
Huisheng Peng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3421307/publications.pdf Version: 2024-02-01

HUISHENC PENC

#	Article	IF	CITATIONS
1	Twisting Carbon Nanotube Fibers for Both Wireâ€Shaped Microâ€Supercapacitor and Microâ€Battery. Advanced Materials, 2013, 25, 1155-1159.	11.1	712
2	Recent Advancement of Nanostructured Carbon for Energy Applications. Chemical Reviews, 2015, 115, 5159-5223.	23.0	703
3	Gel Polymer Electrolytes for Electrochemical Energy Storage. Advanced Energy Materials, 2018, 8, 1702184.	10.2	674
4	A Fiber Supercapacitor with High Energy Density Based on Hollow Graphene/Conducting Polymer Fiber Electrode. Advanced Materials, 2016, 28, 3646-3652.	11.1	654
5	Large-area display textiles integrated with functional systems. Nature, 2021, 591, 240-245.	13.7	550
6	Theory-driven design of high-valence metal sites for water oxidation confirmed using in situ soft X-ray absorption. Nature Chemistry, 2018, 10, 149-154.	6.6	476
7	Smart Electronic Textiles. Angewandte Chemie - International Edition, 2016, 55, 6140-6169.	7.2	460
8	A Highly Stretchable, Fiberâ€&haped Supercapacitor. Angewandte Chemie - International Edition, 2013, 52, 13453-13457.	7.2	458
9	Flexible and Weaveable Capacitor Wire Based on a Carbon Nanocomposite Fiber. Advanced Materials, 2013, 25, 5965-5970.	11.1	441
10	Energy harvesting and storage in 1D devices. Nature Reviews Materials, 2017, 2, .	23.3	421
11	An Integrated "Energy Wire―for both Photoelectric Conversion and Energy Storage. Angewandte Chemie - International Edition, 2012, 51, 11977-11980.	7.2	409
12	Developing Polymer Composite Materials: Carbon Nanotubes or Graphene?. Advanced Materials, 2013, 25, 5153-5176.	11.1	398
13	High-valence metals improve oxygen evolution reaction performance by modulating 3d metal oxidation cycle energetics. Nature Catalysis, 2020, 3, 985-992.	16.1	390
14	A colour-tunable, weavable fibre-shaped polymer light-emitting electrochemical cell. Nature Photonics, 2015, 9, 233-238.	15.6	372
15	Novel Electric Doubleâ€Layer Capacitor with a Coaxial Fiber Structure. Advanced Materials, 2013, 25, 6436-6441.	11.1	346
16	Integrated Polymer Solar Cell and Electrochemical Supercapacitor in a Flexible and Stable Fiber Format. Advanced Materials, 2014, 26, 466-470.	11.1	337
17	Flexible and Stretchable Lithiumâ€lon Batteries and Supercapacitors Based on Electrically Conducting Carbon Nanotube Fiber Springs. Angewandte Chemie - International Edition, 2014, 53, 14564-14568.	7.2	334
18	Electrochromatic carbon nanotube/polydiacetylene nanocomposite fibres. Nature Nanotechnology, 2009, 4, 738-741.	15.6	321

#	Article	IF	CITATIONS
19	Hierarchically arranged helical fibre actuators driven by solvents and vapours. Nature Nanotechnology, 2015, 10, 1077-1083.	15.6	310
20	Electrochromic Fiberâ€Shaped Supercapacitors. Advanced Materials, 2014, 26, 8126-8132.	11.1	306
21	Elastic and Wearable Wire‧haped Lithiumâ€ion Battery with High Electrochemical Performance. Angewandte Chemie - International Edition, 2014, 53, 7864-7869.	7.2	306
22	Novel Graphene/Carbon Nanotube Composite Fibers for Efficient Wireâ€ S haped Miniature Energy Devices. Advanced Materials, 2014, 26, 2868-2873.	11.1	305
23	A Revolution in Electrodes: Recent Progress in Rechargeable Lithium–Sulfur Batteries. Small, 2015, 11, 1488-1511.	5.2	305
24	A Realâ€Time Wearable UVâ€Radiation Monitor based on a Highâ€Performance p uZnS/nâ€TiO ₂ Photodetector. Advanced Materials, 2018, 30, e1803165.	11.1	300
25	Twisted Aligned Carbon Nanotube/Silicon Composite Fiber Anode for Flexible Wire haped Lithiumâ€ŀon Battery. Advanced Materials, 2014, 26, 1217-1222.	11.1	297
26	Flexible, Stretchable, and Rechargeable Fiberâ€Shaped Zinc–Air Battery Based on Crossâ€Stacked Carbon Nanotube Sheets. Angewandte Chemie - International Edition, 2015, 54, 15390-15394.	7.2	291
27	Application Challenges in Fiber and Textile Electronics. Advanced Materials, 2020, 32, e1901971.	11.1	273
28	Scalable production of high-performing woven lithium-ion fibre batteries. Nature, 2021, 597, 57-63.	13.7	270
29	Integrating Perovskite Solar Cells into a Flexible Fiber. Angewandte Chemie - International Edition, 2014, 53, 10425-10428.	7.2	268
30	Intertwined Aligned Carbon Nanotube Fiber Based Dye-Sensitized Solar Cells. Nano Letters, 2012, 12, 2568-2572.	4.5	258
31	A Deep ycle Aqueous Zincâ€lon Battery Containing an Oxygenâ€Đeficient Vanadium Oxide Cathode. Angewandte Chemie - International Edition, 2020, 59, 2273-2278.	7.2	257
32	Advanced Sodium Ion Battery Anode Constructed <i>via</i> Chemical Bonding between Phosphorus, Carbon Nanotube, and Cross-Linked Polymer Binder. ACS Nano, 2015, 9, 11933-11941.	7.3	255
33	High-performance transparent and stretchable all-solid supercapacitors based on highly aligned carbon nanotube sheets. Scientific Reports, 2014, 4, 3612.	1.6	252
34	Tunable Photothermal Actuators Based on a Pre-programmed Aligned Nanostructure. Journal of the American Chemical Society, 2016, 138, 225-230.	6.6	234
35	Superelastic Supercapacitors with High Performances during Stretching. Advanced Materials, 2015, 27, 356-362.	11.1	230
36	Stretchable, Wearable Dye ensitized Solar Cells. Advanced Materials, 2014, 26, 2643-2647.	11.1	227

#	Article	IF	CITATIONS
37	Winding Aligned Carbon Nanotube Composite Yarns into Coaxial Fiber Full Batteries with High Performances. Nano Letters, 2014, 14, 3432-3438.	4.5	224
38	Regulating the Local Charge Distribution of Ni Active Sites for the Urea Oxidation Reaction. Angewandte Chemie - International Edition, 2021, 60, 10577-10582.	7.2	221
39	Flexible, weavable and efficient microsupercapacitor wires based on polyaniline composite fibers incorporated with aligned carbon nanotubes. Journal of Materials Chemistry A, 2013, 1, 258-261.	5.2	220
40	Aligned Carbon Nanotube/Polymer Composite Films with Robust Flexibility, High Transparency, and Excellent Conductivity. Journal of the American Chemical Society, 2008, 130, 42-43.	6.6	218
41	The recent progress of nitrogen-doped carbon nanomaterials for electrochemical batteries. Journal of Materials Chemistry A, 2018, 6, 12932-12944.	5.2	218
42	Smart, Stretchable Supercapacitors. Advanced Materials, 2014, 26, 4444-4449.	11.1	216
43	Weaving Sensing Fibers into Electrochemical Fabric for Realâ€īme Health Monitoring. Advanced Functional Materials, 2018, 28, 1804456.	7.8	216
44	An Allâ€Solidâ€State Fiberâ€Shaped Aluminum–Air Battery with Flexibility, Stretchability, and High Electrochemical Performance. Angewandte Chemie - International Edition, 2016, 55, 7979-7982.	7.2	211
45	Functionalized helical fibre bundles of carbon nanotubes as electrochemical sensors for long-term in vivo monitoring of multiple disease biomarkers. Nature Biomedical Engineering, 2020, 4, 159-171.	11.6	208
46	Stabilizing Highly Active Ru Sites by Suppressing Lattice Oxygen Participation in Acidic Water Oxidation. Journal of the American Chemical Society, 2021, 143, 6482-6490.	6.6	204
47	Selective Etching of Nitrogenâ€Doped Carbon by Steam for Enhanced Electrochemical CO ₂ Reduction. Advanced Energy Materials, 2017, 7, 1701456.	10.2	203
48	Advances in Wearable Fiberâ€Shaped Lithiumâ€Ion Batteries. Advanced Materials, 2016, 28, 4524-4531.	11.1	201
49	A Latticeâ€Oxygenâ€Involved Reaction Pathway to Boost Urea Oxidation. Angewandte Chemie - International Edition, 2019, 58, 16820-16825.	7.2	201
50	Multi-functional Flexible Aqueous Sodium-Ion Batteries with High Safety. CheM, 2017, 3, 348-362.	5.8	194
51	A Selfâ€Healing Aqueous Lithiumâ€Ion Battery. Angewandte Chemie - International Edition, 2016, 55, 14384-14388.	7.2	191
52	Selfâ€Healable Electrically Conducting Wires for Wearable Microelectronics. Angewandte Chemie - International Edition, 2014, 53, 9526-9531.	7.2	190
53	Highâ€Performance Lithium–Air Battery with a Coaxialâ€Fiber Architecture. Angewandte Chemie - International Edition, 2016, 55, 4487-4491.	7.2	189
54	A Gumâ€Like Lithiumâ€lon Battery Based on a Novel Arched Structure. Advanced Materials, 2015, 27, 1363-1369.	11.1	185

#	Article	IF	CITATIONS
55	A Cableâ€Shaped Lithium Sulfur Battery. Advanced Materials, 2016, 28, 491-496.	11.1	180
56	Fabricating Continuous Supercapacitor Fibers with High Performances by Integrating All Building Materials and Steps into One Process. Advanced Materials, 2015, 27, 7854-7860.	11.1	176
57	A safe and non-flammable sodium metal battery based on an ionic liquid electrolyte. Nature Communications, 2019, 10, 3302.	5.8	173
58	Novel solar cells in a wire format. Chemical Society Reviews, 2013, 42, 5031.	18.7	170
59	Super-stretchy lithium-ion battery based on carbon nanotube fiber. Journal of Materials Chemistry A, 2014, 2, 11054.	5.2	167
60	Recent progress in solar cells based on one-dimensional nanomaterials. Energy and Environmental Science, 2015, 8, 1139-1159.	15.6	164
61	Conjugated Polymers for Flexible Energy Harvesting and Storage. Advanced Materials, 2018, 30, e1704261.	11.1	161
62	All-in-one fiber for stretchable fiber-shaped tandem supercapacitors. Nano Energy, 2018, 45, 210-219.	8.2	161
63	The pâ€Orbital Delocalization of Mainâ€Group Metals to Boost CO ₂ Electroreduction. Angewandte Chemie - International Edition, 2018, 57, 16114-16119.	7.2	159
64	Largeâ€Area Supercapacitor Textiles with Novel Hierarchical Conducting Structures. Advanced Materials, 2016, 28, 8431-8438.	11.1	158
65	Photovoltaic Wire Derived from a Graphene Composite Fiber Achieving an 8.45 % Energy Conversion Efficiency. Angewandte Chemie - International Edition, 2013, 52, 7545-7548.	7.2	155
66	Nitrogenâ€Doped Coreâ€Sheath Carbon Nanotube Array for Highly Stretchable Supercapacitor. Advanced Energy Materials, 2017, 7, 1601814.	10.2	155
67	An integrated device for both photoelectric conversion and energy storage based on free-standing and aligned carbon nanotube film. Journal of Materials Chemistry A, 2013, 1, 954-958.	5.2	148
68	Textile Display for Electronic and Brainâ€Interfaced Communications. Advanced Materials, 2018, 30, e1800323.	11.1	145
69	A Shapeâ€Memory Supercapacitor Fiber. Angewandte Chemie - International Edition, 2015, 54, 15419-15423.	7.2	141
70	Design of a Hierarchical Ternary Hybrid for a Fiber-Shaped Asymmetric Supercapacitor with High Volumetric Energy Density. Journal of Physical Chemistry C, 2016, 120, 9685-9691.	1.5	140
71	A hybrid carbon aerogel with both aligned and interconnected pores as interlayer for high-performance lithium–sulfur batteries. Nano Research, 2016, 9, 3735-3746.	5.8	140
72	Radially oriented mesoporous TiO ₂ microspheres with single-crystal–like anatase walls for high-efficiency optoelectronic devices. Science Advances, 2015, 1, e1500166.	4.7	139

#	Article	IF	CITATIONS
73	Integration: An Effective Strategy to Develop Multifunctional Energy Storage Devices. Advanced Energy Materials, 2016, 6, 1501867.	10.2	138
74	Novel Wearable Energy Devices Based on Aligned Carbon Nanotube Fiber Textiles. Advanced Energy Materials, 2015, 5, 1401438.	10.2	134
75	A fiber-shaped aqueous lithium ion battery with high power density. Journal of Materials Chemistry A, 2016, 4, 9002-9008.	5.2	132
76	A novel "energy fiber―by coaxially integrating dye-sensitized solar cell and electrochemical capacitor. Journal of Materials Chemistry A, 2014, 2, 1897-1902.	5.2	130
77	Efficient Dye-Sensitized Photovoltaic Wires Based on an Organic Redox Electrolyte. Journal of the American Chemical Society, 2013, 135, 10622-10625.	6.6	129
78	Photoinduced Deformation of Crosslinked Liquid rystalline Polymer Film Oriented by a Highly Aligned Carbon Nanotube Sheet. Angewandte Chemie - International Edition, 2012, 51, 4644-4647.	7.2	122
79	Flexible metal–gas batteries: a potential option for next-generation power accessories for wearable electronics. Energy and Environmental Science, 2020, 13, 1933-1970.	15.6	121
80	Electrochemical Capacitors with High Output Voltages that Mimic Electric Eels. Advanced Materials, 2016, 28, 2070-2076.	11.1	119
81	A Sodiophilic Interphaseâ€Mediated, Dendriteâ€Free Anode with Ultrahigh Specific Capacity for Sodiumâ€Metal Batteries. Angewandte Chemie - International Edition, 2019, 58, 17054-17060.	7.2	119
82	Designing Aligned Inorganic Nanotubes at the Electrode Interface: Towards Highly Efficient Photovoltaic Wires. Advanced Materials, 2012, 24, 4623-4628.	11.1	117
83	Advanced functional polymer materials. Materials Chemistry Frontiers, 2020, 4, 1803-1915.	3.2	117
84	Engineering Polymer Glue towards 90% Zinc Utilization for 1000 Hours to Make Highâ€Performance Znâ€ion Batteries. Advanced Functional Materials, 2021, 31, 2107652.	7.8	115
85	A Li–Air Battery with Ultralong Cycle Life in Ambient Air. Advanced Materials, 2018, 30, 1704378.	11.1	113
86	A Oneâ€Đimensional Fluidic Nanogenerator with a High Power Conversion Efficiency. Angewandte Chemie - International Edition, 2017, 56, 12940-12945.	7.2	112
87	Fiber-Shaped Perovskite Solar Cells with High Power Conversion Efficiency. Small, 2016, 12, 2419-2424.	5.2	111
88	Stabilizing Lithium into Cross‣tacked Nanotube Sheets with an Ultraâ€High Specific Capacity for Lithium Oxygen Batteries. Angewandte Chemie - International Edition, 2019, 58, 2437-2442.	7.2	111
89	Industrial scale production of fibre batteries by a solution-extrusion method. Nature Nanotechnology, 2022, 17, 372-377.	15.6	110
90	Unusual Reversible Photomechanical Actuation in Polymer/Nanotube Composites. Angewandte Chemie - International Edition, 2012, 51, 8520-8524.	7.2	105

#	Article	IF	CITATIONS
91	Mechanochromic Photonicâ€Crystal Fibers Based on Continuous Sheets of Aligned Carbon Nanotubes. Angewandte Chemie - International Edition, 2015, 54, 3630-3634.	7.2	105
92	Biocompatible carbon nanotube fibers for implantable supercapacitors. Carbon, 2017, 122, 162-167.	5.4	105
93	Selfâ€Powered Energy Fiber: Energy Conversion in the Sheath and Storage in the Core. Advanced Materials, 2014, 26, 7038-7042.	11.1	104
94	Aligned carbon nanotube/molybdenum disulfide hybrids for effective fibrous supercapacitors and lithium ion batteries. Journal of Materials Chemistry A, 2015, 3, 17553-17557.	5.2	103
95	The Recent Advance in Fiberâ€Shaped Energy Storage Devices. Advanced Electronic Materials, 2019, 5, 1800456.	2.6	103
96	Flexible solar cells based on carbon nanomaterials. Carbon, 2018, 139, 1063-1073.	5.4	102
97	Weaving Efficient Polymer Solar Cell Wires into Flexible Power Textiles. Advanced Energy Materials, 2014, 4, 1301750.	10.2	100
98	The 2021 flexible and printed electronics roadmap. Flexible and Printed Electronics, 2021, 6, 023001.	1.5	100
99	A coaxial triboelectric nanogenerator fiber for energy harvesting and sensing under deformation. Journal of Materials Chemistry A, 2017, 5, 6032-6037.	5.2	98
100	Realizing both High Energy and High Power Densities by Twisting Three Carbonâ€Nanotubeâ€Based Hybrid Fibers. Angewandte Chemie - International Edition, 2015, 54, 11177-11182.	7.2	97
101	A smart, stretchable resistive heater textile. Journal of Materials Chemistry C, 2017, 5, 41-46.	2.7	94
102	A Mechanically Actuating Carbonâ€Nanotube Fiber in Response to Water and Moisture. Angewandte Chemie - International Edition, 2015, 54, 14880-14884.	7.2	93
103	Synthesizing Nitrogenâ€Đoped Core–Sheath Carbon Nanotube Films for Flexible Lithium Ion Batteries. Advanced Energy Materials, 2016, 6, 1600271.	10.2	93
104	A fiber-shaped solar cell showing a record power conversion efficiency of 10%. Journal of Materials Chemistry A, 2018, 6, 45-51.	5.2	93
105	Antipulverization Electrode Based on Lowâ€Carbon Tripleâ€Shelled Superstructures for Lithiumâ€ion Batteries. Advanced Materials, 2017, 29, 1701494.	11.1	92
106	Aligned carbon nanotube/polymer composite fibers with improved mechanical strength and electrical conductivity. Journal of Materials Chemistry, 2012, 22, 903-908.	6.7	91
107	Rational Design of a Flexible CNTs@PDMS Film Patterned by Bioâ€Inspired Templates as a Strain Sensor and Supercapacitor. Small, 2019, 15, e1805493.	5.2	91
108	Design of Helically Double-Leveled Gaps for Stretchable Fiber Strain Sensor with Ultralow Detection Limit, Broad Sensing Range, and High Repeatability. ACS Applied Materials & Interfaces, 2019, 11, 4345-4352.	4.0	91

#	Article	IF	CITATIONS
109	A Novel One-Step Approach to Core-Stabilized Nanoparticles at High Solid Contents. Macromolecules, 2003, 36, 2576-2578.	2.2	87
110	An Aligned and Laminated Nanostructured Carbon Hybrid Cathode for Highâ€Performance Lithium–Sulfur Batteries. Angewandte Chemie - International Edition, 2015, 54, 10539-10544.	7.2	86
111	The Rise of Fiber Electronics. Angewandte Chemie - International Edition, 2019, 58, 13643-13653.	7.2	86
112	Superaligned Carbon Nanotubes Guide Oriented Cell Growth and Promote Electrophysiological Homogeneity for Synthetic Cardiac Tissues. Advanced Materials, 2017, 29, 1702713.	11.1	85
113	Biomedical polymers: synthesis, properties, and applications. Science China Chemistry, 2022, 65, 1010-1075.	4.2	85
114	Vertically Aligned Pearl-like Carbon Nanotube Arrays for Fiber Spinning. Journal of the American Chemical Society, 2008, 130, 1130-1131.	6.6	84
115	An Electrochemical Biosensor with Dual Signal Outputs: Toward Simultaneous Quantification of pH and O ₂ in the Brain upon Ischemia and in a Tumor during Cancer Starvation Therapy. Angewandte Chemie - International Edition, 2017, 56, 10471-10475.	7.2	84
116	A Twisted Wireâ€Shaped Dualâ€Function Energy Device for Photoelectric Conversion and Electrochemical Storage. Angewandte Chemie - International Edition, 2014, 53, 6664-6668.	7.2	82
117	Stretchable lithium-air batteries for wearable electronics. Journal of Materials Chemistry A, 2016, 4, 13419-13424.	5.2	82
118	Recent advances in flexible fiber-shaped metal-air batteries. Energy Storage Materials, 2020, 28, 364-374.	9.5	79
119	An intercalated graphene/(molybdenum disulfide) hybrid fiber for capacitive energy storage. Journal of Materials Chemistry A, 2017, 5, 925-930.	5.2	78
120	Electromechanical Actuator Ribbons Driven by Electrically Conducting Spring‣ike Fibers. Advanced Materials, 2015, 27, 4982-4988.	11.1	77
121	Radically grown obelisk-like ZnO arrays for perovskite solar cell fibers and fabrics through a mild solution process. Journal of Materials Chemistry A, 2015, 3, 9406-9410.	5.2	77
122	An all-solid-state fiber-type solar cell achieving 9.49% efficiency. Journal of Materials Chemistry A, 2016, 4, 10105-10109.	5.2	77
123	Coreâ€Sheath Carbon Nanostructured Fibers for Efficient Wireâ€Shaped Dyeâ€Sensitized Solar Cells. Advanced Materials, 2014, 26, 1694-1698.	11.1	76
124	Stretchable Polymer Solar Cell Fibers. Small, 2015, 11, 675-680.	5.2	75
125	Highly Surfaceâ€Wrinkled and Nâ€Doped CNTs Anchored on Metal Wire: A Novel Fiberâ€Shaped Cathode toward Highâ€Performance Flexible Li–CO ₂ Batteries. Advanced Functional Materials, 2019, 29, 1808117.	7.8	75
126	Elastic perovskite solar cells. Journal of Materials Chemistry A, 2015, 3, 21070-21076.	5.2	74

#	Article	IF	CITATIONS
127	Mesoporous TiO ₂ Mesocrystals: Remarkable Defects-Induced Crystallite-Interface Reactivity and Their in Situ Conversion to Single Crystals. ACS Central Science, 2015, 1, 400-408.	5.3	74
128	Multifunctional Fibers to Shape Future Biomedical Devices. Advanced Functional Materials, 2019, 29, 1902834.	7.8	74
129	Quasi-solid-state, coaxial, fiber-shaped dye-sensitized solar cells. Journal of Materials Chemistry A, 2014, 2, 345-349.	5.2	73
130	Composite Carbon Nanotube/Silica Fibers with Improved Mechanical Strengths and Electrical Conductivities. Small, 2008, 4, 1964-1967.	5.2	72
131	A triboelectric textile templated by a three-dimensionally penetrated fabric. Journal of Materials Chemistry A, 2016, 4, 6077-6083.	5.2	71
132	Engineering Carbon Nanotube Fiber for Real-Time Quantification of Ascorbic Acid Levels in a Live Rat Model of Alzheimer's Disease. Analytical Chemistry, 2017, 89, 1831-1837.	3.2	71
133	A Deep ycle Aqueous Zincâ€lon Battery Containing an Oxygenâ€Deficient Vanadium Oxide Cathode. Angewandte Chemie, 2020, 132, 2293-2298.	1.6	71
134	Boosting Neutral Water Oxidation through Surface Oxygen Modulation. Advanced Materials, 2020, 32, e2002297.	11.1	71
135	Flexible and stable lithium ion batteries based on three-dimensional aligned carbon nanotube/silicon hybrid electrodes. Journal of Materials Chemistry A, 2014, 2, 9306.	5.2	70
136	An Allâ€Solidâ€State Fiberâ€Shaped Aluminum–Air Battery with Flexibility, Stretchability, and High Electrochemical Performance. Angewandte Chemie, 2016, 128, 8111-8114.	1.6	70
137	Flexible electroluminescent fiber fabricated from coaxially wound carbon nanotube sheets. Journal of Materials Chemistry C, 2015, 3, 5621-5624.	2.7	69
138	Flexible and stretchable mechanoluminescent fiber and fabric. Journal of Materials Chemistry C, 2017, 5, 8027-8032.	2.7	69
139	Smart color-changing textile with high contrast based on a single-sided conductive fabric. Journal of Materials Chemistry C, 2016, 4, 7589-7594.	2.7	66
140	A Tissueâ€Like Soft Allâ€Hydrogel Battery. Advanced Materials, 2022, 34, e2105120.	11.1	65
141	Carbon nanomaterials for flexible lithium ion batteries. Carbon, 2017, 124, 79-88.	5.4	64
142	Self-Assembly of Formic Acid/Polystyrene-block-poly(4-vinylpyridine) Complexes into Vesicles in a Low-Polar Organic Solvent Chloroform. Langmuir, 2003, 19, 10989-10992.	1.6	63
143	Three-dimensional helical inorganic thermoelectric generators and photodetectors for stretchable and wearable electronic devices. Journal of Materials Chemistry C, 2018, 6, 4866-4872.	2.7	63
144	Polymer solar cell textiles with interlaced cathode and anode fibers. Journal of Materials Chemistry A, 2018, 6, 19947-19953.	5.2	62

#	ARTICLE	IF	CITATIONS
145	Hydrationâ€Effectâ€Promoting Ni–Fe Oxyhydroxide Catalysts for Neutral Water Oxidation. Advanced Materials, 2020, 32, e1906806.	11.1	62
146	Polymer photovoltaic wires based on aligned carbon nanotube fibers. Journal of Materials Chemistry, 2012, 22, 23655.	6.7	61
147	Oriented PEDOT:PSS on aligned carbon nanotubes for efficient dye-sensitized solar cells. Journal of Materials Chemistry A, 2013, 1, 13268.	5.2	61
148	Ultrasmall MnO Nanoparticles Supported on Nitrogen-Doped Carbon Nanotubes as Efficient Anode Materials for Sodium Ion Batteries. ACS Applied Materials & Interfaces, 2017, 9, 38401-38408.	4.0	61
149	Liâ€CO ₂ Batteries Efficiently Working at Ultra‣ow Temperatures. Advanced Functional Materials, 2020, 30, 2001619.	7.8	61
150	Regulating the Local Charge Distribution of Ni Active Sites for the Urea Oxidation Reaction. Angewandte Chemie, 2021, 133, 10671-10676.	1.6	61
151	An Ultraflexible Silicon–Oxygen Battery Fiber with High Energy Density. Angewandte Chemie - International Edition, 2017, 56, 13741-13746.	7.2	59
152	Highâ€Energyâ€Density Magnesiumâ€Air Battery Based on Dualâ€Layer Gel Electrolyte. Angewandte Chemie - International Edition, 2021, 60, 15317-15322.	7.2	59
153	A Lightweight Polymer Solar Cell Textile that Functions when Illuminated from Either Side. Angewandte Chemie - International Edition, 2014, 53, 11571-11574.	7.2	58
154	A highly efficient alkaline HER Co–Mo bimetallic carbide catalyst with an optimized Mo d-orbital electronic state. Journal of Materials Chemistry A, 2019, 7, 12434-12439.	5.2	58
155	Stretchable and Energyâ€Efficient Heating Carbon Nanotube Fiber by Designing a Hierarchically Helical Structure. Small, 2018, 14, 1702926.	5.2	57
156	Generating Electricity from Water through Carbon Nanomaterials. Chemistry - A European Journal, 2018, 24, 6287-6294.	1.7	53
157	A three-dimensionally stretchable high performance supercapacitor. Journal of Materials Chemistry A, 2016, 4, 14968-14973.	5.2	52
158	The pâ€Orbital Delocalization of Mainâ€Group Metals to Boost CO ₂ Electroreduction. Angewandte Chemie, 2018, 130, 16346-16351.	1.6	51
159	Fiber-shaped organic electrochemical transistors for biochemical detections with high sensitivity and stability. Science China Chemistry, 2020, 63, 1281-1288.	4.2	51
160	A high-capacity aqueous zinc-ion battery fiber with air-recharging capability. Journal of Materials Chemistry A, 2021, 9, 6811-6818.	5.2	51
161	Highâ€Efficiency and Stable Liâ^'CO ₂ Battery Enabled by Carbon Nanotube/Carbon Nitride Heterostructured Photocathode. Angewandte Chemie - International Edition, 2022, 61, .	7.2	51
162	Polymer-based flexible bioelectronics. Science Bulletin, 2019, 64, 634-640.	4.3	50

#	Article	IF	CITATIONS
163	Photovoltaic Wire with High Efficiency Attached onto and Detached from a Substrate Using a Magnetic Field. Angewandte Chemie - International Edition, 2013, 52, 8276-8280.	7.2	49
164	A Sodiophilic Interphaseâ€Mediated, Dendriteâ€Free Anode with Ultrahigh Specific Capacity for Sodiumâ€Metal Batteries. Angewandte Chemie, 2019, 131, 17210-17216.	1.6	49
165	The continuous fabrication of mechanochromic fibers. Journal of Materials Chemistry C, 2016, 4, 2127-2133.	2.7	48
166	Preparation of biomimetic hierarchically helical fiber actuators from carbon nanotubes. Nature Protocols, 2017, 12, 1349-1358.	5.5	48
167	All carbon nanotube fiber electrode-based dye-sensitized photovoltaic wire. Journal of Materials Chemistry, 2012, 22, 14856.	6.7	47
168	A redox-active gel electrolyte for fiber-shaped supercapacitor with high area specific capacitance. Journal of Materials Chemistry A, 2015, 3, 6286-6290.	5.2	47
169	Stretchable supercapacitor based on a cellular structure. Journal of Materials Chemistry A, 2016, 4, 10124-10129.	5.2	47
170	Aligned Carbon Nanotubes Reduce Hypertrophic Scar <i>via</i> Regulating Cell Behavior. ACS Nano, 2018, 12, 7601-7612.	7.3	46
171	A novel fabrication of a well distributed and aligned carbon nanotube film electrode for dye-sensitized solar cells. Journal of Materials Chemistry, 2012, 22, 16833.	6.7	45
172	Carbon Nanostructured Fibers As Counter Electrodes in Wire-Shaped Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2014, 118, 16419-16425.	1.5	45
173	Chemicalâ€ŧoâ€Electricity Carbon: Water Device. Advanced Materials, 2018, 30, e1707635.	11.1	45
174	Controllable CO adsorption determines ethylene and methane productions from CO2 electroreduction. Science Bulletin, 2021, 66, 62-68.	4.3	45
175	Preparation and Application of Aligned Carbon Nanotube/Polymer Composite Material. Acta Chimica Sinica, 2012, 70, 1523.	0.5	45
176	Integrated Devices to Realize Energy Conversion and Storage Simultaneously. ChemPhysChem, 2013, 14, 1777-1782.	1.0	44
177	Ultrafast and reversible thermochromism of a conjugated polymer material based on the assembly of peptide amphiphiles. Chemical Science, 2014, 5, 4189-4195.	3.7	44
178	A Lithium–Air Battery Stably Working at High Temperature with High Rate Performance. Small, 2018, 14, 1703454.	5.2	44
179	Integrating photovoltaic conversion and lithium ion storage into a flexible fiber. Journal of Materials Chemistry A, 2016, 4, 7601-7605.	5.2	42
180	Flexible and stretchable chromatic fibers with high sensing reversibility. Chemical Science, 2016, 7, 5113-5117.	3.7	40

#	Article	IF	CITATIONS
181	A stretchable and sensitive light-emitting fabric. Journal of Materials Chemistry C, 2017, 5, 4139-4144.	2.7	40
182	Making Fiber‧haped Ni//Bi Battery Simultaneously with High Energy Density, Power Density, and Safety. Advanced Functional Materials, 2020, 30, 1905971.	7.8	40
183	Robust DNAâ€Bridged Memristor for Textile Chips. Angewandte Chemie - International Edition, 2020, 59, 12762-12768.	7.2	40
184	Synthesis of aligned carbon nanotube composite fibers with high performances by electrochemical deposition. Journal of Materials Chemistry A, 2013, 1, 2211-2216.	5.2	39
185	A fiber-shaped neural probe with alterable elastic moduli for direct implantation and stable electronic–brain interfaces. Journal of Materials Chemistry B, 2020, 8, 4387-4394.	2.9	39
186	Lithiumâ€Metal Anodes Working at 60â€mA cm ^{â^'2} and 60â€mAh cm ^{â^'2} Nanoscale Lithiumâ€Ion Adsorbing. Angewandte Chemie - International Edition, 2021, 60, 17419-17425.	through 7.2	39
187	A Latticeâ€Oxygenâ€Involved Reaction Pathway to Boost Urea Oxidation. Angewandte Chemie, 2019, 131, 16976-16981.	1.6	38
188	Biologically Inspired, Sophisticated Motions from Helically Assembled, Conducting Fibers. Advanced Materials, 2015, 27, 1042-1047.	11.1	37
189	A novel information storage and visual expression device based on mechanoluminescence. Journal of Materials Chemistry C, 2019, 7, 4020-4025.	2.7	37
190	Stable Hydrophobic Ionic Liquid Gel Electrolyte for Stretchable Fiberâ€Shaped Dyeâ€Sensitized Solar Cell. ChemNanoMat, 2015, 1, 399-402.	1.5	36
191	A self-healing and stretchable light-emitting device. Journal of Materials Chemistry C, 2018, 6, 12774-12780.	2.7	36
192	Long-term In Vivo Monitoring of Chemicals with Fiber Sensors. Advanced Fiber Materials, 2021, 3, 47-58.	7.9	36
193	A One-Pot Approach to the Preparation of Organic Coreâ^'Shell Nanoobjects with Different Morphologies. Macromolecules, 2005, 38, 3550-3553.	2.2	35
194	Programmable Actuation of Porous Poly(Ionic Liquid) Membranes by Aligned Carbon Nanotubes. Advanced Materials Interfaces, 2017, 4, 1600768.	1.9	35
195	Elastic and wearable ring-type supercapacitors. Journal of Materials Chemistry A, 2016, 4, 3217-3222.	5.2	34
196	Stretchable Energy Storage Devices Based on Carbon Materials. Small, 2021, 17, e2005015.	5.2	34
197	A shape-memory and spiral light-emitting device for precise multisite stimulation of nerve bundles. Nature Communications, 2019, 10, 2790.	5.8	33
198	Winding ultrathin, transparent, and electrically conductive carbon nanotube sheets into high-performance fiber-shaped dye-sensitized solar cells. Journal of Materials Chemistry A, 2013, 1, 12422.	5.2	32

#	Article	IF	CITATIONS
199	Flexible Colorâ€Tunable Electroluminescent Devices by Designing Dielectricâ€Distinguishing Doubleâ€Stacked Emissive Layers. Advanced Functional Materials, 2020, 30, 2005200.	7.8	32
200	Boosting Cycling Stability and Rate Capability of Li–CO ₂ Batteries via Synergistic Photoelectric Effect and Plasmonic Interaction. Angewandte Chemie - International Edition, 2022, 61, .	7.2	32
201	A Novel Photoelectric Conversion Yarn by Integrating Photomechanical Actuation and the Electrostatic Effect. Advanced Materials, 2016, 28, 10744-10749.	11.1	31
202	Injectable fiber batteries for all-region power supply <i>in vivo</i> . Journal of Materials Chemistry A, 2021, 9, 1463-1470.	5.2	31
203	Implantable Fiber Biosensors Based on Carbon Nanotubes. Accounts of Materials Research, 2021, 2, 138-146.	5.9	31
204	Multicolor, Fluorescent Supercapacitor Fiber. Small, 2018, 14, e1702052.	5.2	30
205	A tactile sensing textile with bending-independent pressure perception and spatial acuity. Carbon, 2019, 149, 63-70.	5.4	30
206	Conjugated polymer composite artificial muscle with solvent-induced anisotropic mechanical actuation. Journal of Materials Chemistry A, 2014, 2, 17272-17280.	5.2	28
207	Mechanochromic Fibers with Structural Color. ChemPhysChem, 2015, 16, 3761-3768.	1.0	28
208	A Novel Slicing Method for Thin Supercapacitors. Advanced Materials, 2016, 28, 6429-6435.	11.1	28
209	Sticky-note supercapacitors. Journal of Materials Chemistry A, 2018, 6, 3355-3360.	5.2	28
210	The 3d–5d orbital repulsion of transition metals in oxyhydroxide catalysts facilitates water oxidation. Journal of Materials Chemistry A, 2019, 7, 14455-14461.	5.2	28
211	Improved kinetics of OER on Ru-Pb binary electrocatalyst by decoupling proton-electron transfer. Chinese Journal of Catalysis, 2022, 43, 130-138.	6.9	28
212	A one-dimensional soft and color-programmable light-emitting device. Journal of Materials Chemistry C, 2018, 6, 1328-1333.	2.7	27
213	Flexible self-powered textile formed by bridging photoactive and electrochemically active fiber electrodes. Journal of Materials Chemistry A, 2019, 7, 14447-14454.	5.2	27
214	Failure mechanism in fiber-shaped electrodes for lithium-ion batteries. Journal of Materials Chemistry A, 2015, 3, 10942-10948.	5.2	26
215	Designing one-dimensional supercapacitors in a strip shape for high performance energy storage fabrics. Journal of Materials Chemistry A, 2015, 3, 19304-19309.	5.2	26
216	Amphiphilic core-sheath structured composite fiber for comprehensively performed supercapacitor. Science China Materials, 2019, 62, 955-964.	3.5	26

#	Article	IF	CITATIONS
217	A novel carbon nanotube/polymer composite film for counter electrodes of dye-sensitized solar cells. Polymer Chemistry, 2013, 4, 1680.	1.9	25
218	A Selfâ€Healing Aqueous Lithiumâ€ion Battery. Angewandte Chemie, 2016, 128, 14596-14600.	1.6	25
219	A perovskite solar cell textile that works at â^'40 to 160 °C. Journal of Materials Chemistry A, 2020, 8, 5476-5483.	5.2	25
220	Alignment of Thermally Conducting Nanotubes Making High-Performance Light-Driving Motors. ACS Applied Materials & Interfaces, 2018, 10, 26765-26771.	4.0	24
221	N-modulated Cu+ for efficient electrochemical carbon monoxide reduction to acetate. Science China Materials, 2020, 63, 2606-2612.	3.5	24
222	Stable wire-shaped dye-sensitized solar cells based on eutectic melts. Journal of Materials Chemistry A, 2014, 2, 3841.	5.2	23
223	Highâ€Performance Lithium–Air Battery with a Coaxialâ€Fiber Architecture. Angewandte Chemie, 2016, 128, 4563-4567.	1.6	23
224	The Functionalization of Miniature Energyâ€Storage Devices. Small Methods, 2017, 1, 1700211.	4.6	23
225	A biodegradable and rechargeable fiber battery. Journal of Materials Chemistry A, 2021, 9, 10104-10109.	5.2	23
226	Robust Memristive Fiber for Woven Textile Memristor. Advanced Functional Materials, 2022, 32, .	7.8	23
227	Energy harvesting and storage devices fused into various patterns. Journal of Materials Chemistry A, 2015, 3, 14977-14984.	5.2	22
228	Injectable Fiber Electronics for Tumor Treatment. Advanced Fiber Materials, 2022, 4, 246-255.	7.9	21
229	The Deformations of Carbon Nanotubes under Cutting. ACS Nano, 2017, 11, 8464-8470.	7.3	20
230	An Electrochemical Biosensor with Dual Signal Outputs: Toward Simultaneous Quantification of pH and O ₂ in the Brain upon Ischemia and in a Tumor during Cancer Starvation Therapy. Angewandte Chemie, 2017, 129, 10607-10611.	1.6	19
231	Hydrogel Cryoâ€Microtomy Continuously Making Soft Electronic Devices. Advanced Functional Materials, 2021, 31, 2008355.	7.8	19
232	Synthesis and photovoltaic application of platinum-modified conducting aligned nanotube fiber. Science China Materials, 2015, 58, 289-293.	3.5	18
233	Stabilizing Lithium into Crossâ€Stacked Nanotube Sheets with an Ultraâ€High Specific Capacity for Lithium Oxygen Batteries. Angewandte Chemie, 2019, 131, 2459-2464.	1.6	18
234	Gradually Crosslinking Carbon Nanotube Array in Mimicking the Beak of Giant Squid for Compression ensing Supercapacitor. Advanced Functional Materials, 2020, 30, 1902971.	7.8	18

#	Article	IF	CITATIONS
235	Flexible dopamine-sensing fiber based on potentiometric method for long-term detection in vivo. Science China Chemistry, 2021, 64, 1763-1769.	4.2	18
236	Flexible sensors based on assembled carbon nanotubes. Aggregate, 2021, 2, e143.	5.2	18
237	Piezoluminescent devices by designing array structures. Science Bulletin, 2019, 64, 151-157.	4.3	16
238	A fiber-shaped light-emitting pressure sensor for visualized dynamic monitoring. Journal of Materials Chemistry C, 2020, 8, 935-942.	2.7	16
239	The critical role of electrochemically activated adsorbates in neutral OER. Science China Materials, 2020, 63, 2509-2516.	3.5	16
240	Rechargeable Microâ€Batteries for Wearable and Implantable Applications. Small Structures, 2022, 3, .	6.9	16
241	Title is missing!. Angewandte Chemie, 2003, 115, 1554-1557.	1.6	15
242	Recent advances of tissue-interfaced chemical biosensors. Journal of Materials Chemistry B, 2020, 8, 3371-3381.	2.9	15
243	Fiber Electronics. Advanced Materials, 2020, 32, e1904697.	11.1	14
244	Designing Porous Antifouling Interfaces for Highâ€Power Implantable Biofuel Cell. Advanced Functional Materials, 2021, 31, 2107160.	7.8	14
245	Carbon Nanotube Arrayâ€Based Flexible Multifunctional Electrodes to Record Electrophysiology and Ions on the Cerebral Cortex in Real Time. Advanced Functional Materials, 2022, 32, .	7.8	14
246	A Fiber Fluidic Nanogenerator Made from Aligned Carbon Nanotubes Composited with Transition Metal Oxide. , 2021, 3, 1448-1452.		13
247	Surface-nanostructured cactus-like carbon microspheres for efficient photovoltaic devices. Journal of Materials Chemistry A, 2014, 2, 15132.	5.2	12
248	An Ultraflexible Silicon–Oxygen Battery Fiber with High Energy Density. Angewandte Chemie, 2017, 129, 13929-13934.	1.6	12
249	The Rise of Fiber Electronics. Angewandte Chemie, 2019, 131, 13778-13788.	1.6	12
250	Smarte elektronische Textilien. Angewandte Chemie, 2016, 128, 6248-6277.	1.6	11
251	In Situ Intercalation of Bismuth into 3D Reduced Graphene Oxide Scaffolds for High Capacity and Long Cycleâ€Life Energy Storage. Small, 2019, 15, e1905903.	5.2	11
252	Making Passive Daytime Radiative Cooling Metafabrics on a Large Scale. Advanced Fiber Materials, 2022, 4, 3-4.	7.9	11

#	Article	IF	CITATIONS
253	An Antiâ€Biofouling Flexible Fiber Biofuel Cell Working in the Brain. Small Methods, 2022, 6, e2200142.	4.6	11
254	A nanotube colorant for synthetic fibers with much improved properties. Journal of Materials Chemistry, 2012, 22, 18653.	6.7	10
255	Batteries: Twisting Carbon Nanotube Fibers for Both Wire-Shaped Micro-Supercapacitor and Micro-Battery (Adv. Mater. 8/2013). Advanced Materials, 2013, 25, 1224-1224.	11.1	10
256	Role of Organic Components in Electrocatalysis for Renewable Energy Storage. Chemistry - A European Journal, 2018, 24, 18271-18292.	1.7	10
257	Energy harvesting textiles: using wearable luminescent solar concentrators to improve the efficiency of fiber solar cells. Journal of Materials Chemistry A, 2021, 9, 25974-25981.	5.2	10
258	A Oneâ€Dimensional Fluidic Nanogenerator with a High Power Conversion Efficiency. Angewandte Chemie, 2017, 129, 13120-13125.	1.6	9
259	Photo-to-electricity generation of aligned carbon nanotubes in water. Journal of Materials Chemistry A, 2019, 7, 1996-2001.	5.2	9
260	Polymerâ€5upported Liquid Layer Electrolyzer Enabled Electrochemical CO ₂ Reduction to CO with High Energy Efficiency. ChemistryOpen, 2021, 10, 639-644.	0.9	9
261	Energetic and thermal properties of tilt grain boundaries in graphene/hexagonal boron nitride heterostructures. Functional Materials Letters, 2015, 08, 1550038.	0.7	8
262	Emerging Soft Bioelectronics. Advanced Functional Materials, 2020, 30, 2001827.	7.8	8
263	Graphene Fieldâ€Effect Transistors on Hexagonalâ€Boron Nitride for Enhanced Interfacial Thermal Dissipation. Advanced Electronic Materials, 2020, 6, 2000059.	2.6	8
264	Highâ€Energyâ€Density Magnesiumâ€Air Battery Based on Dual‣ayer Gel Electrolyte. Angewandte Chemie, 2021, 133, 15445-15450.	1.6	8
265	Orienting polydiacetylene using aligned carbon nanotubes. Journal of Materials Chemistry C, 2015, 3, 2642-2649.	2.7	7
266	Programmable actuating systems based on swimming fiber robots. Carbon, 2018, 139, 241-247.	5.4	7
267	Lithiumâ€Metal Anodes Working at 60â€mA cm ^{â^'2} and 60â€mAh cm ^{â^'2} Nanoscale Lithiumâ€lon Adsorbing. Angewandte Chemie, 2021, 133, 17559-17565.	through	7
268	Enhanced cathode integrity for zinc–manganese oxide fiber batteries by a durable protective layer. Journal of Materials Chemistry A, 2022, 10, 10201-10208.	5.2	7
269	Dual-function optoelectronic polymer device for photoelectric conversion and electroluminescence. Journal of Materials Chemistry C, 2016, 4, 1144-1148.	2.7	6
270	Highâ€Efficiency and Stable Li O2 Battery Enabled by Carbon Nanotube/Carbon Nitride Heterostructured Photocathode. Angewandte Chemie, 0, , .	1.6	6

#	Article	IF	CITATIONS
271	The Rise of Soft Neural Electronics. Giant, 2021, 8, 100075.	2.5	5
272	Alternating current electroluminescent fibers for textile displays. National Science Review, 2023, 10, .	4.6	5
273	Perpendicularly aligned carbon nanotube/olefin composite films for the preparation of graphene nanomaterials. Journal of Materials Chemistry, 2012, 22, 16209.	6.7	4
274	Fiber Electronics. , 2020, , .		4
275	High-Performance Graphene Fibers Enabled by Hydration. ACS Central Science, 2020, 6, 1040-1042.	5.3	4
276	Boosting Cycling Stability and Rate Capability of Li–CO ₂ Batteries via Synergistic Photoelectric Effect and Plasmonic Interaction. Angewandte Chemie, 2022, 134, .	1.6	4
277	An implantable flexible fiber generator without encapsulation made from differentially oxidized carbon nanotube fibers. Chemical Engineering Journal, 2022, 441, 136106.	6.6	4
278	Responsive polymer composite fiber. Chinese Journal of Chemistry, 0, , .	2.6	4
279	Tailorable coaxial carbon nanocables with high storage capabilities. Journal of Materials Chemistry A, 2017, 5, 22125-22130.	5.2	3
280	Regulating Interfacial Lithium Ion by Artificial Protective Overlayers for Highâ€Performance Lithium Metal Anodes. Chemistry - A European Journal, 2021, , .	1.7	3
281	The synthesis of porous materials with macroscopically oriented mesopores interconnected by branched mesopores. Journal of Materials Chemistry A, 2013, 1, 4693.	5.2	2
282	Solar Cells: Coreâ€Sheath Carbon Nanostructured Fibers for Efficient Wireâ€Shaped Dyeâ€Sensitized Solar Cells (Adv. Mater. 11/2014). Advanced Materials, 2014, 26, 1791-1791.	11.1	2
283	Making large-scale, functional, electronic textiles. Nature, 2021, , .	13.7	2
284	An Electromagnetic Fiber Acoustic Transducer with Dual Modes of Loudspeaker and Microphone. Small, 2021, 17, 2102052.	5.2	2
285	Self-assembly of bridged silsesquioxanes incorporated with conjugated organic functionalities. Frontiers of Chemistry in China: Selected Publications From Chinese Universities, 2010, 5, 277-287.	0.4	1
286	Nanomaterials for Cancer Diagnosis and Therapy. Journal of Nanomaterials, 2010, 2010, 1-1.	1.5	1
287	Capacitors: Novel Electric Doubleâ€Layer Capacitor with a Coaxial Fiber Structure (Adv. Mater. 44/2013). Advanced Materials, 2013, 25, 6468-6468.	11.1	1
288	Rücktitelbild: Elastic and Wearable Wire-Shaped Lithium-Ion Battery with High Electrochemical Performance (Angew. Chem. 30/2014). Angewandte Chemie, 2014, 126, 8092-8092.	1.6	1

#	Article	IF	CITATIONS
289	Tissue Engineering: Superaligned Carbon Nanotubes Guide Oriented Cell Growth and Promote Electrophysiological Homogeneity for Synthetic Cardiac Tissues (Adv. Mater. 44/2017). Advanced Materials, 2017, 29, .	11.1	1
290	Co ₂ Reduction: Selective Etching of Nitrogenâ€Doped Carbon by Steam for Enhanced Electrochemical CO ₂ Reduction (Adv. Energy Mater. 22/2017). Advanced Energy Materials, 2017, 7, .	10.2	1
291	Fiber Light-Emitting Devices. , 2020, , 253-289.		1
292	Smart Textiles. , 2020, , 427-457.		1
293	Carbon Nanotubes for Flexible Fiber Batteries. Carbon Materials, 2022, , 1-22.	0.2	1
294	Energy Fibers: Self-Powered Energy Fiber: Energy Conversion in the Sheath and Storage in the Core (Adv. Mater. 41/2014). Advanced Materials, 2014, 26, 7132-7132.	11.1	0
295	Innentitelbild: Mechanochromic Photonic-Crystal Fibers Based on Continuous Sheets of Aligned Carbon Nanotubes (Angew. Chem. 12/2015). Angewandte Chemie, 2015, 127, 3594-3594.	1.6	0
296	Frontispiece: Generating Electricity from Water through Carbon Nanomaterials. Chemistry - A European Journal, 2018, 24, .	1.7	0
297	Fiber Electronics: An Emerging Field. Batteries and Supercaps, 2019, 2, 968-969.	2.4	0
298	Robust DNAâ€Bridged Memristor for Textile Chips. Angewandte Chemie, 2020, 132, 12862-12868.	1.6	0
299	Fiber Sensors. , 2020, , 291-326.		0
300	Continuous Fabrication of Fiber Devices. , 2020, , 363-389.		0
301	Fiber Dye-Sensitized Solar Cells. , 2020, , 71-111.		0
302	Fiber Perovskite Solar Cells. , 2020, , 137-159.		0
303	Fiber Supercapacitors. , 2020, , 161-194.		0
304	Frontispiece: Regulating Interfacial Lithium Ion by Artificial Protective Overlayers for Highâ€Performance Lithium Metal Anodes. Chemistry - A European Journal, 2022, 28, .	1.7	0