Baojin Ding

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3424588/publications.pdf

Version: 2024-02-01

36 papers	948 citations	16 h-index	477307 29 g-index
рирего	Citations	II IIICX	g macx
38 all docs	38 docs citations	38 times ranked	1367 citing authors

#	Article	IF	CITATIONS
1	Novel insights into the pathogenesis of DYT1 dystonia from induced patient-derived neurons. Neural Regeneration Research, 2022, 17, 561.	3.0	4
2	Generation of highly pure motor neurons from human induced pluripotent stem cells. STAR Protocols, 2022, 3, 101223.	1.2	8
3	Generation of gene-corrected isogenic control cell lines from a DYT1 dystonia patient iPSC line carrying a heterozygous GAG mutation in TOR1A gene. Stem Cell Research, 2022, 62, 102807.	0.7	2
4	Disease Modeling with Human Neurons Reveals LMNB1 Dysregulation Underlying DYT1 Dystonia. Journal of Neuroscience, 2021, 41, 2024-2038.	3.6	32
5	Nucleocytoplasmic Transport: Regulatory Mechanisms and the Implications in Neurodegeneration. International Journal of Molecular Sciences, 2021, 22, 4165.	4.1	25
6	Generation of two induced pluripotent stem cell lines with heterozygous and homozygous GAG deletion in TOR1A gene from a healthy hiPSC line. Stem Cell Research, 2021, 56, 102536.	0.7	5
7	Generation of patient-specific motor neurons in modeling movement diseases. Neural Regeneration Research, 2021, 16, 1799.	3.0	6
8	Direct conversion of adult fibroblasts into motor neurons. STAR Protocols, 2021, 2, 100917.	1.2	6
9	Generation and optimization of highly pure motor neurons from human induced pluripotent stem cells via lentiviral delivery of transcription factors. American Journal of Physiology - Cell Physiology, 2020, 319, C771-C780.	4.6	19
10	Differential Influence of Sample Sex and Neuronal Maturation on mRNA and Protein Transport in Induced Human Neurons. Frontiers in Molecular Neuroscience, 2020, 13, 46.	2.9	13
11	Evidence that Moderate Eviction of Spt5 and Promotion of Error-Free Transcriptional Bypass by Rad26 Facilitates Transcription Coupled Nucleotide Excision Repair. Journal of Molecular Biology, 2019, 431, 1322-1338.	4.2	11
12	BDNF activates an NFI-dependent neurodevelopmental timing program by sequestering NFATc4. Molecular Biology of the Cell, 2018, 29, 975-987.	2.1	12
13	Lamin Mutations Accelerate Aging via Defective Export of Mitochondrial mRNAs through Nuclear Envelope Budding. Current Biology, 2016, 26, 2052-2059.	3.9	32
14	Reciprocal autoregulation by NFI occupancy and ETV1 promotes the developmental expression of dendrite-synapse genes in cerebellar granule neurons. Molecular Biology of the Cell, 2016, 27, 1488-1499.	2.1	21
15	Consensus Paper: Cerebellar Development. Cerebellum, 2016, 15, 789-828.	2.5	337
16	How to assist parents of children with autism spectrum disorders in rural area?. Journal of Neurosciences in Rural Practice, 2015, 06, 465-466.	0.8	0
17	Nucleus to Synapse Nesprin1 Railroad Tracks Direct Synapse Maturation through RNA Localization. Neuron, 2015, 86, 1015-1028.	8.1	27
18	How does a 1.5-Fold Increase in Gene Dosage in Chromosome 21 Causes the Pleiotropic Phenotypes in Down Syndrome?. Journal of Down Syndrome & Chromosome Abnormalities, 2015, 1, .	0.1	0

#	Article	IF	CITATIONS
19	Gene expression in maturing neurons: regulatory mechanisms and related neurodevelopmental disorders. Acta Physiologica Sinica, 2015, 67, 113-33.	0.5	10
20	Autoâ€regulatory interactions between NFI occupancy and ETV1 direct the timing of gene expression in late maturing neurons (539.10). FASEB Journal, 2014, 28, 539.10.	0.5	0
21	Chromatin Immunoprecipitation Assay of Brain Tissues Using Percoll Gradient-Purified Nuclei. Methods in Molecular Biology, 2013, 1018, 199-209.	0.9	1
22	Lentiviral Vector Production, Titration, and Transduction of Primary Neurons. Methods in Molecular Biology, 2013, 1018, 119-131.	0.9	36
23	Temporal Regulation of Nuclear Factor One Occupancy by Calcineurin/NFAT Governs a Voltage-Sensitive Developmental Switch in Late Maturing Neurons. Journal of Neuroscience, 2013, 33, 2860-2872.	3.6	33
24	Nuclear factor one controls a voltageâ€sensitive developmental switch required for late neuronal maturation. FASEB Journal, 2013, 27, 535.3.	0.5	0
25	The C-terminal Repeat Domain of Spt5 Plays an Important Role in Suppression of Rad26-independent Transcription Coupled Repair. Journal of Biological Chemistry, 2010, 285, 5317-5326.	3.4	48
26	Yeast Elc1 plays an important role in global genomic repair but not in transcription coupled repair. DNA Repair, 2009, 8, 40-50.	2.8	20
27	Rpb1 Sumoylation in Response to UV Radiation or Transcriptional Impairment in Yeast. PLoS ONE, 2009, 4, e5267.	2.5	18
28	Rpb1 Sumoylation in Response to UV Radiation or Transcriptional Impairment in Yeast. FASEB Journal, 2009, 23, 701.1.	0.5	0
29	Yeast Elc1 plays an important role in global genomic repair but not in transcription coupled repair. FASEB Journal, 2009, 23, 836.4.	0.5	0
30	Spt4 and Spt5 cooperatively suppress transcription coupled DNA repair through binding to RNA polymerase II in the absence of Rad26. FASEB Journal, 2009, 23, 836.6.	0.5	0
31	The roles of Rad16 and Rad26 in repairing repressed and actively transcribed genes in yeast. DNA Repair, 2007, 6, 1596-1606.	2.8	25
32	Tfb5 is partially dispensable for Rad26 mediated transcription coupled nucleotide excision repair in yeast. DNA Repair, 2007, 6 , $1661-1669$.	2.8	6
33	Evidence that the Transcription Elongation Function of Rpb9 Is Involved in Transcription-Coupled DNA Repair in Saccharomyces cerevisiae. Molecular and Cellular Biology, 2006, 26, 9430-9441.	2.3	28
34	Modulation of Rad26- and Rpb9-mediated DNA Repair by Different Promoter Elements. Journal of Biological Chemistry, 2006, 281, 36643-36651.	3.4	13
35	Mobilization of the iron centre in IscA for the iron–sulphur cluster assembly in IscU. Biochemical Journal, 2005, 389, 797-802.	3.7	53
36	IscA Mediates Iron Delivery for Assembly of Iron-Sulfur Clusters in IscU under the Limited Accessible Free Iron Conditions. Journal of Biological Chemistry, 2004, 279, 37499-37504.	3.4	91