Katrin Philippar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3420443/publications.pdf

Version: 2024-02-01

172457 330143 2,684 37 29 37 citations h-index g-index papers 38 38 38 3052 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	The developmental and iron nutritional pattern of PIC1 and NiCo does not support their interdependent and exclusive collaboration in chloroplast iron transport in Brassica napus. Planta, 2020, 251, 96.	3.2	11
2	A Novel Prokaryote-Type ECF/ABC Transporter Module in Chloroplast Metal Homeostasis. Frontiers in Plant Science, 2019, 10, 1264.	3.6	32
3	Essential and Detrimental — an Update on Intracellular Iron Trafficking and Homeostasis. Plant and Cell Physiology, 2019, 60, 1420-1439.	3.1	52
4	BANFF: bending of bilayer membranes by amphiphilic \hat{l}_{\pm} -helices is necessary for form and function of organelles. Biochemistry and Cell Biology, 2019, 97, 243-256.	2.0	3
5	Plant membrane-protein mediated intracellular traffic of fatty acids and acyl lipids. Current Opinion in Plant Biology, 2017, 40, 138-146.	7.1	36
6	Chloroplast Iron Transport Proteins – Function and Impact on Plant Physiology. Frontiers in Plant Science, 2016, 7, 178.	3.6	81
7	Plant-Specific Preprotein and Amino Acid Transporter Proteins Are Required for tRNA Import into Mitochondria. Plant Physiology, 2016, 172, 2471-2490.	4.8	27
8	OEP40, a Regulated Glucose-permeable \hat{l}^2 -Barrel Solute Channel in the Chloroplast Outer Envelope Membrane. Journal of Biological Chemistry, 2016, 291, 17848-17860.	3.4	44
9	Fatty Acid and Lipid Transport in Plant Cells. Trends in Plant Science, 2016, 21, 145-158.	8.8	227
10	FAX1, a Novel Membrane Protein Mediating Plastid Fatty Acid Export. PLoS Biology, 2015, 13, e1002053.	5.6	162
11	RAP, the Sole Octotricopeptide Repeat Protein in Arabidopsis, Is Required for Chloroplast 16S rRNA Maturation. Plant Cell, 2014, 26, 777-787.	6.6	69
12	The Distinct Functional Roles of the Inner and Outer Chloroplast Envelope of Pea (<i>Pisum) Tj ETQq0 0 0 rgBT /0</i>	Ovgrlock 1	.0 Jf 50 302 T
13	Signals from chloroplasts and mitochondria for iron homeostasis regulation. Trends in Plant Science, 2013, 18, 305-311.	8.8	102
14	Cellular iron homeostasis and metabolism in plant. Frontiers in Plant Science, 2013, 4, 490.	3.6	34
15	Iron-dependent modifications of the flower transcriptome, proteome, metabolome, and hormonal content in an Arabidopsis ferritin mutant. Journal of Experimental Botany, 2013, 64, 2665-2688.	4.8	52
16	Early Senescence and Cell Death in Arabidopsis <i>saul1</i> Mutants Involves the <i>PAD4</i> -Dependent Salicylic Acid Pathway Â. Plant Physiology, 2012, 159, 1477-1487.	4.8	77
17	The plastid outer envelope protein OEP16 affects metabolic fluxes during ABA-controlled seed development and germination. Journal of Experimental Botany, 2012, 63, 1919-1936.	4.8	32
18	Transcriptome analysis by GeneTrail revealed regulation of functional categories in response to alterations of iron homeostasis in Arabidopsis thaliana. BMC Plant Biology, 2011, 11, 87.	3.6	44

#	Article	IF	Citations
19	The Chloroplast Permease PIC1 Regulates Plant Growth and Development by Directing Homeostasis and Transport of Iron Â. Plant Physiology, 2011, 155, 1709-1722.	4.8	100
20	A search for factors influencing etioplast–chloroplast transition. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 12201-12206.	7.1	16
21	Characterization of the Preprotein and Amino Acid Transporter Gene Family in Arabidopsis. Plant Physiology, 2007, 143, 199-212.	4.8	94
22	Chloroplast biogenesis: The use of mutants to study the etioplast-chloroplast transition. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 678-683.	7.1	76
23	PIC1, an Ancient Permease in Arabidopsis Chloroplasts, Mediates Iron Transport. Plant Cell, 2007, 19, 986-1006.	6.6	250
24	Solute channels of the outer membrane: from bacteria to chloroplasts. Biological Chemistry, 2007, 388, 879-889.	2.5	66
25	Ion Channels Meet Auxin Action. Plant Biology, 2006, 8, 353-359.	3.8	24
26	The auxin-induced K+ channel gene Zmk1 in maize functions in coleoptile growth and is required for embryo development. Plant Molecular Biology, 2006, 61, 757-768.	3.9	27
27	OEP37 Is a New Member of the Chloroplast Outer Membrane Ion Channels. Journal of Biological Chemistry, 2006, 281, 17989-17998.	3.4	69
28	A Second Thylakoid Membrane-localized Alb3/Oxal/YidC Homologue Is Involved in Proper Chloroplast Biogenesis in Arabidopsis thaliana*. Journal of Biological Chemistry, 2006, 281, 16632-16642.	3.4	67
29	Differential expression of K+ channels between guard cells and subsidiary cells within the maize stomatal complex. Planta, 2005, 222, 968-976.	3.2	47
30	Auxin activatesKAT1andKAT2, two K+-channel genes expressed in seedlings ofArabidopsis thaliana. Plant Journal, 2004, 37, 815-827.	5.7	97
31	Intracellular localization of VDAC proteins in plants. Planta, 2004, 220, 30-37.	3.2	51
32	Tumour development inArabidopsis thalianainvolves theShaker-like K+channels AKT1 and AKT2/3. Plant Journal, 2003, 34, 778-787.	5.7	41
33	Blue light regulates an auxin-induced K+-channel gene in the maize coleoptile. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 11795-11800.	7.1	64
34	The K+ Channel KZM1 Mediates Potassium Uptake into the Phloem and Guard Cells of the C4 Grass Zea mays. Journal of Biological Chemistry, 2003, 278, 16973-16981.	3.4	92
35	Differential expression and regulation of K+ channels in the maize coleoptile: molecular and biophysical analysis of cells isolated from cortex and vasculature. Plant Journal, 2000, 24, 139-145.	5.7	67
36	…response: Living with gravity. Trends in Plant Science, 2000, 5, 86-87.	8.8	4

#	ARTICLE	IF	CITATIONS
37	Auxin-induced K+ channel expression represents an essential step in coleoptile growth and gravitropism. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 12186-12191.	7.1	301