Sofia R Pauleta

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3424904/publications.pdf Version: 2024-02-01

SOFIA P. PALLETA

#	Article	IF	CITATIONS
1	OrpR is a σ 54 â€dependent activator using an ironâ€sulfur cluster for redox sensing in Desulfovibrio vulgaris Hildenborough. Molecular Microbiology, 2021, 116, 231-244.	2.5	4
2	The effect of pH on Marinobacter hydrocarbonoclasticus denitrification pathway and nitrous oxide reductase. Journal of Biological Inorganic Chemistry, 2020, 25, 927-940.	2.6	15
3	Acrylamide-hemoglobin adduct: A spectroscopic study. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2020, 241, 118644.	3.9	4
4	5. The Tetranuclear Copper-Sulfide Center of Nitrous Oxide Reductase. , 2020, 20, 139-164.		1
5	Proton-coupled electron transfer mechanisms of the copper centres of nitrous oxide reductase from Marinobacter hydrocarbonoclasticus – An electrochemical study. Bioelectrochemistry, 2020, 133, 107483.	4.6	10
6	The bacterial MrpORP is a novel Mrp/NBP35 protein involved in iron-sulfur biogenesis. Scientific Reports, 2019, 9, 712.	3.3	7
7	Source and reduction of nitrous oxide. Coordination Chemistry Reviews, 2019, 387, 436-449.	18.8	53
8	Reduction of hydrogen peroxide in gram-negative bacteria – bacterial peroxidases. Advances in Microbial Physiology, 2019, 74, 415-464.	2.4	16
9	Interaction between Neisseria gonorrhoeae bacterial peroxidase and its electron donor, the lipidâ€modified azurin. FEBS Letters, 2018, 592, 1473-1483.	2.8	7
10	YhjA - An Escherichia coli trihemic enzyme with quinol peroxidase activity. Biochimica Et Biophysica Acta - Bioenergetics, 2018, 1859, 411-422.	1.0	11
11	Genomic organization, gene expression and activity profile of <i>Marinobacter hydrocarbonoclasticus</i> denitrification enzymes. PeerJ, 2018, 6, e5603.	2.0	8
12	Protein-Assisted Formation of Molybdenum Heterometallic Clusters: Evidence for the Formation of S ₂ MoS ₂ A6€"M–S ₂ MoS ₂ Clusters with M = Fe, Co, Ni, Cu, or Cd within the Orange Protein. Inorganic Chemistry, 2017, 56, 2210-2220.	4.0	12
13	Biochemical characterization of the bacterial peroxidase from the human pathogen Neisseria gonorrhoeae. Journal of Inorganic Biochemistry, 2017, 171, 108-119.	3.5	10
14	Spectroscopic Definition of the Cu _Z ° Intermediate in Turnover of Nitrous Oxide Reductase and Molecular Insight into the Catalytic Mechanism. Journal of the American Chemical Society, 2017, 139, 4462-4476.	13.7	33
15	Insights into the recognition and electron transfer steps in nitric oxide reductase from Marinobacter hydrocarbonoclasticus. Journal of Inorganic Biochemistry, 2017, 177, 402-411.	3.5	11
16	The catalytic cycle of nitrous oxide reductase — The enzyme that catalyzes the last step of denitrification. Journal of Inorganic Biochemistry, 2017, 177, 423-434.	3.5	37
17	Predicting Protein-Protein Interactions Using BiGGER: Case Studies. Molecules, 2016, 21, 1037.	3.8	9
18	The small iron-sulfur protein from the ORP operon binds a [2Fe-2S] cluster. Biochimica Et Biophysica Acta - Bioenergetics, 2016, 1857, 1422-1429.	1.0	7

SOFIA R PAULETA

#	Article	IF	CITATIONS
19	The solution structure of the soluble form of the lipid-modified azurin from Neisseria gonorrhoeae , the electron donor of cytochrome c peroxidase. Biochimica Et Biophysica Acta - Bioenergetics, 2016, 1857, 169-176.	1.0	9
20	Orange protein from Desulfovibrio alaskensis G20: insights into the Mo–Cu cluster protein-assisted synthesis. Journal of Biological Inorganic Chemistry, 2016, 21, 53-62.	2.6	5
21	Resonance assignment of DVU2108 that is part of the Orange Protein complex in Desulfovibrio vulgaris Hildenborough. Biomolecular NMR Assignments, 2016, 10, 117-120.	0.8	5
22	CHAPTER 7. Insights into Nitrous Oxide Reductase. 2-Oxoglutarate-Dependent Oxygenases, 2016, , 141-169.	0.8	3
23	CHAPTER 11. Electron Transfer and Molecular Recognition in Denitrification and Nitrate Dissimilatory Pathways. 2-Oxoglutarate-Dependent Oxygenases, 2016, , 252-286.	0.8	0
24	CHAPTER 1. A Bird's Eye View of Denitrification in Relation to the Nitrogen Cycle. 2-Oxoglutarate-Dependent Oxygenases, 2016, , 1-10.	0.8	2
25	Incorporation of molybdenum in rubredoxin: models for mononuclear molybdenum enzymes. Journal of Biological Inorganic Chemistry, 2015, 20, 821-829.	2.6	12
26	HCN Channels: The Molecular Basis for their cAMP-TRIP8b Regulation. Biophysical Journal, 2015, 108, 366a.	0.5	0
27	Protonation state of the Cu ₄ S ₂ Cu _Z site in nitrous oxide reductase: redox dependence and insight into reactivity. Chemical Science, 2015, 6, 5670-5679.	7.4	23
28	One Electron Reduced Square Planar Bis(benzene-1,2-dithiolato) Copper Dianionic Complex and Redox Switch by O ₂ /HO [–] . Inorganic Chemistry, 2014, 53, 12799-12808.	4.0	20
29	Mo–Cu metal cluster formation and binding in an orange protein isolated from Desulfovibrio gigas. Journal of Biological Inorganic Chemistry, 2014, 19, 605-614.	2.6	22
30	Synthesis and characterization of [S2MoS2Cu(n-SPhF)]2â^'(n=o, m, p) clusters: Potential 19F-NMR structural probes for Orange Protein. Inorganic Chemistry Communication, 2014, 45, 97-100.	3.9	4
31	Structural basis for the mutual antagonism of cAMP and TRIP8b in regulating HCN channel function. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 14577-14582.	7.1	68
32	Determination of the Active Form of the Tetranuclear Copper Sulfur Cluster in Nitrous Oxide Reductase. Journal of the American Chemical Society, 2014, 136, 614-617.	13.7	52
33	The Auxiliary Subunit TRIP8B Inhibits the Binding of CAMP to HCN2 Channels Through an Allosteric Mechanism. Biophysical Journal, 2014, 106, 758a.	0.5	0
34	1H, 13C and 15N resonance assignment of the soluble form of the Lipid-modified Azurin from Neisseria gonorrhoeae. Biomolecular NMR Assignments, 2013, 7, 311-314.	0.8	3
35	Superoxide Reductase: Different Interaction Modes with its Two Redox Partners. ChemBioChem, 2013, 14, 1858-1866.	2.6	10

Iron–Sulfur Centers: New Roles for Ancient Metal Sites. , 2013, , 103-148.

Sofia R Pauleta

#	Article	IF	CITATIONS
37	Nitrous oxide reductase. Coordination Chemistry Reviews, 2013, 257, 332-349.	18.8	151
38	Copper-substituted forms of the wild type and C42A variant of rubredoxin. Journal of Inorganic Biochemistry, 2013, 127, 232-237.	3.5	11
39	Rearrangement of Mo uâ€5 Cluster Reflects the Structural Âŀnstability of Orange Protein Cofactor. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2013, 639, 1361-1364.	1.2	7
40	Biochemical characterization of the purple form of <i>Marinobacter hydrocarbonoclasticus</i> nitrous oxide reductase. Philosophical Transactions of the Royal Society B: Biological Sciences, 2012, 367, 1204-1212.	4.0	25
41	Copper tolerance in Marinobacter hydrocarbonoclasticus â \in " Proteomic analysis of the periplasm. , 2012, , .		0
42	Analysis of resonance Raman data on the blue copper site in pseudoazurin: Excited state ï€ and ïƒ charge transfer distortions and their relation to ground state reorganization energy. Journal of Inorganic Biochemistry, 2012, 115, 155-162.	3.5	12
43	Synthesis of [MoS ₄] ^{2–} –M (M = Cu and Cd) Clusters: Potential NMR Spectroscopic Structural Probes for the Orange Protein. European Journal of Inorganic Chemistry, 2012, 2012, 4159-4166.	2.0	8
44	Gd(III) Chelates as NMR Probes of Protein–Protein Interactions. Case Study: Rubredoxin and Cytochrome <i>c</i> ₃ . Inorganic Chemistry, 2011, 50, 10600-10607.	4.0	17
45	The Anaerobe-Specific Orange Protein Complex of Desulfovibrio vulgaris Hildenborough Is Encoded by Two Divergent Operons Coregulated by σ ⁵⁴ and a Cognate Transcriptional Regulator. Journal of Bacteriology, 2011, 193, 3207-3219.	2.2	22
46	Artefacts induced on c-type haem proteins by electrode surfaces. Journal of Biological Inorganic Chemistry, 2011, 16, 209-215.	2.6	10
47	The tetranuclear copper active site of nitrous oxide reductase: the CuZ center. Journal of Biological Inorganic Chemistry, 2011, 16, 183-194.	2.6	34
48	The electron transfer complex between nitrous oxide reductase and its electron donors. Journal of Biological Inorganic Chemistry, 2011, 16, 1241-1254.	2.6	26
49	A new CuZ active form in the catalytic reduction of N2O by nitrous oxide reductase from Pseudomonas nautica. Journal of Biological Inorganic Chemistry, 2010, 15, 967-976.	2.6	26
50	The 1.4â€Ã resolution structure of <i>Paracoccus pantotrophus</i> pseudoazurin. Acta Crystallographica Section F: Structural Biology Communications, 2010, 66, 627-635.	0.7	15
51	Pressure Perturbation Calorimetry and the Thermodynamics of Noncovalent Interactions in Water: Comparison of Proteinâ "Protein, Proteinâ "Ligand, and Cyclodextrinâ "Adamantane Complexes. Journal of Physical Chemistry B, 2010, 114, 16228-16235.	2.6	40
52	Crystallization and crystallographic analysis of the apo form of the orange protein (ORP) from <i>Desulfovibrio gigas</i> . Acta Crystallographica Section F: Structural Biology Communications, 2009, 65, 730-732.	0.7	9
53	Isolation and characterization of a new Cu–Fe protein from Desulfovibrio aminophilus DSM12254. Journal of Inorganic Biochemistry, 2009, 103, 1314-1322.	3.5	3
54	Rubredoxin as a paramagnetic relaxation-inducing probe. Journal of Inorganic Biochemistry, 2009, 103, 1245-1253.	3.5	13

SOFIA R PAULETA

#	Article	IF	CITATIONS
55	A variable temperature spectroscopic study on Paracoccus pantotrophus pseudoazurin: Protein constraints on the blue Cu site. Journal of Inorganic Biochemistry, 2009, 103, 1307-1313.	3.5	17
56	Benefits of membrane electrodes in the electrochemistry of metalloproteins: mediated catalysis of Paracoccus pantotrophus cytochrome c peroxidase by horse cytochrome c: a case study. Journal of Biological Inorganic Chemistry, 2008, 13, 779-787.	2.6	4
57	Enzymatic activity mastered by altering metal coordination spheres. Journal of Biological Inorganic Chemistry, 2008, 13, 1185-1195.	2.6	22
58	Calcium-Dependent Heme Structure in the Reduced Forms of the Bacterial Cytochrome <i>c</i> Peroxidase from <i>Paracoccus pantotrophus</i> . Biochemistry, 2008, 47, 5841-5850.	2.5	9
59	Electron Transfer Complex between Nitrous Oxide Reductase and Cytochrome <i>c</i> ₅₅₂ from <i>Pseudomonas nautica</i> : Kinetic, Nuclear Magnetic Resonance, and Docking Studies. Biochemistry, 2008, 47, 10852-10862.	2.5	42
60	Mediated catalysis of Paracoccus pantotrophus cytochrome c peroxidase by P. pantotrophus pseudoazurin: kinetics of intermolecular electron transfer. Journal of Biological Inorganic Chemistry, 2007, 12, 691-698.	2.6	20
61	NMR assignment of the apo-form of a Desulfovibrio gigas protein containing a novel Mo–Cu cluster. Biomolecular NMR Assignments, 2007, 1, 81-83.	0.8	16
62	Structure and mechanism in the bacterial dihaem cytochrome c peroxidases. Journal of Inorganic Biochemistry, 2006, 100, 551-567.	3.5	72
63	Kinetics studies of the superoxide-mediated electron transfer reactions between rubredoxin-type proteins and superoxide reductases. Journal of Biological Inorganic Chemistry, 2006, 11, 433-444.	2.6	19
64	A Copper Protein and a Cytochrome Bind at the Same Site on Bacterial Cytochrome c Peroxidase. Biochemistry, 2004, 43, 14566-14576.	2.5	26
65	Paracoccus pantotrophusPseudoazurin Is an Electron Donor to CytochromecPeroxidaseâ€. Biochemistry, 2004, 43, 11214-11225.	2.5	41
66	Electron Transfer Complexes of CytochromecPeroxidase fromParacoccus denitrificansContaining More than One Cytochromeâ€. Biochemistry, 2003, 42, 11968-11981.	2.5	18
67	Calcium-Dependent Conformation of a Heme and Fingerprint Peptide of the Diheme CytochromecPeroxidase fromParacoccus pantotrophusâ€. Biochemistry, 2001, 40, 6570-6579.	2.5	13
68	Photomodulation of ultrastable host–guest complexes in water and their application in light-controlled steroid release. Organic Chemistry Frontiers, 0, , .	4.5	6