Dario R Alessi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3420652/publications.pdf

Version: 2024-02-01

13099 19749 31,028 120 68 117 citations h-index g-index papers 150 150 150 32842 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Sequence and structural variations determining the recruitment of WNK kinases to the KLHL3 E3 ligase. Biochemical Journal, 2022, 479, 661-675.	3.7	4
2	A plasmid DNA-launched SARS-CoV-2 reverse genetics system and coronavirus toolkit for COVID-19 research. PLoS Biology, 2021, 19, e3001091.	5.6	163
3	Deciphering the LRRK code: LRRK1 and LRRK2 phosphorylate distinct Rab proteins and are regulated by diverse mechanisms. Biochemical Journal, 2021, 478, 553-578.	3.7	32
4	LRP10 interacts with SORL1 in the intracellular vesicle trafficking pathway in non-neuronal brain cells and localises to Lewy bodies in Parkinson's disease and dementia with Lewy bodies. Acta Neuropathologica, 2021, 142, 117-137.	7.7	15
5	Role of KLHL3 and dietary K ⁺ in regulating KS-WNK1 expression. American Journal of Physiology - Renal Physiology, 2021, 320, F734-F747.	2.7	11
6	R1441G but not G2019S mutation enhances LRRK2 mediated Rab10 phosphorylation in human peripheral blood neutrophils. Acta Neuropathologica, 2021, 142, 475-494.	7.7	44
7	Structural basis for the specificity of PPM1H phosphatase for Rab GTPases. EMBO Reports, 2021, 22, e52675.	4.5	10
8	Impact of Type II LRRK2 inhibitors on signaling and mitophagy. Biochemical Journal, 2021, 478, 3555-3573.	3.7	37
9	Development of a multiplexed targeted mass spectrometry assay for LRRK2-phosphorylated Rabs and Ser910/Ser935 biomarker sites. Biochemical Journal, 2021, 478, 299-326.	3.7	37
10	Development of BromoTag: A "Bump-and-Holeâ€â€"PROTAC System to Induce Potent, Rapid, and Selective Degradation of Tagged Target Proteins. Journal of Medicinal Chemistry, 2021, 64, 15477-15502.	6.4	37
11	Pathogenic LRRK2 control of primary cilia and Hedgehog signaling in neurons and astrocytes of mouse brain. ELife, 2021, 10, .	6.0	47
12	Comparative host-coronavirus protein interaction networks reveal pan-viral disease mechanisms. Science, 2020, 370, .	12.6	508
13	Accurate MS-based Rab10 Phosphorylation Stoichiometry Determination as Readout for LRRK2 Activity in Parkinson's Disease. Molecular and Cellular Proteomics, 2020, 19, 1546-1560.	3.8	45
14	Advances in elucidating the function of leucine-rich repeat protein kinase-2 in normal cells and Parkinson'sÂdisease. Current Opinion in Cell Biology, 2020, 63, 102-113.	5.4	99
15	Structural Basis for Rab8a Recruitment of RILPL2 via LRRK2 Phosphorylation of Switch 2. Structure, 2020, 28, 406-417.e6.	3.3	63
16	Human Peripheral Blood Neutrophil Isolation for Interrogating the Parkinson's Associated LRRK2 Kinase Pathway by Assessing Rab10 Phosphorylation. Journal of Visualized Experiments, 2020, , .	0.3	9
17	Endogenous Rab29 does not impact basal or stimulated LRRK2 pathway activity. Biochemical Journal, 2020, 477, 4397-4423.	3.7	48
18	Membrane association but not identity is required for LRRK2 activation and phosphorylation of Rab GTPases. Journal of Cell Biology, 2019, 218, 4157-4170.	5.2	88

#	Article	IF	Citations
19	Design and Characterization of SGK3-PROTAC1, an Isoform Specific SGK3 Kinase PROTAC Degrader. ACS Chemical Biology, 2019, 14, 2024-2034.	3.4	67
20	Rapid and Reversible Knockdown of Endogenously Tagged Endosomal Proteins via an Optimized HaloPROTAC Degrader. ACS Chemical Biology, 2019, 14, 882-892.	3.4	88
21	Crystal structure of the WD40 domain dimer of LRRK2. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 1579-1584.	7.1	60
22	Discovery of potent and selective 5-azaindazole inhibitors of leucine-rich repeat kinase 2 (LRRK2) – Part 1. Bioorganic and Medicinal Chemistry Letters, 2019, 29, 668-673.	2.2	9
23	Phosphoproteomics reveals that the hVPS34 regulated SGK3 kinase specifically phosphorylates endosomal proteins including Syntaxin-7, Syntaxin-12, RFIP4 and WDR44. Biochemical Journal, 2019, 476, 3081-3107.	3.7	14
24	PPM1H phosphatase counteracts LRRK2 signaling by selectively dephosphorylating Rab proteins. ELife, 2019, 8, .	6.0	94
25	LRRK2 kinase in Parkinson's disease. Science, 2018, 360, 36-37.	12.6	233
26	Rab29 activation of the Parkinson's diseaseâ€associated LRRK2 kinase. EMBO Journal, 2018, 37, 1-18.	7.8	386
27	Mechanism of activation of SGK3 by growth factors via the Class 1 and Class 3 Pl3Ks. Biochemical Journal, 2018, 475, 117-135.	3.7	33
28	Development of phospho-specific Rab protein antibodies to monitor <i>in vivo</i> activity of the LRRK2 Parkinson's disease kinase. Biochemical Journal, 2018, 475, 1-22.	3.7	123
29	Interrogating Parkinson's disease LRRK2 kinase pathway activity by assessing Rab10 phosphorylation in human neutrophils. Biochemical Journal, 2018, 475, 23-44.	3.7	136
30	A pathway for Parkinson's Disease LRRK2 kinase to block primary cilia and Sonic hedgehog signaling in the brain. ELife, 2018, 7, .	6.0	170
31	Nigrostriatal pathology with reduced astrocytes in LRRK2 S910/S935 phosphorylation deficient knockin mice. Neurobiology of Disease, 2018, 120, 76-87.	4.4	16
32	LRRK2 is a negative regulator of $\langle i \rangle$ Mycobacterium tuberculosis $\langle i \rangle$ phagosome maturation in macrophages. EMBO Journal, 2018, 37, .	7.8	140
33	LRRK2 activation in idiopathic Parkinson's disease. Science Translational Medicine, 2018, 10, .	12.4	363
34	The Parkinson's disease VPS35[D620N] mutation enhances LRRK2-mediated Rab protein phosphorylation in mouse and human. Biochemical Journal, 2018, 475, 1861-1883.	3.7	157
35	PP1 Phosphatase Complexes: Undruggable No Longer. Cell, 2018, 174, 1049-1051.	28.9	10
36	Structural and Atropisomeric Factors Governing the Selectivity of Pyrimido-benzodiazipinones as Inhibitors of Kinases and Bromodomains. ACS Chemical Biology, 2018, 13, 2438-2448.	3.4	44

#	Article	IF	CITATIONS
37	Regulation of membrane ruffling by polarized STIM1 and ORAI1 in cortactin-rich domains. Scientific Reports, 2017, 7, 383.	3. 3	23
38	Small-Molecule Inhibitors of LRRK2. Advances in Neurobiology, 2017, 14, 241-264.	1.8	29
39	Bâ€cellâ€intrinsic function of TAPP adaptors in controlling germinal center responses and autoantibody production in mice. European Journal of Immunology, 2017, 47, 280-290.	2.9	10
40	Homo-PROTACs: bivalent small-molecule dimerizers of the VHL E3 ubiquitin ligase to induce self-degradation. Nature Communications, 2017, 8, 830.	12.8	184
41	USP7 small-molecule inhibitors interfere with ubiquitin binding. Nature, 2017, 550, 534-538.	27.8	258
42	Vomocytosis of live pathogens from macrophages is regulated by the atypical MAP kinase ERK5. Science Advances, 2017, 3, e1700898.	10.3	45
43	Systematic proteomic analysis of LRRK2-mediated Rab GTPase phosphorylation establishes a connection to ciliogenesis. ELife, 2017, 6, .	6.0	344
44	Phosphoproteomics reveals that Parkinson's disease kinase LRRK2 regulates a subset of Rab GTPases. ELife, 2016, 5, .	6.0	766
45	The hVps34― <scp>SGK</scp> 3 pathway alleviates sustained PI3K/Akt inhibition by stimulating <scp>mTORC</scp> 1 and tumourÂgrowth. EMBO Journal, 2016, 35, 1902-1922.	7.8	77
46	Phos-tag analysis of Rab10 phosphorylation by LRRK2: a powerful assay for assessing kinase function and inhibitors. Biochemical Journal, 2016, 473, 2671-2685.	3.7	147
47	PDK1-SGK1 Signaling Sustains AKT-Independent mTORC1 Activation and Confers Resistance to PI3Kα Inhibition. Cancer Cell, 2016, 30, 229-242.	16.8	187
48	Functional kinomics establishes a critical node of volume-sensitive cation-Clâ [^] cotransporter regulation in the mammalian brain. Scientific Reports, 2016, 6, 35986.	3.3	38
49	<scp>USP</scp> 45 deubiquitylase controls <scp>ERCC</scp> 1– <scp>XPF</scp> endonucleaseâ€mediated <scp>DNA</scp> damage responses. EMBO Journal, 2015, 34, 326-343.	7.8	48
50	Phosphorylation of Synaptic Vesicle Protein 2A at Thr84 by Casein Kinase 1 Family Kinases Controls the Specific Retrieval of Synaptotagmin-1. Journal of Neuroscience, 2015, 35, 2492-2507.	3.6	70
51	Critical role of the SPAK protein kinase CCT domain in controlling blood pressure. Human Molecular Genetics, 2015, 24, 4545-4558.	2.9	34
52	Photoactivatable Prodrugs of Antimelanoma Agent Vemurafenib. ACS Chemical Biology, 2015, 10, 2099-2107.	3.4	52
53	Structural Characterization of LRRK2 Inhibitors. Journal of Medicinal Chemistry, 2015, 58, 3751-3756.	6.4	34
54	Discovery of a Pyrrolopyrimidine (JH-II-127), a Highly Potent, Selective, and Brain Penetrant LRRK2 Inhibitor. ACS Medicinal Chemistry Letters, 2015, 6, 584-589.	2.8	46

#	Article	IF	Citations
55	Kinase and channel activity of TRPM6 are co-ordinated by a dimerization motif and pocket interaction. Biochemical Journal, 2014, 460, 165-175.	3.7	15
56	The WNK-regulated SPAK/OSR1 kinases directly phosphorylate and inhibit the K+–Clâ^' co-transporters. Biochemical Journal, 2014, 458, 559-573.	3.7	174
57	Structural and biochemical characterization of the KLHL3–WNK kinase interaction important in blood pressure regulation. Biochemical Journal, 2014, 460, 237-246.	3.7	68
58	Investigation of LKB1 Ser431 phosphorylation and Cys433 farnesylation using mouse knockin analysis reveals an unexpected role of prenylation in regulating AMPK activity. Biochemical Journal, 2014, 458, 41-56.	3.7	47
59	The WNK-SPAK/OSR1 pathway: Master regulator of cation-chloride cotransporters. Science Signaling, 2014, 7, re3.	3.6	218
60	Characterization of VPS34-IN1, a selective inhibitor of Vps34, reveals that the phosphatidylinositol 3-phosphate-binding SGK3 protein kinase is a downstream target of class III phosphoinositide 3-kinase. Biochemical Journal, 2014, 463, 413-427.	3.7	233
61	Interplay between Polo kinase, LKB1-activated NUAK1 kinase, PP1Î ² MYPT1 phosphatase complex and the SCFÎ ² TrCP E3 ubiquitin ligase. Biochemical Journal, 2014, 461, 233-245.	3.7	20
62	Structural determinants for ERK5 (MAPK7) and leucine rich repeat kinase 2 activities of benzo[e]pyrimido-[5,4-b]diazepine-6(11H)-ones. European Journal of Medicinal Chemistry, 2013, 70, 758-767.	5.5	45
63	Elevated SGK1 predicts resistance of breast cancer cells to Akt inhibitors. Biochemical Journal, 2013, 452, 499-508.	3.7	141
64	Comprehensive characterization and optimization of anti-LRRK2 (leucine-rich repeat kinase 2) monoclonal antibodies. Biochemical Journal, 2013, 453, 101-113.	3.7	84
65	The CUL3–KLHL3 E3 ligase complex mutated in Gordon's hypertension syndrome interacts with and ubiquitylates WNK isoforms: disease-causing mutations in KLHL3 and WNK4 disrupt interaction. Biochemical Journal, 2013, 451, 111-122.	3.7	181
66	SPAK/OSR1 regulate NKCC1 and WNK activity: analysis of WNK isoform interactions and activation by T-loop trans-autophosphorylation. Biochemical Journal, 2012, 441, 325-337.	3.7	117
67	Akt is efficiently activated by PIF-pocket- and PtdIns(3,4,5) <i>P</i> 3-dependent mechanisms leading to resistance to PDK1 inhibitors. Biochemical Journal, 2012, 448, 285-295.	3.7	61
68	GSK2578215A; A potent and highly selective 2-arylmethyloxy-5-substitutent-N-arylbenzamide LRRK2 kinase inhibitor. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 5625-5629.	2.2	138
69	Brain Penetrant LRRK2 Inhibitor. ACS Medicinal Chemistry Letters, 2012, 3, 658-662.	2.8	119
70	The IkappaB Kinase Family Phosphorylates the Parkinson's Disease Kinase LRRK2 at Ser935 and Ser910 during Toll-Like Receptor Signaling. PLoS ONE, 2012, 7, e39132.	2.5	183
71	Protor-1 is required for efficient mTORC2-mediated activation of SGK1 in the kidney. Biochemical Journal, 2011, 436, 169-179.	3.7	162
72	Characterization of a selective inhibitor of the Parkinson's disease kinase LRRK2. Nature Chemical Biology, 2011, 7, 203-205.	8.0	380

#	Article	IF	CITATIONS
73	Characterization of GSK2334470, a novel and highly specific inhibitor of PDK1. Biochemical Journal, 2011, 433, 357-369.	3.7	128
74	14-3-3 binding to LRRK2 is disrupted by multiple Parkinson's disease-associated mutations and regulates cytoplasmic localization. Biochemical Journal, 2010, 430, 393-404.	3.7	355
75	Inhibition of LRRK2 kinase activity leads to dephosphorylation of Ser910/Ser935, disruption of 14-3-3 binding and altered cytoplasmic localization. Biochemical Journal, 2010, 430, 405-413.	3.7	355
76	The nuts and bolts of AGC protein kinases. Nature Reviews Molecular Cell Biology, 2010, 11, 9-22.	37.0	1,137
77	Phosphorylation of STIM1 at ERK1/2 target sites modulates store-operated calcium entry. Journal of Cell Science, 2010, 123, 3084-3093.	2.0	108
78	New Insights into mTOR Signaling: mTORC2 and Beyond. Science Signaling, 2009, 2, pe27.	3.6	160
79	Ku-0063794 is a specific inhibitor of the mammalian target of rapamycin (mTOR). Biochemical Journal, 2009, 421, 29-42.	3.7	436
80	Substrate specificity and inhibitors of LRRK2, a protein kinase mutated in Parkinson's disease. Biochemical Journal, 2009, 424, 47-60.	3.7	186
81	Structure of the OSR1 kinase, a hypertension drug target. Proteins: Structure, Function and Bioinformatics, 2008, 73, 1082-1087.	2.6	39
82	mTOR complex 2 (mTORC2) controls hydrophobic motif phosphorylation and activation of serum- and glucocorticoid-induced protein kinase 1 (SGK1). Biochemical Journal, 2008, 416, 375-385.	3.7	816
83	The regulation of salt transport and blood pressure by the WNK-SPAK/OSR1 signalling pathway. Journal of Cell Science, 2008, 121, 3293-3304.	2.0	261
84	Use of Akt Inhibitor and a Drug-resistant Mutant Validates a Critical Role for Protein Kinase B/Akt in the Insulin-dependent Regulation of Glucose and System A Amino Acid Uptake. Journal of Biological Chemistry, 2008, 283, 27653-27667.	3.4	96
85	The selectivity of protein kinase inhibitors: a further update. Biochemical Journal, 2007, 408, 297-315.	3.7	2,287
86	LRRK2 phosphorylates moesin at threonine-558: characterization of how Parkinson's disease mutants affect kinase activity. Biochemical Journal, 2007, 405, 307-317.	3.7	466
87	Structural insights into the recognition of substrates and activators by the OSR1 kinase. EMBO Reports, 2007, 8, 839-845.	4.5	89
88	LKB1-Dependent Signaling Pathways. Annual Review of Biochemistry, 2006, 75, 137-163.	11.1	707
89	The WNK1 and WNK4 protein kinases that are mutated in Gordon's hypertension syndrome phosphorylate and activate SPAK and OSR1 protein kinases. Biochemical Journal, 2005, 391, 17-24.	3.7	444
90	In vivo role of the phosphate groove of PDK1 defined by knockin mutation. Journal of Cell Science, 2005, 118, 5023-5034.	2.0	42

#	Article	lF	Citations
91	PDK1, the master regulator of AGC kinase signal transduction. Seminars in Cell and Developmental Biology, 2004, 15, 161-170.	5.0	715
92	In vivo role of the PIF-binding docking site of PDK1 defined by knock-in mutation. EMBO Journal, 2003, 22, 4202-4211.	7.8	166
93	Phosphoprotein Analysis Using Antibodies Broadly Reactive against Phosphorylated Motifs. Journal of Biological Chemistry, 2002, 277, 39379-39387.	3.4	235
94	Signal Transduction Downstrean of PI 3-kinase. Biochemical Society Transactions, 2001, 29, A59-A59.	3.4	0
95	Crystal structure of the phosphatidylinositol 3,4-bisphosphate-binding pleckstrin homology (PH) domain of tandem PH-domain-containing protein 1 (TAPP1): molecular basis of lipid specificity. Biochemical Journal, 2001, 358, 287-294.	3.7	87
96	Lithium inhibits caspase 3 activation and dephosphorylation of PKB and GSK3 induced by K+ deprivation in cerebellar granule cells. Journal of Neurochemistry, 2001, 78, 199-206.	3.9	87
97	The PI3K–PDK1 connection: more than just a road to PKB. Biochemical Journal, 2000, 346, 561-576.	3.7	1,386
98	Partial purification and characterization of a wortmannin-sensitive and insulin-stimulated protein kinase that activates heart 6-phosphofructo-2-kinase. Biochemical Journal, 2000, 347, 305-312.	3.7	29
99	Peroxovanadate induces tyrosine phosphorylation of phosphoinositide-dependent protein kinase-1. FEBS Journal, 2000, 267, 6642-6649.	0.2	46
100	Effects of exercise on mitogen- and stress-activated kinase signal transduction in human skeletal muscle. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2000, 279, R1716-R1721.	1.8	36
101	Functional counterparts of mammalian protein kinases PDK1 and SGK in budding yeast. Current Biology, 1999, 9, 186-S4.	3.9	255
102	Characterisation of a plant 3-phosphoinositide-dependent protein kinase-1 homologue which contains a pleckstrin homology domain. FEBS Letters, 1999, 451, 220-226.	2.8	123
103	DAPP1: a dual adaptor for phosphotyrosine and 3-phosphoinositides. Biochemical Journal, 1999, 342, 7-12.	3.7	150
104	A possible mechanism by which Protein Kinase B is phosphorylated at Ser473. Biochemical Society Transactions, 1999, 27, A73-A73.	3.4	0
105	A possible mechanism by which Protein Kinase B is phosphorylated at Ser473. Biochemical Society Transactions, 1999, 27, A106-A106.	3.4	0
106	Suppression of cAMP/dexamethasone induced glucose-6-phosphatase gene transcription by insulin. Biochemical Society Transactions, 1999, 27, A106-A106.	3.4	0
107	Mammalian target of rapamycin is a direct target for protein kinase B: identification of a convergence point for opposing effects of insulin and amino-acid deficiency on protein translation. Biochemical Journal, 1999, 344, 427-431.	3.7	795
108	Nerve growth factor promotes activation of the alpha, beta and gamma isoforms of protein kinase B in PC12 pheochromocytoma cells. FEBS Journal, 1998, 251, 195-200.	0.2	59

#	Article	lF	CITATIONS
109	Activation of protein kinase B \hat{l}^2 and \hat{l}^3 isoforms by insulin in vivo and by 3-phosphoinositide-dependent protein kinase-1 in vitro: comparison with protein kinase B $\hat{l}\pm$. Biochemical Journal, 1998, 331, 299-308.	3.7	268
110	The protein kinase C inhibitors Ro 318220 and GF 109203X are equally potent inhibitors of MAPKAP kinase- $1\hat{l}^2$ (Rsk-2) and p70 S6 kinase. FEBS Letters, 1997, 402, 121-123.	2.8	192
111	PDK1, one of the missing links in insulin signal transduction?1. FEBS Letters, 1997, 410, 3-10.	2.8	230
112	Further evidence that the inhibition of glycogen synthase kinase- $3\hat{l}^2$ by IGF-1 is mediated by PDK1/PKB-induced phosphorylation of Ser-9 and not by dephosphorylation of Tyr-216. FEBS Letters, 1997, 416, 307-311.	2.8	213
113	Characterization of a 3-phosphoinositide-dependent protein kinase which phosphorylates and activates protein kinase Bî±. Current Biology, 1997, 7, 261-269.	3.9	2,612
114	3-Phosphoinositide-dependent protein kinase-1 (PDK1): structural and functional homology with the Drosophila DSTPK61 kinase. Current Biology, 1997, 7, 776-789.	3.9	691
115	Molecular basis for the substrate specificity of protein kinase B; comparison with MAPKAP kinase†and p70 S6 kinase. FEBS Letters, 1996, 399, 333-338.	2.8	563
116	Specific binding of the Akt-1 protein kinase to phosphatidylinositol 3,4,5-trisphosphate without subsequent activation. Biochemical Journal, 1996, 315, 709-713.	3.7	314
117	Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature, 1995, 378, 785-789.	27.8	4,694
118	Molecular cloning of cDNA encoding the 110 kDa and 21 kDa regulatory subunits of smooth muscle protein phosphatase 1M. FEBS Letters, 1994, 356, 51-55.	2.8	119
119	Inhibitor-2 functions like a chaperone to fold three expressed isoforms of mammalian protein phosphatase-1 into a conformation with the specificity and regulatory properties of the native enzyme. FEBS Journal, 1993, 213, 1055-1066.	0.2	181
120	The control of protein phosphataseâ€1 by targetting subunits. FEBS Journal, 1992, 210, 1023-1035.	0.2	350