
Ji-Min Zhu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3425141/publications.pdf Version: 2024-02-01

ІьМім 7нц

#	Article	IF	CITATIONS
1	Berberine treatment increases Akkermansia in the gut and improves high-fat diet-induced atherosclerosis in Apoeâ^'/â^' mice. Atherosclerosis, 2018, 268, 117-126.	0.8	170
2	Intratumor Hypoxia Promotes Immune Tolerance by Inducing Regulatory T Cells via TGF-β1 in Gastric Cancer. PLoS ONE, 2013, 8, e63777.	2.5	101
3	OGDHL silencing promotes hepatocellular carcinoma by reprogramming glutamine metabolism. Journal of Hepatology, 2020, 72, 909-923.	3.7	83
4	microRNA-19a-3p promotes tumor metastasis and chemoresistance through the PTEN/Akt pathway in hepatocellular carcinoma. Biomedicine and Pharmacotherapy, 2018, 105, 1147-1154.	5.6	82
5	Circulating microRNAs as a Fingerprint for Liver Cirrhosis. PLoS ONE, 2013, 8, e66577.	2.5	63
6	MicroRNAâ€18a modulates P53 expression by targeting IRF2 in gastric cancer patients. Journal of Gastroenterology and Hepatology (Australia), 2016, 31, 155-163.	2.8	45
7	Repeated electroacupuncture attenuating of apelin expression and function in the rostral ventrolateral medulla in stress-induced hypertensive rats. Brain Research Bulletin, 2013, 97, 53-62.	3.0	44
8	Microarray Expression Profiling of microRNAs Reveals Potential Biomarkers for Hepatocellular Carcinoma. Tohoku Journal of Experimental Medicine, 2018, 245, 89-98.	1.2	39
9	Growth differentiation factor 11 attenuates liver fibrosis via expansion of liver progenitor cells. Gut, 2020, 69, 1104-1115.	12.1	37
10	Sorafenib-Conjugated Zinc Phthalocyanine Based Nanocapsule for Trimodal Therapy in an Orthotopic Hepatocellular Carcinoma Xenograft Mouse Model. ACS Applied Materials & Interfaces, 2020, 12, 17193-17206.	8.0	34
11	New insights into preâ€mRNA processing factor 19: A multiâ€faceted protein in humans. Biology of the Cell, 2012, 104, 695-705.	2.0	33
12	The Hippo pathway in hepatocellular carcinoma: Non-coding RNAs in action. Cancer Letters, 2017, 400, 175-182.	7.2	32
13	<p>UBE2T promotes proliferation via G2/M checkpoint in hepatocellular carcinoma</p> . Cancer Management and Research, 2019, Volume 11, 8359-8370.	1.9	29
14	Prp19 facilitates invasion of hepatocellular carcinoma via p38 mitogen-activated protein kinase/Twist1 pathway. Oncotarget, 2016, 7, 21939-21951.	1.8	29
15	microRNA-93-5p promotes hepatocellular carcinoma progression via a microRNA-93-5p/MAP3K2/c-Jun positive feedback circuit. Oncogene, 2020, 39, 5768-5781.	5.9	28
16	Targeting the mTOR regulatory network in hepatocellular carcinoma: Are we making headway?. Biochimica Et Biophysica Acta: Reviews on Cancer, 2019, 1871, 379-391.	7.4	27
17	Prognostic significance of eukaryotic initiation factor 4E in hepatocellular carcinoma. Journal of Cancer Research and Clinical Oncology, 2016, 142, 2309-2317.	2.5	26
18	RNA binding protein Nova1 promotes tumor growth in vivo and its potential mechanism as an oncogene may due to its interaction with GABAA Receptor-Î ³ 2. Journal of Biomedical Science, 2016, 23, 71.	7.0	25

Јі-Мім Zhu

#	Article	IF	CITATIONS
19	Glypican-1 Promotes Tumorigenesis by Regulating the PTEN/Akt/β-Catenin Signaling Pathway in Esophageal Squamous Cell Carcinoma. Digestive Diseases and Sciences, 2019, 64, 1493-1502.	2.3	24
20	High Expression of Neuro-Oncological Ventral Antigen 1 Correlates with Poor Prognosis in Hepatocellular Carcinoma. PLoS ONE, 2014, 9, e90955.	2.5	24
21	Tumor cell-imposed iron restriction drives immunosuppressive polarization of tumor-associated macrophages. Journal of Translational Medicine, 2021, 19, 347.	4.4	23
22	DCTPP1 attenuates the sensitivity of human gastric cancer cells to 5-fluorouracil by up-regulating MDR1 expression epigenetically. Oncotarget, 2016, 7, 68623-68637.	1.8	22
23	The role and therapeutic implications of RING-finger E3 ubiquitin ligases in hepatocellular carcinoma. International Journal of Cancer, 2015, 136, 249-257.	5.1	16
24	Comprehensive analysis of long non‑coding RNA‑messenger RNA‑microRNA co‑expression network identifies cell cycle‑related IncRNA in hepatocellular carcinoma. International Journal of Molecular Medicine, 2019, 44, 1844-1854.	4.0	16
25	UBE2M promotes cell proliferation via the β-catenin/cyclin D1 signaling in hepatocellular carcinoma. Aging, 2020, 12, 2373-2392.	3.1	16
26	Bismuthâ€Based Mesoporous Nanoball Carrying Sorafenib for Computed Tomography Imaging and Synergetic Chemoradiotherapy of Hepatocellular Carcinoma. Advanced Healthcare Materials, 2020, 9, e2000650.	7.6	14
27	Enhanced mLST8 Expression Correlates with Tumor Progression in Hepatocellular Carcinoma. Annals of Surgical Oncology, 2020, 27, 1546-1557.	1.5	12
28	Large-scale prediction of ADAR-mediated effective human A-to-I RNA editing. Briefings in Bioinformatics, 2019, 20, 102-109.	6.5	11
29	DNA Damage Induces Down-Regulation of Prp19 via Impairing Prp19 Stability in Hepatocellular Carcinoma Cells. PLoS ONE, 2014, 9, e89976.	2.5	11
30	Extensive Metastatic Cholangiocarcinoma Associated With IgG4-Related Sclerosing Cholangitis Misdiagnosed as Isolated IgG4-Related Sclerosing Cholangitis. Medicine (United States), 2015, 94, e2052.	1.0	10
31	Improved Antiviral Activity of Classical Swine Fever Virus-Targeted siRNA by Tetrahedral Framework Nucleic Acid-Enhanced Delivery. ACS Applied Materials & Interfaces, 2021, 13, 29416-29423.	8.0	9
32	Tetrahedral Framework Nucleic Acid Delivered RNA Therapeutics Significantly Attenuate Pancreatic Cancer Progression via Inhibition of CTR1-Dependent Copper Absorption. ACS Applied Materials & Interfaces, 2021, 13, 46334-46342.	8.0	7
33	Upregulated calciumâ€binding tyrosine phosphorylationâ€regulated proteinâ€a/b regulates cell proliferation and apoptosis and predicts poor prognosis in hepatocellular carcinoma. Journal of Cellular Biochemistry, 2020, 121, 2938-2949.	2.6	6
34	<p>Overexpressed pepsinogen C is associated with poor prognosis in human hepatocellular carcinoma: a tissue microarray study</p> . Cancer Management and Research, 2019, Volume 11, 2927-2934.	1.9	5
35	microRNA-106b-5p Promotes Cell Growth and Sensitizes Chemosensitivity to Sorafenib by Targeting the BTG3/Bcl-xL/p27 Signaling Pathway in Hepatocellular Carcinoma. Journal of Oncology, 2022, 2022, 1-15.	1.3	5
36	microRNA-106b-5p Promotes Cell Growth and Sensitizes Chemosensitivity to Sorafenib by Targeting the BTG3/Bcl-xL/p27 Signaling Pathway in Hepatocellular Carcinoma. SSRN Electronic Journal, 0, , .	0.4	2

#	Article	IF	CITATIONS
37	ASO Author Reflections: mLST8 is a Prognostic Biomarker and Involved in Tumor Progression in Hepatocellular Carcinoma. Annals of Surgical Oncology, 2020, 27, 1558-1559.	1.5	0