
Carmen Talotta

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3421479/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Prismarenes: A New Class of Macrocyclic Hosts Obtained by Templation in a Thermodynamically Controlled Synthesis. Journal of the American Chemical Society, 2020, 142, 1752-1756.	13.7	112
2	Pseudorotaxanes with Selfâ€Sorted Sequence and Stereochemical Orientation. Angewandte Chemie - International Edition, 2013, 52, 7437-7441.	13.8	89
3	Mild Friedel–Crafts Reactions inside a Hexameric Resorcinarene Capsule: Câ^'Cl Bond Activation through Hydrogen Bonding to Bridging Water Molecules. Angewandte Chemie - International Edition, 2018, 57, 5423-5428.	13.8	82
4	The Hexameric Resorcinarene Capsule at Work: Supramolecular Catalysis in Confined Spaces. Chemistry - A European Journal, 2019, 25, 4899-4913.	3.3	81
5	The hexameric resorcinarene capsule as an artificial enzyme: ruling the regio and stereochemistry of a 1,3-dipolar cycloaddition between nitrones and unsaturated aldehydes. Organic Chemistry Frontiers, 2018, 5, 827-837.	4.5	57
6	Supramolecular Catalysis with Selfâ€Assembled Capsules and Cages: What Happens in Confined Spaces. ChemCatChem, 2021, 13, 1638-1658.	3.7	52
7	Sequence Stereoisomerism in Calixarene-Based Pseudo[3]rotaxanes. Organic Letters, 2011, 13, 2098-2101.	4.6	48
8	Fixed or Invertible Calixarene-Based Directional Shuttles. Organic Letters, 2011, 13, 2650-2653.	4.6	47
9	Stereoprogrammed Direct Synthesis of Calixarene-Based [3]Rotaxanes. Organic Letters, 2012, 14, 3104-3107.	4.6	46
10	Supramolecular Organocatalysis in Water Mediated by Macrocyclic Compounds. Frontiers in Chemistry, 2018, 6, 84.	3.6	46
11	Tuning Cycloparaphenylene Host Properties by Chemical Modification. Journal of Organic Chemistry, 2017, 82, 9885-9889.	3.2	45
12	Polyoxomolybdate-Calix[4]arene Hybrid: A Catalyst for Sulfoxidation Reactions with Hydrogen Peroxide. Organic Letters, 2015, 17, 5100-5103.	4.6	42
13	Pseudorotaxane orientational stereoisomerism driven by π-electron density. Chemical Communications, 2014, 50, 9917.	4.1	39
14	First demonstration of the use of very large Stokes shift cycloparaphenylenes as promising organic luminophores for transparent luminescent solar concentrators. Chemical Communications, 2019, 55, 3160-3163.	4.1	39
15	Alkylammonium Cation Complexation into the Narrow Cavity of Dihomooxacalix[4]arene Macrocycle. Journal of Organic Chemistry, 2012, 77, 10285-10293.	3.2	38
16	Through-the-Annulus Threading of the Larger Calix[8]arene Macrocycle. Journal of Organic Chemistry, 2013, 78, 7627-7638.	3.2	37
17	Alkylammonium Guest Inducedâ€Fit Recognition by a Flexible DihomoÂoxacalix[4]arene Derivative. European Journal of Organic Chemistry, 2016, 2016, 158-167.	2.4	37
18	Exploiting the hydrophobicity of calixarene macrocycles for catalysis under "on-water―conditions. RSC Advances, 2016, 6, 91846-91851.	3.6	36

#	Article	IF	CITATIONS
19	Conformational Features and Recognition Properties of a Conformationally Blocked Calix[7]arene Derivative. Chemistry - A European Journal, 2012, 18, 1219-1230.	3.3	35
20	Catenation of Calixarene Annulus. Organic Letters, 2013, 15, 116-119.	4.6	35
21	Calix[6]arene Threading with Weakly Interacting Tertiary Ammonium Axles: Generation of Chiral Pseudorotaxane Architectures. Organic Letters, 2015, 17, 1006-1009.	4.6	34
22	Synergic Interplay Between Halogen Bonding and Hydrogen Bonding in the Activation of a Neutral Substrate in a Nanoconfined Space. Angewandte Chemie - International Edition, 2020, 59, 811-818.	13.8	34
23	Absolute Configuration Assignment of Inherently Chiral Calix[4]arenes using DFT Calculations of Chiroptical Properties. Organic Letters, 2010, 12, 2912-2915.	4.6	33
24	Introduction of Glyco, Peptido, Carboxy, and Alkyno Substituents at the Calixarene Exo Rim via the p-Bromodienone Route. Journal of Organic Chemistry, 2012, 77, 3634-3639.	3.2	30
25	γ-Cyclodextrin as a Catalyst for the Synthesis of 2-Methyl-3,5-diarylisoxazolidines in Water. Journal of Organic Chemistry, 2017, 82, 4631-4639.	3.2	29
26	An Oriented Handcuff Rotaxane. Organic Letters, 2013, 15, 5694-5697.	4.6	28
27	An intramolecularly self-templated synthesis of macrocycles: self-filling effects on the formation of prismarenes. Chemical Science, 2021, 12, 9952-9961.	7.4	27
28	A hexameric resorcinarene capsule as a hydrogen bonding catalyst in the conjugate addition of pyrroles and indoles to nitroalkenes. Organic Chemistry Frontiers, 2019, 6, 2339-2347.	4.5	26
29	Kinetic and Thermodynamic Modulation of Dynamic Imine Libraries Driven by the Hexameric Resorcinarene Capsule. Journal of the American Chemical Society, 2020, 142, 14914-14923.	13.7	26
30	Mild Friedel–Crafts Reactions inside a Hexameric Resorcinarene Capsule: Câ^'Cl Bond Activation through Hydrogen Bonding to Bridging Water Molecules. Angewandte Chemie, 2018, 130, 5521-5526.	2.0	25
31	Calixpyrrole Derivatives: "Multi Hydrogen Bond―Catalysts for γ-Butenolide Synthesis. Molecules, 2009, 14, 2594-2601.	3.8	24
32	A Simple Tetraminocalix[4]arene as a Highly Efficient Catalyst under "Onâ€Water―Conditions through Hydrophobic Amplification of Weak Hydrogen Bonds. Chemistry - A European Journal, 2017, 23, 7142-7151.	3.3	24
33	Anion-Induced Dimerization in <i>p</i> -Squaramidocalix[4]arene Derivatives. Journal of Organic Chemistry, 2014, 79, 3704-3708.	3.2	23
34	Biomolecular Fishing for Calixarene Partners by a Chemoproteomic Approach. Angewandte Chemie - International Edition, 2015, 54, 15405-15409.	13.8	23
35	Calix[5]arene Through-the-Annulus Threading of Dialkylammonium Guests Weakly Paired to the TFPB Anion. Journal of Organic Chemistry, 2017, 82, 5162-5168.	3.2	23
36	An Anthracene-Incorporated [8]Cycloparaphenylene Derivative as an Emitter in Photon Upconversion. Journal of Organic Chemistry, 2018, 83, 220-227.	3.2	22

#	Article	IF	CITATIONS
37	Solvent-Free Enantioselective Michael Reactions Catalyzed by a Calixarene-Based Primary Amine Thiourea. Journal of Organic Chemistry, 2018, 83, 10318-10325.	3.2	20
38	DNA Recognition with Polycyclicâ€Aromaticâ€Hydrocarbonâ€Presenting Calixarene Conjugates. European Journal of Organic Chemistry, 2014, 2014, 7605-7613.	2.4	19
39	A New Organocatalytic Approach to Substituted Unsaturated Lactams. Letters in Organic Chemistry, 2009, 6, 301-305.	0.5	18
40	Nucleophilic Functionalization of the Calix[6]arene <i>Para</i> - and <i>Meta</i> -Position via <i>p</i> -Bromodienone Route. Journal of Organic Chemistry, 2015, 80, 7295-7300.	3.2	18
41	Molecular Recognition in an Aqueous Medium Using Water-Soluble Prismarene Hosts. Organic Letters, 2022, 24, 2711-2715.	4.6	17
42	Improved Synthesis of Larger Resorcinarenes. Journal of Organic Chemistry, 2016, 81, 5726-5731.	3.2	16
43	<i>per</i> -Hydroxylated Prism[<i>n</i>]arenes: Supramolecularly Assisted Demethylation of Methoxy-Prism[5]arene. Organic Letters, 2021, 23, 8143-8146.	4.6	16
44	Endo-Complexation of Alkylammonium Ions by Calix[4]arene Cavity: Facilitating Cationâ~'ï€ Interactions through the Weakly Coordinating Anion Approach. Journal of Organic Chemistry, 2014, 79, 9842-9846.	3.2	15
45	Directing the Cation Recognition Ability of Calix[4]arenes toward Asymmetric Phaseâ€Transfer Catalysis. European Journal of Organic Chemistry, 2017, 2017, 5649-5659.	2.4	15
46	Threading of an Inherently Directional Calixarene Wheel with Oriented Ammonium Axles. Journal of Organic Chemistry, 2017, 82, 8973-8983.	3.2	14
47	Dinuclear zirconium complex bearing a 1,5-bridged-calix[8]arene ligand as an effective catalyst for the synthesis of macrolactones. Catalysis Science and Technology, 2018, 8, 2716-2727.	4.1	14
48	Calix[2]naphth[2]arene: A Class of Naphthalene–Phenol Hybrid Macrocyclic Hosts. Organic Letters, 2020, 22, 6166-6170.	4.6	14
49	The Hexameric Resorcinarene Capsule as a BrÃ,nsted Acid Catalyst for the Synthesis of Bis(heteroaryl)methanes in a Nanoconfined Space. Frontiers in Chemistry, 2019, 7, 687.	3.6	13
50	Regioselective <i>O</i> -Substitution of <i>C</i> -Undecylresorcin[4]arene. Organic Letters, 2011, 13, 4842-4845.	4.6	12
51	Synthesis, Optoelectronic, and Supramolecular Properties of a Calix[4]arene–Cycloparaphenylene Hybrid Host. Organic Letters, 2018, 20, 7415-7418.	4.6	12
52	An Atom-Economical Method for the Formation of Amidopyrroles Exploiting the Self-Assembled Resorcinarene Capsule. Organic Letters, 2020, 22, 2590-2594.	4.6	12
53	Electrochemistry and ion-sensing properties of calix[4]arene derivatives. Electrochimica Acta, 2010, 55, 7036-7043.	5.2	8
54	Threading of a double-calix[6]arene system with dialkylammonium axles. Supramolecular Chemistry, 2014, 26, 569-578.	1.2	8

#	Article	IF	CITATIONS
55	Threading of Conformationally Stable Calix[6]arene Wheels Substituted at the Methylene Bridges. Journal of Organic Chemistry, 2019, 84, 11922-11927.	3.2	8
56	Synthesis and Glycosidase Inhibition Properties of Calix[8]arene-Based Iminosugar Click Clusters. Pharmaceuticals, 2020, 13, 366.	3.8	8
57	Synthesis, Characterization, and Solid-State Structure of [8]Cycloparaphenylenes with Inherent Chirality. Journal of Organic Chemistry, 2019, 84, 9489-9496.	3.2	7
58	Negative Solvatochromism in a <i>N</i> -Linked <i>p</i> -Pyridiniumcalix[4]arene Derivative. Organic Letters, 2019, 21, 2704-2707.	4.6	7
59	Green, Mild, and Efficient Friedel–Crafts Benzylation of Scarcely Reactive Arenes and Heteroarenes under Onâ€Water Conditions. ChemSusChem, 2019, 12, 1673-1683.	6.8	6
60	Solvent and Guest-Driven Supramolecular Organic Frameworks Based on a Calix[4]arene-tetrol: Channels vs Molecular Cavities. Crystal Growth and Design, 2021, 21, 6357-6363.	3.0	6
61	Carbocation catalysis in confined space: activation of trityl chloride inside the hexameric resorcinarene capsule. Chemical Science, 2022, 13, 8618-8625.	7.4	6
62	Solid-state assembly of a resorcin[6]arene in twin molecular capsules. CrystEngComm, 2016, 18, 5045-5049.	2.6	5
63	Absolute Configuration Assignment of Chiral Resorcin[4]arenes from ECD Spectra. Journal of Organic Chemistry, 2017, 82, 202-210.	3.2	5
64	Poly(Ethylene Glycol)/β-Cyclodextrin Pseudorotaxane Complexes as Sustainable Dispersing and Retarding Materials in a Cement-Based Mortar. ACS Omega, 2021, 6, 12250-12260.	3.5	5
65	Chromogenic Properties of <i>p</i> -Pyridinium- and <i>p</i> -Viologen-Calixarenes and Their Cation-Sensing Abilities. Journal of Organic Chemistry, 2021, 86, 13001-13010.	3.2	5
66	A tetrasulfate-resorcin[6]arene cavitand as the host for organic ammonium guests. Organic Chemistry Frontiers, 2016, 3, 1276-1280.	4.5	4
67	Calix[6]arene-based atropoisomeric pseudo[2]rotaxanes. Beilstein Journal of Organic Chemistry, 2018, 14, 2112-2124.	2.2	4
68	Synergic Interplay Between Halogen Bonding and Hydrogen Bonding in the Activation of a Neutral Substrate in a Nanoconfined Space. Angewandte Chemie, 2020, 132, 821-828.	2.0	4
69	Expanding Coefficient: A Parameter To Assess the Stability of Induced-Fit Complexes. Organic Letters, 2021, 23, 1804-1808.	4.6	4
70	Supramolecular synthons in the gamma-hydroxybutenolides. CrystEngComm, 2017, 19, 5079-5088.	2.6	3
71	Threading fluorescent calixarene-wheels with ammonium axles. Supramolecular Chemistry, 2018, 30, 627-641.	1.2	3
72	Multivalent resorcinarene clusters decorated with DAB-1 inhitopes: targeting Golgi α-mannosidase from Drosophila melanogaster. Organic Chemistry Frontiers, 2021, 8, 6648-6656.	4.5	3

#	Article	IF	CITATIONS
73	Synthesis and supramolecular features of hybrid POM/onium solid-state assemblies. Supramolecular Chemistry, 2016, 28, 403-417.	1.2	2
74	Multiple threading of a triple-calix[6]arene host. Beilstein Journal of Organic Chemistry, 2019, 15, 2092-2104.	2.2	2
75	Dispersing and Retarding Properties of Water-Soluble Tetrasulfonate Resorcin[4]arene and Pyrogallol[4]arene Macrocycles in Cement-Based Mortar. ACS Omega, 2020, 5, 18218-18225.	3.5	2
76	Study on the Influence of Chirality in the Threading of Calix[6]arene Hosts with Dialkylammonium Axles. Molecules, 2020, 25, 5323.	3.8	2
77	Influence of <i>exo</i> -Adamantyl Groups and <i>endo</i> -OH Functions on the Threading of Calix[6]arene Macrocycle. Journal of Organic Chemistry, 2020, 85, 12585-12593.	3.2	2
78	Chirality Transfer in a Calixarene-Based Directional Pseudorotaxane Complex. Chemistry, 2021, 3, 1089-1100.	2.2	2
79	Unusual Calixarenes Incorporating Chromene and Benzofuran Moieties Obtained via Propargyl Claisen Rearrangement. Organic Letters, 2021, 23, 9283-9287.	4.6	2
80	Supramolecular catalysis in confined space: making the pyrogallol[4]arene capsule catalytically active in non-competitive solvent. Organic Chemistry Frontiers, 2022, 9, 2453-2463.	4.5	2
81	Co-conformational mechanoisomerism in a calix[6]arene-based [2]rotaxane. Supramolecular Chemistry, 2019, 31, 62-68.	1.2	1
82	Selective recognition of bisphenol S isomers in water by \hat{l}^2 -cyclodextrin. Supramolecular Chemistry, 2021, 33, 295-308.	1.2	1
83	Exploiting thep-Bromodienone Route for the Formation and Trapping of Calixarene Oxenium Cations with Enamine Nucleophiles. Journal of Organic Chemistry, 2018, 83, 5947-5953.	3.2	0
84	Frontispiece: The Hexameric Resorcinarene Capsule at Work: Supramolecular Catalysis in Confined Spaces. Chemistry - A European Journal, 2019, 25, .	3.3	0