List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3425572/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Prediction of the influence of several parameters on the mode I interlaminar fatigue/fracture characterization of CFRP laminates. Mechanics of Advanced Materials and Structures, 2022, 29, 4291-4298.	2.6	1
2	Dynamic mode II interlaminar fracture toughness of electrically modified carbon/epoxy composites. International Journal of Impact Engineering, 2022, 159, 104030.	5.0	5
3	A simple strategy to perform mixed-mode I+II fatigue/fracture characterisation of composite bonded joints. International Journal of Fatigue, 2022, 158, 106723.	5.7	6
4	Evaluation of <mml:math <br="" display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML">id="d1e1546" altimg="si163.svg"><mml:mi>R</mml:mi></mml:math> -curves and cohesive law in mode I of European beech. Theoretical and Applied Fracture Mechanics, 2022, 118, 103220.	4.7	9
5	Bone: An Outstanding Composite Material. Applied Sciences (Switzerland), 2022, 12, 3381.	2.5	14
6	Comparison of numerical analyses of a composite wing component subjected to 4-point bending. Composites Part C: Open Access, 2022, 8, 100264.	3.2	2
7	Experimental evaluation of cohesive laws components of mixed-mode IÂ+ÂII fracture characterization of contical bone. Engineering Fracture Mechanics, 2022, 268, 108493.	4.3	0
8	Fracture characterization of a biâ€material bonded aluminum/CFRP joints under mixedâ€mode I + II loadi Fatigue and Fracture of Engineering Materials and Structures, 2022, 45, 2215-2226.	ing. 3.4	3
9	Fracture characterisation of bone-cement bonded joints under mode I loading. Theoretical and Applied Fracture Mechanics, 2022, 120, 103404.	4.7	1
10	The double cantilever beam test applied to mode I fracture characterization of polyamide 12 processed by selective laser sintering technology. Engineering Fracture Mechanics, 2022, 269, 108555.	4.3	2
11	Osteosynthesis Metal Plate System for Bone Fixation Using Bicortical Screws: Numerical–Experimental Characterization. Biology, 2022, 11, 940.	2.8	1
12	A new method for the identification of cohesive laws under pure loading modes. Engineering Fracture Mechanics, 2022, 271, 108594.	4.3	3
13	Determination of the fracture energy under mode I loading of a honeycomb/carbon-epoxy sandwich panel using the asymmetric double cantilever beam test. Journal of Sandwich Structures and Materials, 2022, 24, 1977-1992.	3.5	2
14	Direct Evaluation of Mixed Mode I+II Cohesive Laws of Wood by Coupling MMB Test with DIC. Materials, 2021, 14, 374.	2.9	12
15	Experimental and numerical mixed-mode IÂ+ÂII fracture characterization of carbon fibre reinforced polymer laminates using a novel strategy. Composite Structures, 2021, 263, 113683.	5.8	6
16	Influence of geometric and material parameters on the mode II interlaminar fatigue/fracture characterization of CFRP laminates. Composites Science and Technology, 2021, 210, 108819.	7.8	6
17	Thermal, Mechanical and Chemical Analysis of Poly(vinyl alcohol) Multifilament and Braided Yarns. Polymers, 2021, 13, 3644.	4.5	14
18	Influence of adverse temperature and moisture conditions on the fracture behaviour of single-strap repairs of carbon-epoxy laminates. International Journal of Adhesion and Adhesives, 2020, 96, 102452.	2.9	4

#	Article	IF	CITATIONS
19	Experimental Investigation of Delamination in Composite Continuous Fiber-Reinforced Plastic Laminates with Elastic Couplings. Materials, 2020, 13, 5146.	2.9	22
20	Thermoplastic Composites and Their Promising Applications in Joining and Repair Composites Structures: A Review. Materials, 2020, 13, 5832.	2.9	49
21	Numerical comparison of several composite bonded repairs under fatigue loading. Composite Structures, 2020, 243, 112250.	5.8	9
22	High-cycle fatigue analysis of adhesively bonded composite scarf repairs. Composites Part B: Engineering, 2020, 190, 107900.	12.0	21
23	A novel strategy to obtain the fracture envelope under mixed-mode I+II loading of composite bonded joints. Engineering Fracture Mechanics, 2020, 232, 107032.	4.3	14
24	A review on the environmental degradation effects on fatigue behaviour of adhesively bonded joints. Fatigue and Fracture of Engineering Materials and Structures, 2020, 43, 1307-1326.	3.4	32
25	Development of an explicit three-dimensional progressive mixed-mode I+II damage model. Engineering Fracture Mechanics, 2019, 218, 106585.	4.3	2
26	Effect of temperature on the fracture toughness of wood under mode I quasi-static loading. Construction and Building Materials, 2019, 223, 863-869.	7.2	8
27	Experimental and numerical analyses of wood boards joining using wood-pin connectors. Construction and Building Materials, 2019, 222, 556-565.	7.2	11
28	Mixed mode l + ll interlaminar fracture characterization of carbon-fibre reinforced polyamide composite using the Single-Leg Bending test. Materials Today Communications, 2019, 19, 476-481.	1.9	8
29	Pure mode I and II interlaminar fracture characterization of carbon-fibre reinforced polyamide composite. Composites Part B: Engineering, 2019, 169, 126-132.	12.0	31
30	Study of the interlaminar fracture under mode I loading on FFF printed parts. Composite Structures, 2019, 214, 316-324.	5.8	27
31	Fatigue-fracture characterization of wood under mode I loading. International Journal of Fatigue, 2019, 121, 265-271.	5.7	6
32	Enhancement of stiffness and load bearing capacity of damaged mortar beams with CFRP patches. Composite Structures, 2019, 210, 518-525.	5.8	2
33	Surface patterning of CRFP composites using femtosecond laser interferometry. Applied Physics A: Materials Science and Processing, 2018, 124, 1.	2.3	11
34	Mode I fracture characterization of wood using the TDCB test. Theoretical and Applied Fracture Mechanics, 2018, 94, 40-45.	4.7	14
35	Influence of femtosecond laser treated surfaces on the mode I fracture toughness of carbon-epoxy bonded joints. International Journal of Adhesion and Adhesives, 2018, 82, 108-113.	2.9	10
36	Determination of mode II cohesive law of bovine cortical bone using direct and inverse methods. International Journal of Mechanical Sciences, 2018, 138-139, 448-456.	6.7	16

#	Article	IF	CITATIONS
37	Multiâ€impact response of composite laminates with open holes. Polymer Composites, 2018, 39, 2490-2498.	4.6	10
38	Dimensional optimization of carbon-epoxy bars for reinforcement of wood beams. Composites Part B: Engineering, 2018, 139, 163-170.	12.0	6
39	Mode II fracture toughness of carbon–epoxy bonded joints with femtosecond laser treated surfaces. International Journal of Mechanical Sciences, 2018, 148, 707-713.	6.7	16
40	Mode II fracture characterization of wood using the Four-Point End-Notched Flexure (4ENF) test. Theoretical and Applied Fracture Mechanics, 2018, 98, 23-29.	4.7	17
41	Fracture behavior of wood-steel dowel joints under quasi-static loading. Construction and Building Materials, 2018, 176, 14-23.	7.2	12
42	Numerical and experimental analyses of composite bonded double-strap repairs under high-cycle fatigue. Journal of Adhesion, 2017, 93, 980-992.	3.0	5
43	Surface treatment of CFRP composites using femtosecond laser radiation. Optics and Lasers in Engineering, 2017, 94, 37-43.	3.8	105
44	Influence of inclined holes on the impact strength of CFRP composites. Composite Structures, 2017, 172, 130-136.	5.8	11
45	Fracture characterization of human cortical bone under mode II loading using the end-notched flexure test. Medical and Biological Engineering and Computing, 2017, 55, 1249-1260.	2.8	11
46	Fatigue analysis of composite bonded repairs. Journal of Adhesion Science and Technology, 2017, 31, 2164-2179.	2.6	13
47	Mixed-mode I+II fracture characterization of a hybrid carbon-epoxy/cork laminate using the Single-Leg Bending test. Composites Science and Technology, 2017, 141, 24-31.	7.8	17
48	Low velocity impact behaviour of a hybrid carbonâ€epoxy/cork laminate. Strain, 2017, 53, e12241.	2.4	7
49	Direct and inverse methods applied to the determination of mode I cohesive law of bovine cortical bone using the DCB test. International Journal of Solids and Structures, 2017, 128, 210-220.	2.7	28
50	Effect of temperature on pure modes I and II fracture behavior of composite bonded joints. Composites Part B: Engineering, 2016, 96, 35-44.	12.0	46
51	Bone fracture characterization under mixed-mode I + II loading using the MMB test. Engineering Fracture Mechanics, 2016, 166, 151-163.	4.3	17
52	A new energy based mixed-mode cohesive zone model. International Journal of Solids and Structures, 2016, 102-103, 112-119.	2.7	41
53	Effect of moisture on pure mode I and II fracture behaviour of composite bonded joints. International Journal of Adhesion and Adhesives, 2016, 68, 30-38.	2.9	52
54	Fatigue/fracture characterization of composite bonded joints under mode I, mode II and mixed-mode I + II. Composite Structures, 2016, 139, 62-67.	5.8	19

#	Article	IF	CITATIONS
55	Mixed-mode I+II fracture characterization of human cortical bone using the Single Leg Bending test. Journal of the Mechanical Behavior of Biomedical Materials, 2016, 54, 72-81.	3.1	16
56	A New Procedure for Mode I Fracture Characterization of Cementâ€Based Materials. Strain, 2015, 51, 483-491.	2.4	6
57	Determining mode I cohesive law of Pinus pinaster by coupling double cantilever beam test with digital image correlation. Frattura Ed Integrita Strutturale, 2015, 9, 13-22.	0.9	0
58	Mode I fracture characterization of human bone using the DCB test. International Journal of Structural Integrity, 2015, 6, 355-366.	3.3	0
59	Fracture Characterization of Human Cortical Bone Under Mode I Loading. Journal of Biomechanical Engineering, 2015, 137, 121004.	1.3	8
60	Mode II fracture characterization of a hybrid cork/carbon-epoxy laminate. Composites Part B: Engineering, 2015, 76, 44-51.	12.0	25
61	Wood fracture characterization under mode I loading using the three-point-bending test. Experimental investigation of Picea abies L International Journal of Fracture, 2015, 194, 1-9.	2.2	15
62	Cohesive zone model for high-cycle fatigue of composite bonded joints under mixed-mode I+II loading. Engineering Fracture Mechanics, 2015, 140, 31-42.	4.3	34
63	Characterisation of composite bonded single-strap repairs under fatigue loading. International Journal of Mechanical Sciences, 2015, 103, 22-29.	6.7	15
64	Bilinear approximations to the mixed-mode l–II delamination cohesive law using an inverse method. Composite Structures, 2015, 122, 361-366.	5.8	35
65	Application of Cohesive Zone Modeling to Composite Bonded Repairs. Journal of Adhesion, 2015, 91, 71-94.	3.0	24
66	Evaluation of mode I fracture toughness of cortical bone tissue in the RL crack propagation system. Ciência & Tecnologia Dos Materiais, 2014, 26, 96-101.	0.5	1
67	Mode I fracture characterization of a hybrid cork and carbon–epoxy laminate. Composite Structures, 2014, 112, 248-253.	5.8	12
68	Direct Evaluation of Cohesive Law in Mode I of Pinus pinaster by Digital Image Correlation. Experimental Mechanics, 2014, 54, 829.	2.0	33
69	Cohesive zone model for high-cycle fatigue of adhesively bonded joints under mode I loading. International Journal of Solids and Structures, 2014, 51, 1123-1131.	2.7	64
70	Fracture characterization of bonded joints using the dual actuator load apparatus. Journal of Adhesion Science and Technology, 2014, 28, 512-524.	2.6	16
71	The Effect of Hybridization on the GFRP Behavior under Quasi-Static Penetration. Mechanics of Advanced Materials and Structures, 2014, 21, 81-87.	2.6	18
72	Fracture Mechanics Tests in Adhesively Bonded Joints: A Literature Review. Journal of Adhesion, 2014, 90, 955-992.	3.0	166

#	Article	IF	CITATIONS
73	Determining mode II cohesive law of Pinus pinaster by combining the end-notched flexure test with digital image correlation. Construction and Building Materials, 2014, 71, 109-115.	7.2	18
74	Development of a cohesive zone model for fatigue/fracture characterization of composite bonded joints under mode II loading. International Journal of Adhesion and Adhesives, 2014, 54, 224-230.	2.9	23
75	Moisture content effect on the fracture characterisation of Pinus pinaster under mode I. Journal of Materials Science, 2014, 49, 7371-7381.	3.7	9
76	Bone fracture characterization under mixed-mode I+II loading using the single leg bending test. Biomechanics and Modeling in Mechanobiology, 2014, 13, 1331-1339.	2.8	10
77	Damage onset on tow-placed variable stiffness composite laminates. Composite Structures, 2014, 113, 419-428.	5.8	26
78	Buckling analysis of laminated composite plates submitted to compression after impact. Fibers and Polymers, 2014, 15, 560-565.	2.1	9
79	Quasi-static behavior of moment-carrying steel–wood doweled joints. Construction and Building Materials, 2014, 53, 439-447.	7.2	15
80	Determination of cohesive laws in wood bonded joints under mode II loading using the ENF test. International Journal of Adhesion and Adhesives, 2014, 51, 54-61.	2.9	33
81	Cohesive laws of composite bonded joints under mode I loading. Composite Structures, 2013, 106, 646-652.	5.8	55
82	Mixed-mode I+II continuum damage model applied to fracture characterization of bonded joints. International Journal of Adhesion and Adhesives, 2013, 41, 92-97.	2.9	16
83	Determination of cohesive laws of composite bonded joints under mode II loading. Composites Part B: Engineering, 2013, 52, 269-274.	12.0	63
84	Influence of multi-impacts on GFRP composites laminates. Composites Part B: Engineering, 2013, 52, 93-99.	12.0	49
85	Numerical validation of a crack equivalent method for mixed-mode I+II fracture characterization of bonded joints. Engineering Fracture Mechanics, 2013, 107, 38-47.	4.3	15
86	Large deflection and stresses in variable stiffness composite laminates with curvilinear fibres. International Journal of Mechanical Sciences, 2013, 73, 14-26.	6.7	68
87	Mixed-mode I+II fatigue/fracture characterization of composite bonded joints using the Single-Leg Bending test. Composites Part A: Applied Science and Manufacturing, 2013, 44, 63-69.	7.6	42
88	Characterization of composite bonded joints under pure mode II fatigue loading. Composite Structures, 2013, 95, 222-226.	5.8	25
89	Influence of open holes on composites delamination induced by low velocity impact loads. Composite Structures, 2013, 97, 239-244.	5.8	34
90	Bone fracture characterization using the end notched flexure test. Materials Science and Engineering C, 2013, 33, 405-410.	7.3	16

#	Article	IF	CITATIONS
91	Determination of cohesive laws in wood bonded joints under mode I loading using the DCB test. Holzforschung, 2013, 67, 913-922.	1.9	21
92	Influence of the specimen thickness on low velocity impact behavior of composites. Journal of Polymer Engineering, 2012, 32, .	1.4	12
93	Damage detection on laminated composite materials using several NDT techniques. Insight: Non-Destructive Testing and Condition Monitoring, 2012, 54, 14-20.	0.6	46
94	A straightforward method to obtain the cohesive laws of bonded joints under mode I loading. International Journal of Adhesion and Adhesives, 2012, 39, 54-59.	2.9	71
95	Evaluation of bone cohesive laws using an inverse method applied to the DCB test. Engineering Fracture Mechanics, 2012, 96, 724-736.	4.3	21
96	Repairing wood beams under bending using carbon–epoxy composites. Engineering Structures, 2012, 34, 342-350.	5.3	29
97	Bilinear approximations to the mode II delamination cohesive law using an inverse method. Mechanics of Materials, 2012, 49, 42-50.	3.2	42
98	Design and analysis of a new six-point edge crack torsion (6ECT) specimen for mode III interlaminar fracture characterisation. Composites Part A: Applied Science and Manufacturing, 2011, 42, 131-139.	7.6	20
99	Mode III interlaminar fracture of carbon/epoxy laminates using the Six-Point Edge Crack Torsion (6ECT). Composites Part A: Applied Science and Manufacturing, 2011, 42, 1793-1799.	7.6	24
100	Numerical analysis of the ENF and ELS tests applied to mode II fracture characterization of cortical bone tissue. Fatigue and Fracture of Engineering Materials and Structures, 2011, 34, 149-158.	3.4	18
101	Delamination Effect on Bending Behaviour in Carbon–Epoxy Composites. Strain, 2011, 47, 203-208.	2.4	66
102	The Influence of the Boundary Conditions on Lowâ€Velocity Impact Composite Damage. Strain, 2011, 47, e220.	2.4	40
103	Fracture characterization of bone under mode II loading using the end loaded split test. Journal of the Mechanical Behavior of Biomedical Materials, 2011, 4, 1764-1773.	3.1	10
104	A numerical study on the SEN-TPB test applied to mode I wood fracture characterization. International Journal of Solids and Structures, 2011, 48, 234-242.	2.7	17
105	Numerical analysis of the dual actuator load test applied to fracture characterization of bonded joints. International Journal of Solids and Structures, 2011, 48, 1572-1578.	2.7	18
106	Mixed-mode (I+II) fracture characterization of wood bonded joints. Construction and Building Materials, 2011, 25, 1956-1962.	7.2	27
107	Composite bonded joints under mode I fatigue loading. International Journal of Adhesion and Adhesives, 2011, 31, 280-285.	2.9	37
108	Measurement of Mode I and Mode II Fracture Properties of Wood-Bonded Joints. Journal of Adhesion Science and Technology, 2011, 25, 2881-2895.	2.6	25

#	Article	IF	CITATIONS
109	Buckling strength of adhesively-bonded single and double-strap repairs on carbon-epoxy structures. Composites Science and Technology, 2010, 70, 371-379.	7.8	34
110	The double cantilever beam test applied to mode I fracture characterization of cortical bone tissue. Journal of the Mechanical Behavior of Biomedical Materials, 2010, 3, 446-453.	3.1	58
111	Numerical evaluation of three-dimensional scarf repairs in carbon-epoxy structures. International Journal of Adhesion and Adhesives, 2010, 30, 329-337.	2.9	52
112	Mixed-mode I/II wood fracture characterization using the mixed-mode bending test. Engineering Fracture Mechanics, 2010, 77, 144-152.	4.3	37
113	Crack equivalent based method applied to wood fracture characterization using the single edge notched-three point bending test. Engineering Fracture Mechanics, 2010, 77, 510-520.	4.3	45
114	Fracture characterization of sandwich structures interfaces under mode I loading. Composites Science and Technology, 2010, 70, 1386-1394.	7.8	23
115	Interlaminar and intralaminar fracture characterization of composites under mode I loading. Composite Structures, 2010, 92, 144-149.	5.8	84
116	Experimental and numerical evaluation of composite repairs on wood beams damaged by cross-graining. Construction and Building Materials, 2010, 24, 531-537.	7.2	32
117	Interlaminar Fracture Characterization of a Carbon-Epoxy Composite in Pure Mode II. Materials Science Forum, 2010, 636-637, 1518-1524.	0.3	4
118	Estimate of resistance-curve in wood through the double cantilever beam test. Holzforschung, 2010, 64, .	1.9	25
119	Stress and Failure Analysis of Repaired Sandwich Composite Beams using a Cohesive Damage Model. Journal of Sandwich Structures and Materials, 2010, 12, 369-390.	3.5	16
120	Adhesively Bonded Repair Proposal for Wood Members Damaged by Horizontal Shear Using Carbon-Epoxy Patches. Journal of Adhesion, 2010, 86, 649-670.	3.0	17
121	Repair of Wood Trusses Loaded in Tension with Adhesively Bonded Carbon-Epoxy Patches. Journal of Adhesion, 2010, 86, 630-648.	3.0	6
122	Mode II Fracture Toughness of a Brittle and a Ductile Adhesive as a Function of the Adhesive Thickness. Journal of Adhesion, 2010, 86, 891-905.	3.0	95
123	Mixed-Mode Cohesive Damage Model Applied to the Simulation of the Mechanical Behaviour of Laminated Composite Adhesive Joints. Journal of Adhesion Science and Technology, 2009, 23, 1477-1491.	2.6	17
124	Application of the end loaded split and single-leg bending tests to the mixed-mode fracture characterization of wood. Holzforschung, 2009, 63, 597-602.	1.9	30
125	Data reduction scheme for measuring <i>G</i> _{IIc} of wood in end-notched flexure (ENF) tests. Holzforschung, 2009, 63, 99-106.	1.9	26
126	The effect of hybridization on the GFRP behavior under high velocity impact. Composites Part B: Engineering, 2009, 40, 798-803.	12.0	107

#	Article	IF	CITATIONS
127	Numerical prediction on the tensile residual strength of repaired CFRP under different geometric changes. International Journal of Adhesion and Adhesives, 2009, 29, 195-205.	2.9	72
128	Numerical analysis of the Edge Crack Torsion test for mode III interlaminar fracture of composite laminates. Engineering Fracture Mechanics, 2009, 76, 469-478.	4.3	34
129	Tensile behaviour of three-dimensional carbon-epoxy adhesively bonded single- and double-strap repairs. International Journal of Adhesion and Adhesives, 2009, 29, 678-686.	2.9	91
130	Modelling the tensile fracture behaviour of CFRP scarf repairs. Composites Part B: Engineering, 2009, 40, 149-157.	12.0	151
131	Mode III interlaminar fracture of carbon/epoxy laminates using the edge crack torsion (ECT) test. Composites Science and Technology, 2009, 69, 670-676.	7.8	61
132	Pure mode II fracture characterization of composite bonded joints. International Journal of Solids and Structures, 2009, 46, 1589-1595.	2.7	179
133	Fracture behaviour of damaged wood beams repaired with an adhesively-bonded composite patch. Composites Part A: Applied Science and Manufacturing, 2009, 40, 852-859.	7.6	35
134	Single-Lap Joints of Similar and Dissimilar Adherends Bonded with an Acrylic Adhesive. Journal of Adhesion, 2009, 85, 351-376.	3.0	78
135	Buckling Behaviour of Carbon–Epoxy Adhesively-Bonded Scarf Repairs. Journal of Adhesion Science and Technology, 2009, 23, 1493-1513.	2.6	43
136	Crack equivalent concept applied to the fracture characterization of bonded joints under pure mode I loading. Composites Science and Technology, 2008, 68, 2224-2230.	7.8	230
137	Cohesive and continuum mixed-mode damage models applied to the simulation of the mechanical behaviour of bonded joints. International Journal of Adhesion and Adhesives, 2008, 28, 419-426.	2.9	172
138	An experimental and numerical assessment of DCB tests on glass/polyester curved beams cut out from pipes. Polymer Testing, 2008, 27, 985-994.	4.8	12
139	Failure analysis of quasi-isotropic CFRP laminates under high strain rate compression loading. Composite Structures, 2008, 84, 362-368.	5.8	37
140	Using a cohesive damage model to predict the tensile behaviour of CFRP single-strap repairs. International Journal of Solids and Structures, 2008, 45, 1497-1512.	2.7	170
141	Equivalent crack based analyses of ENF and ELS tests. Engineering Fracture Mechanics, 2008, 75, 2584-2596.	4.3	116
142	Numerical prediction of delamination onset in carbon/epoxy composites drilling. Engineering Fracture Mechanics, 2008, 75, 2767-2778.	4.3	86
143	A new data reduction scheme for mode I wood fracture characterization using the double cantilever beam test. Engineering Fracture Mechanics, 2008, 75, 3852-3865.	4.3	191
144	Comparison of fracture properties of two wood species through cohesive crack simulations. Composites Part A: Applied Science and Manufacturing, 2008, 39, 415-427.	7.6	89

#	Article	IF	CITATIONS
145	Interlaminar mode II fracture characterization. , 2008, , 310-326.		7
146	Interaction of matrix cracking and delamination. , 2008, , 327-343.		0
147	Mode II Fracture Characterization of <i>Pinus Pinaster</i> Wood. Materials Science Forum, 2008, 587-588, 594-598.	0.3	Ο
148	Computational Modelling of the Residual Strength of Repaired Composite Laminates Using a Cohesive Damage Model. Journal of Adhesion Science and Technology, 2008, 22, 1565-1591.	2.6	38
149	Progressive Damage Modelling. , 2008, , 155-182.		3
150	The Effect of the Impactor Diameter and Boundary Conditions on Low Velocity Impact Composites Behaviour. Applied Mechanics and Materials, 2007, 7-8, 217-222.	0.2	2
151	Stress and failure analyses of scarf repaired CFRP laminates using a cohesive damage model. Journal of Adhesion Science and Technology, 2007, 21, 855-870.	2.6	94
152	Numerical analysis of the MMB test for mixed-mode I/II wood fracture. Composites Science and Technology, 2007, 67, 1764-1771.	7.8	40
153	Mode II wood fracture characterization using the ELS test. Engineering Fracture Mechanics, 2007, 74, 2133-2147.	4.3	33
154	Effect of Adhesive Type and Thickness on the Lap Shear Strength. Journal of Adhesion, 2006, 82, 1091-1115.	3.0	402
155	Numerical simulation of the drilling process on carbon/epoxy composite laminates. Composites Part A: Applied Science and Manufacturing, 2006, 37, 1325-1333.	7.6	78
156	Numerical analysis of the ENF test for mode II wood fracture. Composites Part A: Applied Science and Manufacturing, 2006, 37, 1334-1344.	7.6	53
157	Equivalent crack based mode II fracture characterization of wood. Engineering Fracture Mechanics, 2006, 73, 978-993.	4.3	114
158	Evaluation of initiation criteria used in interlaminar fracture tests. Engineering Fracture Mechanics, 2006, 73, 2264-2276.	4.3	36
159	Cohesive and continuum damage models applied to fracture characterization of bonded joints. International Journal of Mechanical Sciences, 2006, 48, 493-503.	6.7	50
160	Simulation of mechanical behaviour of composite bonded joints containing strip defects. International Journal of Adhesion and Adhesives, 2006, 26, 464-473.	2.9	83
161	Residual Strength after Low Velocity Impact in Carbon-Epoxy Laminates. Materials Science Forum, 2006, 514-516, 624-628.	0.3	51
162	Numerical simulation of the ENF test for the mode-II fracture characterization of bonded joints. Journal of Adhesion Science and Technology, 2006, 20, 37-52.	2.6	30

#	Article	IF	CITATIONS
163	Evaluation of stress concentration effects in single-lap bonded joints of laminate composite materials. International Journal of Adhesion and Adhesives, 2005, 25, 313-319.	2.9	69
164	Assessment of initiation criteria used in interlaminar fracture tests of composites. Engineering Fracture Mechanics, 2005, 72, 2615-2627.	4.3	34
165	Modelling single and double-lap repairs on composite materials. Composites Science and Technology, 2005, 65, 1948-1958.	7.8	189
166	Application of acoustic emission to study creep behaviour of composite bonded lap shear joints. NDT and E International, 2005, 38, 45-52.	3.7	33
167	Mode I interlaminar fracture of woven glass/epoxy multidirectional laminates. Composites Part A: Applied Science and Manufacturing, 2005, 36, 1119-1127.	7.6	49
168	Modelling the interaction between matrix cracking and delamination in carbon–epoxy laminates under low velocity impact. Composites Science and Technology, 2004, 64, 1021-1027.	7.8	144
169	Numerical simulation of the crushing process of composite materials. International Journal of Crashworthiness, 2004, 9, 263-276.	1.9	58
170	Influence of intralaminar cracking on the apparent interlaminar mode I fracture toughness of crossâ€ply laminates. Fatigue and Fracture of Engineering Materials and Structures, 2004, 27, 759-766.	3.4	24
171	Analysis of crack propagation in double cantilever beam tests of multidirectional laminates. Mechanics of Materials, 2003, 35, 641-652.	3.2	72
172	Application of interface finite elements to three-dimensional progressive failure analysis of adhesive joints. Fatigue and Fracture of Engineering Materials and Structures, 2003, 26, 479-486.	3.4	62
173	Prediction of low velocity impact damage in carbon–epoxy laminates. Composites Part A: Applied Science and Manufacturing, 2002, 33, 361-368.	7.6	171
174	Mode-I interlaminar fracture of carbon/epoxy cross-ply composites. Composites Science and Technology, 2002, 62, 679-686.	7.8	143
175	A three-dimensional finite element model for stress analysis of adhesive joints. International Journal of Adhesion and Adhesives, 2002, 22, 357-365.	2.9	148
176	Mixed-mode decohesion elements for analyses of progressive delamination. , 2001, , .		251
177	Prediction of compressive strength of carbon–epoxy laminates containing delamination by using a mixed-mode damage model. Composite Structures, 2000, 50, 151-157.	5.8	72
178	Interface element including pointâ€ŧoâ€surface constraints for threeâ€dimensional problems with damage propagation. Engineering Computations, 2000, 17, 28-47.	1.4	94
179	Modeling Compression Failure after Low Velocity Impact on Laminated Composites Using Interface Elements. Journal of Composite Materials, 1997, 31, 1462-1479.	2.4	103
180	The Effect of the Carbon Epoxy Plate's Size under Low Velocity Impact. Materials Science Forum, 0, 587-588, 951-955.	0.3	0

#	Article	IF	CITATIONS
181	Strength Prediction of Adhesively-Bonded Scarf Repairs in Composite Structures under Bending. Materials Science Forum, 0, 636-637, 233-238.	0.3	2
182	Strength Prediction and Experimental Validation of Adhesive Joints Including Polyethylene, Carbon-Epoxy and Aluminium Adherends. Materials Science Forum, 0, 636-637, 1157-1164.	0.3	6
183	Wood Fracture Characterization. , 0, , .		5