Controls of oxygen-partial pressure to accelerate the electrochemical activation in Co-free Li-rich layered oxide cathodes. Journal of Power Sources, 2022, 523, 231022.	7.8	14
6	Less is more: tiny amounts of insoluble multi-functional nanoporous additives play a big role in lithium secondary batteries. Journal of Materials Chemistry A, 2022, 10, 8047-8058.	10.3	5
7	A chemical lithiation induced Li _{4.4} Sn lithiophilic layer for anode-free lithium metal batteries. Journal of Materials Chemistry A, 2022, 10, 9670-9679.	10.3	20
8	A Lithium-Ion Battery Cathode with Enhanced Wettability toward an Electrolyte Fabricated by a Fast Light Curing of Photoactive Slurry. Energy & Fuels, 2022, 36, 3313-3318.	5.1	4
9	One Stone for Multiple Birds: A Versatile Cross-Linked Poly(dimethyl siloxane) Binder Boosts Cycling Life and Rate Capability of an NCM 523 Cathode at 4.6 V. ACS Applied Materials & Interfaces, 2022, 14, 16245-16257.	8.0	10
10	Direct Regeneration of Spent Lithium Iron Phosphate via a Low-Temperature Molten Salt Process Coupled with a Reductive Environment. Industrial & Engineering Chemistry Research, 2022, 61, 3831-3839.	3.7	31
11	Mg ₂ SiO ₄ /Si-Coated Disproportionated SiO Composite Anodes with High Initial Coulombic Efficiency for Lithium Ion Batteries. ACS Applied Materials & Interfaces, 2022, 14, 15337-15345.	8.0	18
12	Seamlessly integrated alloy-polymer interphase for high-rate and long-life lithium metal anodes. Materials Today Energy, 2022, 26, 100988.	4.7	5
13	Relating the orientation of graphene on Cu grains by Euler Angles. Surfaces and Interfaces, 2022, 30, 101837.	3.0	1
14	Bronzeâ€Phase TiO ₂ as Anode Materials in Lithium and Sodiumâ€Ion Batteries. Advanced Functional Materials, 2022, 32, .	14.9	53
15	A _{<i>m</i>} V ₂ O ₅ with Binary Phases as High-Performance Cathode Materials for Zinc-Ion Batteries: Effect of the Pre-Intercalated Cations A and Reversible Transformation of Coordination Polyhedra. ACS Applied Materials & Interfaces, 2022, 14, 24415-24424.	8.0	13
16	Carbon-coated monoclinic NbOPO4 with polyanionic framework for rechargeable aqueous lithium-ion batteries beyond 2 V. Electrochimica Acta, 2022, 426, 140579.	5.2	2
17	Highly Deformable Graphene/Poly(3,4-ethylenedioxythiophene):Poly(styrene Sulfonate) Hydrogel Composite Film for Stretchable Supercapacitors. ACS Applied Energy Materials, 2022, 5, 7277-7286.	5.1	13
18	Direct Recycling of Spent LiNi _{0.5} Co _{0.2} Mn _{0.3} O ₂ Cathodes Based on Single Oxalic Acid Leaching and Regeneration under Mild Conditions Assisted by Lithium Acetate. Energy & Fuels, 2022, 36, 6552-6559.	5.1	9

#	Article	IF	CITATIONS
19	<i>In Situ</i> Synthesis and Dual Functionalization of Nano Silicon Enabled by a Semisolid Lithium Rechargeable Flow Battery. ACS Applied Materials & amp; Interfaces, 2022, 14, 28748-28759.	8.0	3
20	Synergistic Effects of Ni ²⁺ and Mn ³⁺ on the Electrochemical Activation of Li ₂ MnO ₃ in Co-Free and Ni-Poor Li-Rich Layered Cathodes. ACS Applied Energy Materials, 2022, 5, 9079-9089.	5.1	7
21	Graphene wrapped silicon suboxides anodes with suppressed Li-uptake behavior enabled superior cycling stability. Energy Storage Materials, 2021, 35, 317-326.	18.0	58
22	Graphene Modified Polyanilineâ€Hydrogel Based Stretchable Supercapacitor with High Capacitance and Excellent Stretching Stability. ChemSusChem, 2021, 14, 938-945.	6.8	33
23	High Pressure Effect on Structural and Electrochemical Properties of Anionic Redox-Based Lithium Transition Metal Oxides. Matter, 2021, 4, 164-181.	10.0	15
24	Competitive Solvation-Induced Concurrent Protection on the Anode and Cathode toward a 400 Wh kg ^{–1} Lithium Metal Battery. ACS Energy Letters, 2021, 6, 115-123.	17.4	53
25	Impact of CO ₂ activation on the structure, composition, and performance of Sb/C nanohybrid lithium/sodium-ion battery anodes. Nanoscale Advances, 2021, 3, 1942-1953.	4.6	9
26	SnO ₂ /Sn/Carbon nanohybrid lithiumâ€ion battery anode with high reversible capacity and excellent cyclic stability. Nano Select, 2021, 2, 642-653.	3.7	10
27	All annealing-free solution-processed highly flexible organic solar cells. Journal of Materials Chemistry A, 2021, 9, 5425-5433.	10.3	30
28	From â^'20 °C to 150 °C: a lithium secondary battery with a wide temperature window obtained <i>via</i> manipulated competitive decomposition in electrolyte solution. Journal of Materials Chemistry A, 2021, 9, 9307-9318.	10.3	40
29	Solution-Processed Transparent Conducting Electrodes for Flexible Organic Solar Cells with 16.61% Efficiency. Nano-Micro Letters, 2021, 13, 44.	27.0	71
30	Mutual Performance Enhancement within Dual Nâ€doped TiO 2 /Si/C Nanohybrid Lithiumâ€lon Battery Anode. ChemistrySelect, 2021, 6, 141-153.	1.5	5
31	Porous silicon derived from 130Ânm Stöber silica as lithiumâ€ion battery anode. Nano Select, 2021, 2, 1554-1565.	3.7	0
32	Superâ€ 5 mall TiO 2 Nanoparticles Homogeneously Embedded in Mesoporous Carbon Matrix Based on Dental Methacrylates and KOH Activation. ChemistrySelect, 2021, 6, 1508-1518.	1.5	0
33	Continuous fast pyrolysis synthesis of TiO ₂ /C nanohybrid lithiumâ€ion battery anode. Nano Select, 2021, 2, 1770-1778.	3.7	1
34	Sufficient Oxygen Redox Activation against Voltage Decay in Li-Rich Layered Oxide Cathode Materials. , 2021, 3, 433-441.		11
35	Synergistic Effect of Lewis Base Polymers and Graphene in Enhancing the Efficiency of Perovskite Solar Cells. ACS Applied Energy Materials, 2021, 4, 3928-3936.	5.1	25
36	Si/Cu/C Nanohybrid Lithium-Ion Battery Anode with <i>in Situ</i> Incorporation of Nonagglomerated Super-Small Copper Nanoparticles Based on Epoxy Resin. Energy & Fuels, 2021, 35, 6250-6264.	5.1	5

#	Article	IF	CITATIONS
37	Sulfur is a New High-Performance Additive toward High-Voltage LiNi _{0.5} Co _{0.2} Mn _{0.3} O ₂ Cathode: Tiny Amount, Huge Impact. ACS Applied Materials & Interfaces, 2021, 13, 18648-18657.	8.0	17
38	Revealing Anion Adsorption Mechanism for Coating Layer on Separator toward Practical Li Metal Batteries. ACS Applied Materials & Interfaces, 2021, 13, 23584-23591.	8.0	14
39	High Li-Ion Conductivity Artificial Interface Enabled by Li-Grafted Graphene Oxide for Stable Li Metal Pouch Cell. ACS Applied Materials & Interfaces, 2021, 13, 29500-29510.	8.0	3
40	Organosiliconâ€Based Functional Electrolytes for Highâ€Performance Lithium Batteries. Advanced Energy Materials, 2021, 11, 2101057.	19.5	26
41	Conformal Coating of a Carbon Film on 3D Hosts toward Stable Lithium Anodes. ACS Applied Energy Materials, 2021, 4, 7288-7297.	5.1	7
42	Nano-channel-based physical and chemical synergic regulation for dendrite-free lithium plating. Nano Research, 2021, 14, 3585-3597.	10.4	17
43	Surface reinforcement doping to suppress oxygen release of Li-rich layered oxides. Journal of Power Sources, 2021, 503, 230048.	7.8	20
44	Growth of wrinkle-free and ultra-flat Bi-layer graphene on sapphire substrate using Cu sacrificial layer. Nanotechnology, 2021, 32, 475603.	2.6	2
45	Ultra-smooth and robust graphene-based hybrid anode for high-performance flexible organic light-emitting diodes. Journal of Materials Chemistry C, 2021, 9, 2106-2114.	5.5	12
46	A facile method of selective dissolution for preparation of Co ₃ O ₄ /LaCoO ₃ as a bifunctional catalyst for Al/Zn–air batteries. Sustainable Energy and Fuels, 2021, 5, 995-1002.	4.9	9
47	A composite surface configuration towards improving cycling stability of Li-rich layered oxide materials. Journal of Materials Chemistry A, 2021, 9, 24426-24437.	10.3	17
48	Laser-induced dynamic alignment and nonlinear-like optical transmission in liquid suspensions of 2D atomically thin nanomaterials. Optics Express, 2021, 29, 36389.	3.4	2
49	Si/SiOC/Carbon Lithiumâ€Ion Battery Negative Electrode with Multiple Buffer Media Derived from Crossâ€Linked Dimethacrylate and Poly (dimethyl siloxane). ChemistrySelect, 2021, 6, 10348-10354.	1.5	1
50	Carbon-emcoating architecture boosts lithium storage of Nb2O5. Science China Materials, 2021, 64, 1071-1086.	6.3	7
51	Scalable fabrication of a large-area lithium/graphene anode towards a long-life 350 W h kg ^{â^'1} lithium metal pouch cell. Journal of Materials Chemistry A, 2021, 9, 25558-25566.	10.3	14
52	Thermosetting High-Rate and High-Safety Polymer/Inorganic Composite Separator for Lithium-Ion Battery through a Fast Scalable Photo Cross-Linking Process. Energy & Fuels, 2021, 35, 18746-18755.	5.1	4
53	Stable Electrode/Electrolyte Interface for High-Voltage NCM 523 Cathode Constructed by Synergistic Positive and Passive Approaches. ACS Applied Materials & Interfaces, 2021, 13, 57107-57117.	8.0	23
54	Flexible asymmetric microsupercapacitor with high energy density based on all-graphene electrode system. Journal of Materials Science, 2020, 55, 309-318.	3.7	15

#	Article	IF	CITATIONS
55	Improving catalytic activity of layered lithium transition metal oxides for oxygen electrode in metal-air batteries. International Journal of Hydrogen Energy, 2020, 45, 1846-1856.	7.1	16
56	All graphene electrode for highâ€performance asymmetric supercapacitor. International Journal of Energy Research, 2020, 44, 1244-1255.	4.5	19
57	Morphology-controlled MoS ₂ by low-temperature atomic layer deposition. Nanoscale, 2020, 12, 20404-20412.	5.6	14
58	Rational Design and Mechanical Understanding of Three-Dimensional Macro-/Mesoporous Silicon Lithium-Ion Battery Anodes with a Tunable Pore Size and Wall Thickness. ACS Applied Materials & Interfaces, 2020, 12, 43785-43797.	8.0	24
59	Epoxy Resin Enables Facile Scalable Synthesis of CuO/C Nanohybrid Lithiumâ€lon Battery Anode with Enhanced Electrochemical Performance. ChemistrySelect, 2020, 5, 5479-5487.	1.5	2
60	A Chronicle Review of Nonsilicon (Sn, Sb, Ge)â€Based Lithium/Sodiumâ€lon Battery Alloying Anodes. Small Methods, 2020, 4, 2000218.	8.6	220
61	Ultrasmall Co ₃ O ₄ Nanoparticles Confined in P, N-Doped Carbon Matrices for High-Performance Supercapacitors. Journal of Physical Chemistry C, 2020, 124, 9225-9232.	3.1	25
62	Metastability and Reversibility of Anionic Redox-Based Cathode for High-Energy Rechargeable Batteries. Cell Reports Physical Science, 2020, 1, 100028.	5.6	37
63	Photoacoustic identification of laser-induced microbubbles as light scattering centers for optical limiting in a liquid suspension of graphene nanosheets. Nanoscale, 2020, 12, 7109-7115.	5.6	11
64	Poly(siloxane imide) Binder for Siliconâ€Based Lithiumâ€Ion Battery Anodes via Rigidness/Softness Coupling. Chemistry - an Asian Journal, 2020, 15, 2674-2680.	3.3	17
65	Slurry-like hybrid electrolyte with high lithium-ion transference number for dendrite-free lithium metal anode. Journal of Energy Chemistry, 2020, 48, 375-382.	12.9	23
66	Microporous Binder for the Silicon-Based Lithium-Ion Battery Anode with Exceptional Rate Capability and Improved Cyclic Performance. Langmuir, 2020, 36, 2003-2011.	3.5	22
67	Iron Hexcyanoferrate Nanocubes as Low-Strain Cathode Materials for Aqueous Li/Na Mixed-Ion Batteries. ACS Applied Nano Materials, 2020, 3, 1318-1323.	5.0	5
68	Vacuumâ€Free, Allâ€Solution, and Allâ€Air Processed Organic Photovoltaics with over 11% Efficiency and Promoted Stability Using Layerâ€byâ€Layer Codoped Polymeric Electrodes. Solar Rrl, 2020, 4, 1900543.	5.8	19
69	In Situ Incorporation of Super‣mall Metallic High Capacity Nanoparticles and Mesoporous Structures for Highâ€Performance TiO ₂ /SnO ₂ /Sn/Carbon Nanohybrid Lithiumâ€Ion Battery Anodes. Energy Technology, 2020, 8, 2000034.	3.8	4
70	Unveiling the Effect of Surface and Bulk Structure on Electrochemical Properties of Disproportionated SiO _x Anodes. ChemNanoMat, 2020, 6, 1127-1135.	2.8	10
71	Large graphene-induced shift of surface-plasmon resonances of gold films: Effective-medium theory for atomically thin materials. Physical Review Research, 2020, 2, .	3.6	4
72	Abundant nanoscale defects to eliminate voltage decay in Li-rich cathode materials. Energy Storage Materials, 2019, 16, 220-227.	18.0	144

#	Article	IF	CITATIONS
73	Dental Resin Monomer Enables Unique NbO ₂ /Carbon Lithiumâ€lon Battery Negative Electrode with Exceptional Performance. Advanced Functional Materials, 2019, 29, 1904961.	14.9	26
74	Polyethylene Glycol–Na ⁺ Interface of Vanadium Hexacyanoferrate Cathode for Highly Stable Rechargeable Aqueous Sodium-Ion Battery. ACS Applied Materials & Interfaces, 2019, 11, 28762-28768.	8.0	41
75	Enhanced Bifunctional Catalytic Activity of Manganese Oxide/Perovskite Hierarchical Core–Shell Materials by Adjusting the Interface for Metal–Air Batteries. ACS Applied Materials & Interfaces, 2019, 11, 25870-25881.	8.0	59
76	Facile synthesis of ternary spinel Co–Mn–Ni nanorods as efficient bi-functional oxygen catalysts for rechargeable zinc-air batteries. Journal of Power Sources, 2019, 435, 226761.	7.8	42
77	Na Superionic Conductor-Type TiNb(PO ₄) ₃ Anode with High Energy Density and Long Cycle Life Enables Aqueous Alkaline-Ion Batteries. ACS Applied Materials & Interfaces, 2019, 11, 39757-39764.	8.0	7
78	Confining Al–Li alloys between pre-constructed conductive buffers for advanced aluminum anodes. Chemical Communications, 2019, 55, 2352-2355.	4.1	6
79	Methylsulfonylmethane-Based Deep Eutectic Solvent as a New Type of Green Electrolyte for a High-Energy-Density Aqueous Lithium-Ion Battery. ACS Energy Letters, 2019, 4, 1419-1426.	17.4	87
80	Niobium carbide/reduced graphene oxide hybrid porous aerogel as high capacity and longâ€life anode material for Liâ€ion batteries. International Journal of Energy Research, 2019, 43, 4995-5003.	4.5	40
81	Physicochemical and Electrochemical Properties of 1,1,2,2â€Tetrafluoroethylâ€2,2,3,3â€Tetrafluoropropyl Ether as a Coâ€Solvent for Highâ€Voltage Lithiumâ€Ion Electrolytes. ChemElectroChem, 2019, 6, 3747-3755.	3.4	28
82	Controlling siloxene oxidization to tailor SiOx anodes for high performance lithium ion batteries. Journal of Power Sources, 2019, 432, 65-72.	7.8	32
83	A Comprehensive Understanding of Lithium–Sulfur Battery Technology. Advanced Functional Materials, 2019, 29, 1901730.	14.9	267
84	MnO/Metal/Carbon Nanohybrid Lithiumâ€lon Battery Anode With Enhanced Electrochemical Performance: Universal Facile Scalable Synthesis and Fundamental Understanding. Advanced Materials Interfaces, 2019, 6, 1900335.	3.7	14
85	Reactivating Li ₂ 0 with Nano‣n to Achieve Ultrahigh Initial Coulombic Efficiency SiO Anodes for Liâ€Ion Batteries. ChemSusChem, 2019, 12, 3377-3382.	6.8	16
86	Synergy effects on blending Li-rich and classical layered cathode oxides with improved electrochemical performance. Ceramics International, 2019, 45, 15097-15107.	4.8	4
87	Role of Nickel Nanoparticles in Highâ€Performance TiO ₂ /Ni/Carbon Nanohybrid Lithium/Sodiumâ€lon Battery Anodes. Chemistry - an Asian Journal, 2019, 14, 1557-1569.	3.3	13
88	Double-helix-superstructure aqueous binder to boost excellent electrochemical performance in Li-rich layered oxide cathode. Journal of Power Sources, 2019, 420, 29-37.	7.8	32
89	Understanding the Discrepancy of Defect Kinetics on Anionic Redox in Lithium-Rich Cathode Oxides. ACS Applied Materials & Interfaces, 2019, 11, 14023-14034.	8.0	30
90	Attapulgite nanofibers and graphene oxide composite membrane for high-performance molecular separation. Journal of Colloid and Interface Science, 2019, 545, 276-281.	9.4	33

#	Article	IF	CITATIONS
91	Graphene Nanoscrolls with Confined Silicon Nanoparticles as a Durable Anode for Lithiumâ€lon Batteries. ChemNanoMat, 2019, 5, 748-753.	2.8	3
92	Effect of phase transformation of zirconia on the fracture behavior of electrolyte-supported solid oxide fuel cells. International Journal of Hydrogen Energy, 2019, 44, 12118-12126.	7.1	10
93	Vapor-assisted synthesis of hierarchical porous graphitic carbon materials towards energy storage devices. Journal of Power Sources, 2019, 425, 10-16.	7.8	24
94	Depressing the irreversible reactions on a three-dimensional interface towards a high-areal capacity lithium metal anode. Journal of Materials Chemistry A, 2019, 7, 6267-6274.	10.3	11
95	Regulating capillary pressure to achieve ultralow areal mass loading metallic lithium anodes. Energy Storage Materials, 2019, 23, 693-700.	18.0	19
96	Hybrid Organic–Inorganic Thermoelectric Materials and Devices. Angewandte Chemie - International Edition, 2019, 58, 15206-15226.	13.8	138
97	Hybride organischâ€anorganische thermoelektrische Materialien und Baueinheiten. Angewandte Chemie, 2019, 131, 15348-15370.	2.0	9
98	Study on the fracture behavior of the planar-type solid oxide fuel cells. Journal of Alloys and Compounds, 2019, 782, 355-362.	5.5	12
99	Scalable synthesis of Si nanowires interconnected SiOx anode for high performance lithium-ion batteries. Journal of Alloys and Compounds, 2019, 783, 128-135.	5.5	43
100	Silicon/carbon lithium-ion battery anode with 3D hierarchical macro-/mesoporous silicon network: Self-templating synthesis via magnesiothermic reduction of silica/carbon composite. Journal of Power Sources, 2019, 412, 93-104.	7.8	77
101	Graphene network nested Cu foam for reducing size of lithium metal towards stable metallic lithium anode. Energy Storage Materials, 2019, 21, 107-114.	18.0	46
102	Ultrafast Heterogeneous Nucleation Enables a Hierarchical Surface Configuration of Lithiumâ€Rich Layered Oxide Cathode Material for Enhanced Electrochemical Performances. Advanced Materials Interfaces, 2018, 5, 1701465.	3.7	15
103	New perspective to understand the effect of electrochemical prelithiation behaviors on silicon monoxide. RSC Advances, 2018, 8, 14473-14478.	3.6	52
104	Lithium Bis(fluorosulfony)imideâ€Lithium Hexafluorophosphate Binaryâ€Salt Electrolytes for Lithiumâ€Ion Batteries: Aluminum Corrosion Behaviors and Electrochemical Properties. ChemistrySelect, 2018, 3, 1954-1960.	1.5	21
105	Cerium ion intercalated MnO2 nanospheres with high catalytic activity toward oxygen reduction reaction for aluminum-air batteries. Electrochimica Acta, 2018, 263, 544-554.	5.2	52
106	Microscale Lithium Metal Stored inside Cellular Graphene Scaffold toward Advanced Metallic Lithium Anodes. Advanced Energy Materials, 2018, 8, 1703152.	19.5	144
107	Identifying the chemical and structural irreversibility in LiNi _{0.8} Co _{0.15} Al _{0.05} O ₂ – a model compound for classical layered intercalation. Journal of Materials Chemistry A, 2018, 6, 4189-4198.	10.3	48
108	Revisiting the open-framework zinc hexacyanoferrate: The role of ternary electrolyte and sodium-ion intercalation mechanism. Journal of Power Sources, 2018, 380, 135-141.	7.8	33

#	Article	IF	CITATIONS
109	Surface oxo-functionalized hard carbon spheres enabled superior high-rate capability and long-cycle stability for Li-ion storage. Electrochimica Acta, 2018, 260, 430-438.	5.2	21
110	Localized concentration reversal of lithium during intercalation into nanoparticles. Science Advances, 2018, 4, eaao2608.	10.3	50
111	Scalable in Situ Synthesis of Li ₄ Ti ₅ O ₁₂ /Carbon Nanohybrid with Supersmall Li ₄ Ti ₅ O ₁₂ Nanoparticles Homogeneously Embedded in Carbon Matrix. ACS Applied Materials & Interfaces, 2018, 10, 2591-2602.	8.0	47
112	3D Porous MXene (Ti ₃ C ₂)/Reduced Graphene Oxide Hybrid Films for Advanced Lithium Storage. ACS Applied Materials & Interfaces, 2018, 10, 3634-3643.	8.0	288
113	Si/Ag/C Nanohybrids with <i>in Situ</i> Incorporation of Super-Small Silver Nanoparticles: Tiny Amount, Huge Impact. ACS Nano, 2018, 12, 861-875.	14.6	67
114	Graphene nested porous carbon current collector for lithium metal anode with ultrahigh areal capacity. Energy Storage Materials, 2018, 15, 266-273.	18.0	77
115	Hybrid electrolytes incorporated with dandelion-like silane–Al2O3 nanoparticles for high-safety high-voltage lithium ion batteries. Journal of Power Sources, 2018, 391, 113-119.	7.8	16
116	A new family of Mn-based perovskite (La1-xYxMnO3) with improved oxygen electrocatalytic activity for metal-air batteries. Energy, 2018, 154, 561-570.	8.8	50
117	Graphene Sheets: Planar Alignment of Graphene Sheets by a Rotating Magnetic Field for Full Exploitation of Graphene as a 2D Material (Adv. Funct. Mater. 46/2018). Advanced Functional Materials, 2018, 28, 1870330.	14.9	3
118	A Nano-Architectured Metal-Oxide/Perovskite Hybrid Material as Electrocatalyst for the Oxygen Reduction Reaction in Aluminum–Air Batteries. ACS Applied Nano Materials, 2018, 1, 6824-6833.	5.0	14
119	Planar Alignment of Graphene Sheets by a Rotating Magnetic Field for Full Exploitation of Graphene as a 2D Material. Advanced Functional Materials, 2018, 28, 1805255.	14.9	33
120	Highly Reversible Li Plating Confined in Three-Dimensional Interconnected Microchannels toward High-Rate and Stable Metallic Lithium Anodes. ACS Applied Materials & Interfaces, 2018, 10, 20387-20395.	8.0	42
121	Establishment of a reliable transfer process for fabricating chemical vapor deposition-grown graphene films with advanced and repeatable electrical properties. RSC Advances, 2018, 8, 19846-19851.	3.6	2
122	Oneâ€Pot Synthesis of Co ₃ O ₄ /Ag Nanoparticles Supported on Nâ€Doped Graphene as Efficient Bifunctional Oxygen Catalysts for Flexible Rechargeable Zinc–Air Batteries. Chemistry - A European Journal, 2018, 24, 14816-14823.	3.3	49
123	Adopting combined strategies to make state of charge (SOC) estimation for practical use. Journal of Renewable and Sustainable Energy, 2018, 10, .	2.0	7
124	Transition metal oxide-based oxygen reduction reaction electrocatalysts for energy conversion systems with aqueous electrolytes. Journal of Materials Chemistry A, 2018, 6, 10595-10626.	10.3	162
125	A LiPO2F2/LiFSI dual-salt electrolyte enabled stable cycling of lithium metal batteries. Journal of Power Sources, 2018, 400, 449-456.	7.8	33
126	Synthesis of Three-Dimensional Nanoporous Li-Rich Layered Cathode Oxides for High Volumetric and Power Energy Density Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2017, 9, 3661-3666.	8.0	50

#	Article	IF	CITATIONS
127	Facile fabrication of nanoporous graphene powder for high-rate lithium–sulfur batteries. RSC Advances, 2017, 7, 5177-5182.	3.6	14
128	Nitrogenâ€Doped Graphene Nanoscroll Foam with High Diffusion Rate and Binding Affinity for Removal of Organic Pollutants. Small, 2017, 13, 1603779.	10.0	36
129	Understanding and Controlling Anionic Electrochemical Activity in High-Capacity Oxides for Next Generation Li-Ion Batteries. Chemistry of Materials, 2017, 29, 908-915.	6.7	97
130	Enhanced high voltage cyclability of LiCoO2 cathode by adopting poly[bis-(ethoxyethoxyethoxy)phosphazene] with flame-retardant property as an electrolyte additive for lithium-ion batteries. Applied Surface Science, 2017, 403, 260-266.	6.1	44
131	La0.7(Sr0.3-xPdx)MnO3 as a highly efficient electrocatalyst for oxygen reduction reaction in aluminum air battery. Electrochimica Acta, 2017, 230, 418-427.	5.2	32
132	La _{1â^'x} Ag _x MnO ₃ electrocatalyst with high catalytic activity for oxygen reduction reaction in aluminium air batteries. RSC Advances, 2017, 7, 5214-5221.	3.6	33
133	Solvent evaporation induced self-assembly of graphene foam for thermally conductive polymers. RSC Advances, 2017, 7, 15469-15474.	3.6	12
134	Hierarchical porous MnO/graphene composite aerogel as high-performance anode material for lithium ion batteries. RSC Advances, 2017, 7, 15857-15863.	3.6	22
135	Superior Thermally Stable and Nonflammable Porous Polybenzimidazole Membrane with High Wettability for High-Power Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2017, 9, 8742-8750.	8.0	83
136	Distinguishing thermal lens effect from electronic third-order nonlinear self-phase modulation in liquid suspensions of 2D nanomaterials. Nanoscale, 2017, 9, 3547-3554.	5.6	60
137	Largeâ€5ized Fewâ€Layer Graphene Enables an Ultrafast and Longâ€Life Aluminumâ€Ion Battery. Advanced Energy Materials, 2017, 7, 1700034.	19.5	197
138	Structure-preserved 3D porous silicon/reduced graphene oxide materials as anodes for Li-ion batteries. RSC Advances, 2017, 7, 24305-24311.	3.6	23
139	3D Graphene Oxide Micropatterns Achieved by Rollerâ€Assisted Microcontact Printing Induced Interface Integral Peel and Transfer. Advanced Materials Interfaces, 2017, 4, 1600867.	3.7	6
140	Electrocatalytic activity of silver decorated ceria microspheres for the oxygen reduction reaction and their application in aluminium–air batteries. Chemical Communications, 2017, 53, 7921-7924.	4.1	42
141	Improving the cyclability performance of lithium-ion batteries by introducing lithium difluorophosphate (LiPO ₂ F ₂) additive. RSC Advances, 2017, 7, 26052-26059.	3.6	93
142	A bifunctional hierarchical porous carbon network integrated with an in situ formed ultrathin graphene shell for stable lithium–sulfur batteries. Journal of Materials Chemistry A, 2017, 5, 13674-13682.	10.3	30
143	Performances of an Al–0.15 Bi–0.15 Pb–0.035 Ga alloy as an anode for Al–air batteries in neutral and alkaline electrolytes. RSC Advances, 2017, 7, 25838-25847.	3.6	71
144	One-pot synthesis of La 0.7 Sr 0.3 MnO 3 supported on flower-like CeO 2 as electrocatalyst for oxygen reduction reaction in aluminum-air batteries. Journal of Power Sources, 2017, 358, 50-60.	7.8	38

#	Article	IF	CITATIONS
145	Fabrication of submillimeter-sized single-crystalline graphene arrays by a commercial printing-assisted CVD method. RSC Advances, 2017, 7, 17800-17805.	3.6	4
146	Promoting effects of Ce _{0.75} Zr _{0.25} O ₂ on the La _{0.7} Sr _{0.3} MnO ₃ electrocatalyst for the oxygen reduction reaction in metal–air batteries. Journal of Materials Chemistry A, 2017, 5, 6411-6415.	10.3	35
147	Self-Templating Construction of 3D Hierarchical Macro-/Mesoporous Silicon from 0D Silica Nanoparticles. ACS Nano, 2017, 11, 889-899.	14.6	100
148	(La1â^'xSrx)0.98MnO3 perovskite with A-site deficiencies toward oxygen reduction reaction in aluminum-air batteries. Journal of Power Sources, 2017, 342, 192-201.	7.8	87
149	Graphene Flakes: Orientation Control of Graphene Flakes by Magnetic Field: Broad Device Applications of Macroscopically Aligned Graphene (Adv. Mater. 1/2017). Advanced Materials, 2017, 29, .	21.0	15
150	Enhancing the pyridinic N content of Nitrogen-doped graphene and improving its catalytic activity for oxygen reduction reaction. International Journal of Hydrogen Energy, 2017, 42, 28298-28308.	7.1	132
151	Oxidation Decomposition Mechanism of Fluoroethylene Carbonateâ€Based Electrolytes for Highâ€Voltage Lithium Ion Batteries: A DFT Calculation and Experimental Study. ChemistrySelect, 2017, 2, 7353-7361.	1.5	36
152	La0.8Sr0.2Co1-xMnxO3 perovskites as efficient bi-functional cathode catalysts for rechargeable zinc-air batteries. Electrochimica Acta, 2017, 254, 14-24.	5.2	71
153	Electrostatic Selfâ€Assembly of the Composite La _{0.7} Sr _{0.3} MnO ₃ @Ce _{0.75} Zr _{0.25} O _{2as Electrocatalyst for the Oxygen Reduction Reaction in Aluminum–Air Batteries. Energy Technology, 2017. 5. 2226-2233.})> 3.8	6
154	Stabilization effects of Al doping for enhanced cycling performances of Li-rich layered oxides. Ceramics International, 2017, 43, 13845-13852.	4.8	25
155	Ion-selective copper hexacyanoferrate with an open-framework structure enables high-voltage aqueous mixed-ion batteries. Journal of Materials Chemistry A, 2017, 5, 16740-16747.	10.3	74
156	Oriented Arrangement: The Origin of Versatility for Porous Graphene Materials. Small, 2017, 13, 1701231.	10.0	26
157	Two-dimensional silicon suboxides nanostructures with Si nanodomains confined in amorphous SiO2 derived from siloxene as high performance anode for Li-ion batteries. Nano Energy, 2017, 39, 546-553.	16.0	113
158	Fluorinated Electrolytes for Li-Ion Batteries: The Lithium Difluoro(oxalato)borate Additive for Stabilizing the Solid Electrolyte Interphase. ACS Omega, 2017, 2, 8741-8750.	3.5	55
159	Orientation Control of Graphene Flakes by Magnetic Field: Broad Device Applications of Macroscopically Aligned Graphene. Advanced Materials, 2017, 29, 1604453.	21.0	72
160	Composite cathodes for electrolyte-supported solid oxide fuel cells with thin YbSZ electrolyte. Journal of Alloys and Compounds, 2017, 695, 583-589.	5.5	5
161	Silicon Oxycarbide/Carbon Nanohybrids with Tiny Silicon Oxycarbide Particles Embedded in Free Carbon Matrix Based on Photoactive Dental Methacrylates. ACS Applied Materials & Interfaces, 2016, 8, 13982-13992.	8.0	36
162	Anode supported planar solid oxide fuel cells with the large size of 30ÂcmÂ×Â30Âcm via tape-casting and co-sintering technique. International Journal of Hydrogen Energy, 2016, 41, 1871-1876.	7.1	14

#	Article	IF	CITATIONS
163	Fabrication of porous anode-support for planar solid oxide fuel cell using fish oil as a pore former. International Journal of Hydrogen Energy, 2016, 41, 8533-8541.	7.1	15
164	Silver nanoparticles supported on a nitrogen-doped graphene aerogel composite catalyst for an oxygen reduction reaction in aluminum air batteries. RSC Advances, 2016, 6, 99179-99183.	3.6	33
165	Oxygen reduction reaction catalysts of manganese oxide decorated by silver nanoparticles for aluminum-air batteries. Electrochimica Acta, 2016, 214, 49-55.	5.2	61
166	Graphene/Sulfur Composites with a Foam‣ike Porous Architecture and Controllable Pore Size for High Performance Lithium–Sulfur Batteries. ChemNanoMat, 2016, 2, 952-958.	2.8	19
167	Facile fabrication of stable and high-rate Si/NiSix/CNTs Li-ion anodes with a buffering interface. RSC Advances, 2016, 6, 78559-78563.	3.6	3
168	Water-mediated cation intercalation of open-framework indium hexacyanoferrate with high voltage and fast kinetics. Nature Communications, 2016, 7, 11982.	12.8	90
169	Gas–solid interfacial modification of oxygen activity in layered oxide cathodes for lithium-ion batteries. Nature Communications, 2016, 7, 12108.	12.8	531
170	Freestanding bacterial cellulose-graphene oxide composite membranes with high mechanical strength for selective ion permeation. Scientific Reports, 2016, 6, 33185.	3.3	73
171	Synthesis and electrochemical performance of micro-sized Li-rich layered cathode material for Lithium-ion batteries. Electrochimica Acta, 2016, 211, 507-514.	5.2	34
172	A compressible and hierarchical porous graphene/Co composite aerogel for lithium-ion batteries with high gravimetric/volumetric capacity. Journal of Materials Chemistry A, 2016, 4, 6021-6028.	10.3	22
173	Hydrothermal self-assembly of graphene foams with controllable pore size. RSC Advances, 2016, 6, 20843-20849.	3.6	29
174	Morphological Evolution of High-Voltage Spinel LiNi _{0.5} Mn _{1.5} O ₄ Cathode Materials for Lithium-Ion Batteries: The Critical Effects of Surface Orientations and Particle Size. ACS Applied Materials & Interfaces, 2016, 8, 4661-4675.	8.0	212
175	Template-free synthesis of titania architectures with controlled morphology evolution. Journal of Materials Science, 2016, 51, 3941-3956.	3.7	8
176	Porous titania/carbon hybrid microspheres templated by in situ formed polystyrene colloids. Journal of Colloid and Interface Science, 2016, 469, 242-256.	9.4	5
177	Superior cycling performance of a sandwich structure Si/C anode for lithium ion batteries. RSC Advances, 2016, 6, 12107-12113.	3.6	18
178	Ordered self-assembly of amphipathic graphene nanosheets into three-dimensional layered architectures. Nanoscale, 2016, 8, 197-203.	5.6	26
179	Morphology-Dependent Electrochemical Performance of Zinc Hexacyanoferrate Cathode for Zinc-Ion Battery. Scientific Reports, 2015, 5, 18263.	3.3	211
180	Porous Graphene‣ike Materials Prepared from Hollow Carbonaceous Microspheres for Supercapacitors. ChemNanoMat, 2015, 1, 422-429.	2.8	6

#	Article	IF	CITATIONS
181	5â€V lass Electrolytes Based on Fluorinated Solvents for Liâ€ion Batteries with Excellent Cyclability. ChemElectroChem, 2015, 2, 1707-1712.	3.4	41
182	Graphene/Sulfur/Carbon Nanocomposite for High Performance Lithium-Sulfur Batteries. Nanomaterials, 2015, 5, 1481-1492.	4.1	14
183	Two-Dimensional Porous Micro/Nano Metal Oxides Templated by Graphene Oxide. ACS Applied Materials & Interfaces, 2015, 7, 11984-11990.	8.0	54
184	Porous membrane with high curvature, three-dimensional heat-resistance skeleton: a new and practical separator candidate for high safety lithium ion battery. Scientific Reports, 2015, 5, 8255.	3.3	80
185	Composite membrane with ultra-thin ion exchangeable functional layer: a new separator choice for manganese-based cathode material in lithium ion batteries. Journal of Materials Chemistry A, 2015, 3, 7006-7013.	10.3	12
186	TiO ₂ (B)–CNT–graphene ternary composite anode material for lithium ion batteries. RSC Advances, 2015, 5, 22449-22454.	3.6	22
187	A novel fluorocyclophosphazene as bifunctional additive for safer lithium-ion batteries. Journal of Power Sources, 2015, 278, 190-196.	7.8	117
188	A comparative study on the oxidation state of lattice oxygen among Li _{1.14} Ni _{0.136} Co _{0.136} Mn _{0.544} O ₂ , Li ₂ MnO ₃ , LiNi _{0.5} Co _{0.2} Mn _{0.3} O ₂ and LiCoO ₂ for the initial charge–discharge. Journal of Materials Chemistry A, 2015, 3, 11930-11939.	10.3	61
189	Eliminating Voltage Decay of Lithiumâ€Rich Li _{1.14} Mn _{0.54} Ni _{0.14} Co _{0.14} O ₂ Cathodes by Controlling the Electrochemical Process. Chemistry - A European Journal, 2015, 21, 7503-7510.	3.3	36
190	Facile Scalable Synthesis of TiO ₂ /Carbon Nanohybrids with Ultrasmall TiO ₂ Nanoparticles Homogeneously Embedded in Carbon Matrix. ACS Applied Materials & Interfaces, 2015, 7, 24247-24255.	8.0	36
191	Template-directed fabrication of porous gas diffusion layer for magnesium air batteries. Journal of Power Sources, 2015, 297, 202-207.	7.8	22
192	Towards Highâ€Voltage Aqueous Metalâ€Ion Batteries Beyond 1.5 V: The Zinc/Zinc Hexacyanoferrate System. Advanced Energy Materials, 2015, 5, 1400930.	19.5	932
193	Patterning of graphene microscale structures using electrohydrodynamic atomisation deposition of photoresist moulds. Micro and Nano Letters, 2014, 9, 136-140.	1.3	2
194	Green Facile Scalable Synthesis of Titania/Carbon Nanocomposites: New Use of Old Dental Resins. ACS Applied Materials & Interfaces, 2014, 6, 18461-18468.	8.0	38
195	Surface structural conversion and electrochemical enhancement by heat treatment of chemical pre-delithiation processed lithium-rich layered cathode material. Journal of Power Sources, 2014, 268, 683-691.	7.8	74
196	Polyimide matrix-enhanced cross-linked gel separator with three-dimensional heat-resistance skeleton for high-safety and high-power lithium ion batteries. Journal of Materials Chemistry A, 2014, 2, 9134.	10.3	86
197	Enhanced Electrochemical Performance with Surface Coating by Reactive Magnetron Sputtering on Lithium-Rich Layered Oxide Electrodes. ACS Applied Materials & Interfaces, 2014, 6, 9185-9193.	8.0	98
198	Aqueous Batteries Based on Mixed Monovalence Metal Ions: A New Battery Family. ChemSusChem, 2014, 7, 2295-2302.	6.8	61

#	Article	IF	CITATIONS
199	Nano Structured LiMnPO4 cathode Materials with High Rate Capability. ECS Meeting Abstracts, 2014, , .	0.0	0
200	Sulfur/Carbon Nanotube Composite Film as a Flexible Cathode for Lithium–Sulfur Batteries. Journal of Physical Chemistry C, 2013, 117, 21112-21119.	3.1	135
201	Designed synthesis of LiMn ₂ O ₄ microspheres with adjustable hollow structures for lithium-ion battery applications. Journal of Materials Chemistry A, 2013, 1, 837-842.	10.3	56
202	New-concept Batteries Based on Aqueous Li+/Na+ Mixed-ion Electrolytes. Scientific Reports, 2013, 3, 1946.	3.3	91
203	A 3D porous architecture of Si/graphene nanocomposite as high-performance anode materials for Li-ion batteries. Journal of Materials Chemistry, 2012, 22, 7724.	6.7	193
204	Morphology controlled synthesis and modification of high-performance LiMnPO4 cathode materials for Li-ion batteries. Journal of Materials Chemistry, 2012, 22, 21144.	6.7	90
205	Electrochemical properties of 0.6Li[Li1/3Mn2/3]O2–0.4LiNixMnyCo1â^'xâ^'yO2 cathode materials for lithium-ion batteries. Journal of Power Sources, 2012, 218, 128-133.	7.8	93
206	Direct probing of density of states of reduced graphene oxides in a wide voltage range by tunneling junction. Applied Physics Letters, 2012, 101, .	3.3	7
207	Mechanical and Thermal Properties of Epoxy Resin Nanocomposites Reinforced with Graphene Oxide. Polymer-Plastics Technology and Engineering, 2012, 51, 251-256.	1.9	143
208	Si/C nanocomposite anode materials by freeze-drying with enhanced electrochemical performance in lithium-ion batteries. Journal of Solid State Electrochemistry, 2012, 16, 2733-2738.	2.5	14
209	Synthesis and electrochemical properties of layered lithium transition metal oxides. Journal of Materials Chemistry, 2011, 21, 2544-2549.	6.7	74
210	Graphene modified LiFePO4 cathode materials for high power lithium ion batteries. Journal of Materials Chemistry, 2011, 21, 3353.	6.7	469
211	Effect of alumina on the curvature, Young's modulus, thermal expansion coefficient and residual stress of planar solid oxide fuel cells. Journal of Power Sources, 2011, 196, 7639-7644.	7.8	28
212	Morphology-controlled solvothermal synthesis of LiFePO4 as a cathode material for lithium-ion batteries. Journal of Materials Chemistry, 2010, 20, 8086.	6.7	170
213	Synthetic Methodologies for Carbon Nanomaterials. Advanced Materials, 2010, 22, 1963-1966.	21.0	50
214	A scalable, solution-phase processing route to graphene oxide and graphene ultralarge sheets. Chemical Communications, 2010, 46, 2611.	4.1	240