
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3426329/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Syndecan-4/PAR-3 signaling regulates focal adhesion dynamics in mesenchymal cells. Cell Communication and Signaling, 2020, 18, 129.	6.5	16
2	Mechanotransduction: from the cell surface to the nucleus via RhoA. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374, 20180229.	4.0	73
3	Software for lattice light-sheet imaging of FRET biosensors, illustrated with a new Rap1 biosensor. Journal of Cell Biology, 2019, 218, 3153-3160.	5.2	32
4	Vinculin and metavinculin exhibit distinct effects on focal adhesion properties, cell migration, and mechanotransduction. PLoS ONE, 2019, 14, e0221962.	2.5	19
5	The role of endothelial MERTK during the inflammatory response in lungs. PLoS ONE, 2019, 14, e0225051.	2.5	13
6	Cell ycleâ€Dependent Regulation of Cell Adhesions: Adhering to the Schedule. BioEssays, 2019, 41, e1800165.	2.5	22
7	Enucleated cells reveal differential roles of the nucleus in cell migration, polarity, and mechanotransduction. Journal of Cell Biology, 2018, 217, 895-914.	5.2	93
8	LARG GEF and ARHGAP18 orchestrate RhoA activity to control mesenchymal stem cell lineage. Bone, 2018, 107, 172-180.	2.9	31
9	Talin: a protein designed for mechanotransduction. Emerging Topics in Life Sciences, 2018, 2, 673-675.	2.6	4
10	Small GTPase Rap1A/B Is Required for Lymphatic Development and Adrenomedullin-Induced Stabilization of Lymphatic Endothelial Junctions. Arteriosclerosis, Thrombosis, and Vascular Biology, 2018, 38, 2410-2422.	2.4	23
11	A Rnd3/p190RhoGAP pathway regulates RhoA activity in idiopathic pulmonary fibrosis fibroblasts. Molecular Biology of the Cell, 2018, 29, 2165-2175.	2.1	20
12	Focal adhesions: a personal perspective on a half century of progress. FEBS Journal, 2017, 284, 3355-3361.	4.7	184
13	Rho GTPase Transcriptome Analysis Reveals Oncogenic Roles for Rho GTPase-Activating Proteins in Basal-like Breast Cancers. Cancer Research, 2016, 76, 3826-3837.	0.9	60
14	Mechanotransduction and nuclear function. Current Opinion in Cell Biology, 2016, 40, 98-105.	5.4	86
15	Tension on JAM-A activates RhoA via GEF-H1 and p115 RhoGEF. Molecular Biology of the Cell, 2016, 27, 1420-1430.	2.1	38
16	Focal adhesions, stress fibers and mechanical tension. Experimental Cell Research, 2016, 343, 14-20.	2.6	308
17	Tumor Endothelial Cells with Distinct Patterns of TGFβ-Driven Endothelial-to-Mesenchymal Transition. Cancer Research, 2015, 75, 1244-1254.	0.9	59
18	Cell Mechanosensitivity to Extremely Low-Magnitude Signals Is Enabled by a LINCed Nucleus. Stem Cells, 2015, 33, 2063-2076.	3.2	122

#	Article	IF	CITATIONS
19	N-glycosylation controls the function of junctional adhesion molecule-A. Molecular Biology of the Cell, 2015, 26, 3205-3214.	2.1	26
20	Haemodynamic and extracellular matrix cues regulate the mechanical phenotype and stiffness of aortic endothelial cells. Nature Communications, 2014, 5, 3984.	12.8	95
21	The on-off relationship of Rho and Rac during integrin-mediated adhesion and cell migration. Small GTPases, 2014, 5, e27958.	1.6	245
22	Identification of an Actin Binding Surface on Vinculin that Mediates Mechanical Cell and Focal Adhesion Properties. Structure, 2014, 22, 697-706.	3.3	49
23	Isolated nuclei adapt to force and reveal a mechanotransduction pathway in the nucleus. Nature Cell Biology, 2014, 16, 376-381.	10.3	495
24	The RhoA Guanine Nucleotide Exchange Factor, LARG, Mediates ICAM-1–Dependent Mechanotransduction in Endothelial Cells To Stimulate Transendothelial Migration. Journal of Immunology, 2014, 192, 3390-3398.	0.8	54
25	Vinculin phosphorylation differentially regulates mechanotransduction at cell–cell and cell–matrix adhesions. Journal of Cell Biology, 2014, 205, 251-263.	5.2	135
26	Mechanically activated fyn utilizes mTORC2 to regulate RhoA and adipogenesis in mesenchymal stem cells, 2013, 31, 2528-2537.	3.2	64
27	The tension mounts: Stress fibers as force-generating mechanotransducers. Journal of Cell Biology, 2013, 200, 9-19.	5.2	274
28	Thy-1-mediated cell–cell contact induces astrocyte migration through the engagement of αVβ3 integrin and syndecan-4. Biochimica Et Biophysica Acta - Molecular Cell Research, 2013, 1833, 1409-1420.	4.1	48
29	The Guanine-Nucleotide Exchange Factor SGEF Plays a Crucial Role in the Formation of Atherosclerosis. PLoS ONE, 2013, 8, e55202.	2.5	28
30	Stress Fibers Get a Makeover. Biophysical Journal, 2012, 103, 2045-2046.	0.5	2
31	From Mechanical Force to RhoA Activation. Biochemistry, 2012, 51, 7420-7432.	2.5	193
32	Localized Tensional Forces on PECAM-1 Elicit a Global Mechanotransduction Response via the Integrin-RhoA Pathway. Current Biology, 2012, 22, 2087-2094.	3.9	153
33	CB2 receptorâ€mediated Regulation of Prostate Cancer Cell Migration: Involvement of RhoA and Stress fiber formation. FASEB Journal, 2012, 26, 782.11.	0.5	2
34	The Small GTPase RhoA Localizes to the Nucleus and Is Activated by Net1 and DNA Damage Signals. PLoS ONE, 2011, 6, e17380.	2.5	89
35	Latent KSHV infection increases the vascular permeability of human endothelial cells. Blood, 2011, 118, 5344-5354.	1.4	38
36	The Rho GEFs LARG and GEF-H1 regulate the mechanical response to force on integrins. Nature Cell Biology, 2011, 13, 722-727.	10.3	324

#	Article	IF	CITATIONS
37	The 'invisible hand': regulation of RHO GTPases by RHOGDIs. Nature Reviews Molecular Cell Biology, 2011, 12, 493-504.	37.0	470
38	Rho protein crosstalk: another social network?. Trends in Cell Biology, 2011, 21, 718-726.	7.9	303
39	Mechanically Induced Focal Adhesion Assembly Amplifies Anti-Adipogenic Pathways in Mesenchymal Stem Cells. Stem Cells, 2011, 29, 1829-1836.	3.2	71
40	Regulation of Rho GTPase crosstalk, degradation and activity by RhoGDI1. Nature Cell Biology, 2010, 12, 477-483.	10.3	309
41	Endogenous RhoG Is Rapidly Activated after Epidermal Growth Factor Stimulation through Multiple Guanine-Nucleotide Exchange Factors. Molecular Biology of the Cell, 2010, 21, 1629-1642.	2.1	36
42	The Role of Vascular Endothelial Growth Factor-Induced Activation of NADPH Oxidase in Choroidal Endothelial Cells and Choroidal Neovascularization. American Journal of Pathology, 2010, 177, 2091-2102.	3.8	45
43	Direct Activation of RhoA by Reactive Oxygen Species Requires a Redox-Sensitive Motif. PLoS ONE, 2009, 4, e8045.	2.5	176
44	The Regulation of Vascular Endothelial Growth Factor-induced Microvascular Permeability Requires Rac and Reactive Oxygen Species. Journal of Biological Chemistry, 2009, 284, 25602-25611.	3.4	182
45	MLK3 Limits Activated Gαq Signaling to Rho by Binding to p63RhoGEF. Molecular Cell, 2008, 32, 43-56.	9.7	50
46	Chapter 14 Analysis of Low Molecular Weight GTPase Activity in Endothelial Cell Cultures. Methods in Enzymology, 2008, 443, 285-298.	1.0	15
47	ICAM-1-Mediated, Src- and Pyk2-Dependent Vascular Endothelial Cadherin Tyrosine Phosphorylation Is Required for Leukocyte Transendothelial Migration. Journal of Immunology, 2007, 179, 4053-4064.	0.8	277
48	A novel role for Lsc/p115 RhoGEF and LARG in regulating RhoA activity downstream of adhesion to fibronectin. Journal of Cell Science, 2007, 120, 3989-3998.	2.0	132
49	The Nuclear RhoA Exchange Factor Net1 Interacts with Proteins of the Dlg Family, Affects Their Localization, and Influences Their Tumor Suppressor Activity. Molecular and Cellular Biology, 2007, 27, 8683-8697.	2.3	43
50	Heterotypic RPE-choroidal endothelial cell contact increases choroidal endothelial cell transmigration via PI 3-kinase and Rac1. Experimental Eye Research, 2007, 84, 737-744.	2.6	36
51	RhoG regulates endothelial apical cup assembly downstream from ICAM1 engagement and is involved in leukocyte trans-endothelial migration. Journal of Cell Biology, 2007, 178, 1279-1293.	5.2	192
52	VEGF-induced Rac1 activation in endothelial cells is regulated by the guanine nucleotide exchange factor Vav2. Experimental Cell Research, 2007, 313, 3285-3297.	2.6	145
53	Catching a GEF by its tail. Trends in Cell Biology, 2007, 17, 36-43.	7.9	149
54	Analysis of Activated GAPs and GEFs in Cell Lysates. Methods in Enzymology, 2006, 406, 425-437.	1.0	179

#	Article	IF	CITATIONS
55	Regulation of Cell Adhesion by Protein-tyrosine Phosphatases. Journal of Biological Chemistry, 2006, 281, 16189-16192.	3.4	81
56	PTP-PEST Couples Membrane Protrusion and Tail Retraction via VAV2 and p190RhoGAP. Journal of Biological Chemistry, 2006, 281, 11627-11636.	3.4	56
57	Regulation of Cell Adhesion by Protein-tyrosine Phosphatases. Journal of Biological Chemistry, 2006, 281, 15593-15596.	3.4	54
58	Rho Kinase Differentially Regulates Phosphorylation of Nonmuscle Myosin II Isoforms A and B during Cell Rounding and Migration*. Journal of Biological Chemistry, 2006, 281, 35873-35883.	3.4	161
59	Trading spaces: Rap, Rac, and Rho as architects of transendothelial migration. Current Opinion in Hematology, 2005, 12, 14-21.	2.5	69
60	Proline-rich Tyrosine Kinase 2 (Pyk2) Mediates Vascular Endothelial-Cadherin-based Cell-Cell Adhesion by Regulating β-Catenin Tyrosine Phosphorylation*. Journal of Biological Chemistry, 2005, 280, 21129-21136.	3.4	106
61	Rap1 GTPase Inhibits Leukocyte Transmigration by Promoting Endothelial Barrier Function. Journal of Biological Chemistry, 2005, 280, 11675-11682.	3.4	152
62	Aggregation of Integrins and RhoA Activation Are Required for Thy-1-induced Morphological Changes in Astrocytes. Journal of Biological Chemistry, 2004, 279, 39139-39145.	3.4	66
63	Simultaneous Stretching and Contraction of Stress Fibers In Vivo. Molecular Biology of the Cell, 2004, 15, 3497-3508.	2.1	176
64	SGEF, a RhoG Guanine Nucleotide Exchange Factor that Stimulates Macropinocytosis. Molecular Biology of the Cell, 2004, 15, 3309-3319.	2.1	97
65	Rho and Rac Take Center Stage. Cell, 2004, 116, 167-179.	28.9	1,634
66	Cell Migration: Integrating Signals from Front to Back. Science, 2003, 302, 1704-1709.	12.6	4,337
67	Integrin signaling to the actin cytoskeleton. Current Opinion in Cell Biology, 2003, 15, 572-582.	5.4	450
68	Rnd Proteins Function as RhoA Antagonists by Activating p190 RhoGAP. Current Biology, 2003, 13, 1106-1115.	3.9	222
69	RhoA is required for cortical retraction and rigidity during mitotic cell rounding. Journal of Cell Biology, 2003, 160, 255-265.	5.2	275
70	Coupling membrane protrusion and cell adhesion. Journal of Cell Science, 2003, 116, 2389-2397.	2.0	421
71	Serine Phosphorylation Negatively Regulates RhoA in Vivo. Journal of Biological Chemistry, 2003, 278, 19023-19031.	3.4	277
72	RhoA and ROCK Promote Migration by Limiting Membrane Protrusions. Journal of Biological Chemistry, 2003, 278, 13578-13584.	3.4	258

#	Article	IF	CITATIONS
73	Cadherin Engagement Inhibits RhoA via p190RhoGAP. Journal of Biological Chemistry, 2003, 278, 13615-13618.	3.4	149
74	RhoG Signals in Parallel with Rac1 and Cdc42. Journal of Biological Chemistry, 2002, 277, 47810-47817.	3.4	91
75	Recruitment of the Arp2/3 complex to vinculin. Journal of Cell Biology, 2002, 159, 881-891.	5.2	370
76	PTP-PEST controls motility through regulation of Rac1. Journal of Cell Science, 2002, 115, 4305-4316.	2.0	89
77	XPLN, a Guanine Nucleotide Exchange Factor for RhoA and RhoB, But Not RhoC. Journal of Biological Chemistry, 2002, 277, 42964-42972.	3.4	121
78	Regulation of Rho Family GTPases by Cell-Cell and Cell-Matrix Adhesion. Biological Research, 2002, 35, 239-46.	3.4	131
79	Leukocyte transendothelial migration: orchestrating the underlying molecular machinery. Current Opinion in Cell Biology, 2001, 13, 569-577.	5.4	263
80	RhoA is required for monocyte tail retraction during transendothelial migration. Journal of Cell Biology, 2001, 154, 147-160.	5.2	453
81	RhoA Inactivation by p190RhoGAP Regulates Cell Spreading and Migration by Promoting Membrane Protrusion and Polarity. Molecular Biology of the Cell, 2001, 12, 2711-2720.	2.1	398
82	Cadherin Engagement Regulates Rho family GTPases. Journal of Biological Chemistry, 2001, 276, 33305-33308.	3.4	383
83	Integrin engagement suppresses RhoA activity via a c-Src-dependent mechanism. Current Biology, 2000, 10, 719-722.	3.9	398
84	The protein tyrosine phosphatase Shp-2 regulates RhoA activity. Current Biology, 2000, 10, 1523-1526.	3.9	130
85	Vav2 Activates Rac1, Cdc42, and RhoA Downstream from Growth Factor Receptors but Not β1 Integrins. Molecular and Cellular Biology, 2000, 20, 7160-7169.	2.3	181
86	Vav2 Is an Activator of Cdc42, Rac1, and RhoA. Journal of Biological Chemistry, 2000, 275, 10141-10149.	3.4	226
87	P120 Catenin Regulates the Actin Cytoskeleton via Rho Family Gtpases. Journal of Cell Biology, 2000, 150, 567-580.	5.2	515
88	Focal Adhesions: A Nexus for Intracellular Signaling and Cytoskeletal Dynamics. Experimental Cell Research, 2000, 261, 25-36.	2.6	470
89	Microtubule growth activates Rac1 to promote lamellipodial protrusion in fibroblasts. Nature Cell Biology, 1999, 1, 45-50.	10.3	449
90	Bidirectional signaling between the cytoskeleton and integrins. Current Opinion in Cell Biology, 1999, 11, 274-286.	5.4	715

#	Article	IF	CITATIONS
91	Microtubule Depolymerization Induces Stress Fibers, Focal Adhesions, and DNA Synthesis via the GTP-Binding Protein Rho. Cell Adhesion and Communication, 1998, 5, 249-255.	1.7	182
92	Rho-mediated Contractility Exposes a Cryptic Site in Fibronectin and Induces Fibronectin Matrix Assembly. Journal of Cell Biology, 1998, 141, 539-551.	5.2	575
93	Microinjection of Protein Tyrosine Phosphatases into Fibroblasts Disrupts Focal Adhesions and Stress Fibers. Cell Adhesion and Communication, 1998, 5, 207-219.	1.7	16
94	Muscle β1D Integrin Reinforces the Cytoskeleton–Matrix Link: Modulation of Integrin Adhesive Function by Alternative Splicing. Journal of Cell Biology, 1997, 139, 1583-1595.	5.2	126
95	E-Cadherin Engagement Stimulates Tyrosine Phosphorylation. Cell Adhesion and Communication, 1997, 4, 425-437.	1.7	37
96	FOCAL ADHESIONS, CONTRACTILITY, AND SIGNALING. Annual Review of Cell and Developmental Biology, 1996, 12, 463-519.	9.4	1,756
97	Regulation of vinculin binding to talin and actin by phosphatidyl-inositol-4-5-bisphosphate. Nature, 1996, 381, 531-535.	27.8	508
98	Cryptic sites in vinculin. Nature, 1995, 373, 197-197.	27.8	22
99	An Examination of Focal Adhesion Formation and Tyrosine Phosphorylation in Fibroblasts Isolated from srcÂ ⁻ , fynÂ ⁻ , and yesÂ ⁻ Mice. Cell Adhesion and Communication, 1995, 3, 91-100.	1.7	60
100	What the papers say. Rho, rac and the actin cytoskeleton. BioEssays, 1992, 14, 777-778.	2.5	22
101	Transmembrane molecular assemblies in cell-extracellular matrix interactions. Current Opinion in Cell Biology, 1991, 3, 849-853.	5.4	226
102	α-Actinin: a direct link between actin and integrins. Biochemical Society Transactions, 1991, 19, 1065-1069.	3.4	94
103	Actin—membrane interaction in focal adhesions. Cell Differentiation and Development, 1990, 32, 337-342.	0.4	125
104	Focal contacts: Transmembrane links between the extracellular matrix and the cytoskeleton. BioEssays, 1989, 10, 104-108.	2.5	179
105	Focal Adhesions: Transmembrane Junctions Between the Extracellular Matrix and the Cytoskeleton. Annual Review of Cell Biology, 1988, 4, 487-525.	26.1	2,045
106	Colocalization of calcium-dependent protease II and one of its substrates at sites of cell adhesion. Cell, 1987, 51, 569-577.	28.9	271
107	The 180-kD component of the neural cell adhesion molecule N-CAM is involved in cell-cell contacts and cytoskeleton-membrane interactions. Cell and Tissue Research, 1987, 250, 227-236.	2.9	298
108	Demonstration of a relationship between talin and P235, a major substrate of the calcium-dependent protease in platelets. Journal of Cellular Biochemistry, 1986, 30, 259-270.	2.6	66

#	Article	IF	CITATIONS
109	Interaction of plasma membrane fibronectin receptor with talin—a transmembrane linkage. Nature, 1986, 320, 531-533.	27.8	1,188
110	Identification of talin as a major cytoplasmic protein implicated in platelet activation. Nature, 1985, 317, 449-451.	27.8	117
111	Molecular shape and self-association of vinculin and metavinculin. Journal of Cellular Biochemistry, 1985, 29, 31-36.	2.6	84
112	An interaction between vinculin and talin. Nature, 1984, 308, 744-746.	27.8	434
113	Talin: A cytoskeletal component concentrated in adhesion plaques and other sites of actinâ€membrane interaction. Cell Motility, 1983, 3, 405-417.	1.8	172
114	Binding of hela spectrin to a specific hela membrane fraction. Cell Motility, 1983, 3, 657-669.	1.8	19
115	Non-muscle α-actinins are calcium-sensitive actin-binding proteins. Nature, 1981, 294, 565-567.	27.8	249
116	Are stress fibres contractile?. Nature, 1981, 294, 691-692.	27.8	213
117	Characterization of the intermediate (10 nm) filaments of cultured cells using an autoimmune rabbit antiserum. Cell, 1978, 13, 249-261.	28.9	150
118	[5] Direct identification of specific glycoproteins and antigens in sodium dodecyl sulfate gels. Methods in Enzymology, 1978, 50, 54-64.	1.0	195
119	α-Actinin: Immunofluorescent localization of a muscle structural protein in nonmuscle cells. Cell, 1975, 6, 289-298.	28.9	603
120	Purification and structural analysis of myosins from brain and other non-muscle tissues. Journal of Molecular Biology, 1975, 99, 1-14.	4.2	209